
A Dynamic Data Dependence Analysis Approach for
Software Pipelining

Lin Qiao, Weitong Huang, Zhizhong Tang

Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, PR China

{qiaolin, hwt}@cic.tsinghua.edu.cn; tzz-dcs@tsinghua.edu.cn

Abstract. This paper presents a run-time pointer aliasing disambiguation
method for software pipelining techniques. By combining hardware with
software, the method is better than run-time checking method or run-time
compensation method, which is capable of dealing with irreversible code, and
has limited compensation code space without serious rerollability problem. The
new method solves pointer aliasing problem efficiently and makes it possible to
obtain potential instruction-level parallel speedup. In this paper instruction-
level parallel speedups of the new method are analyzed in detail. Three
theoretical speedups, i.e., general speedup, probabilistic speedup and mean
speedup with probability, are given, which will be helpful for studying and
evaluating instruction-level parallelism of the new method.

1 Introduction

To exploit instruction-level parallelism (ILP), compilers for a very-long instruction
word (VLIW) machine often employ static code scheduling and software pipelining
[1] [2] [3] [4]. It is, however, restricted by ambiguous dependencies between memory
fetches. Even though great progress has been made in the analysis of static aliases
among arrays, analysis of pointer aliasing is a formidable task for most compilers. In
order to solve this key problem to achieving the potential speedup in instruction-level
parallel processing, two types of run-time disambiguation (RTD) methods, i.e., run-
time checking and run-time compensation, have been presented in [5].

When applying both of the run-time disambiguation methods to software
pipelining, however, the run-time compensation approach allows speculative memory
fetch but is suitable only for reversed code, while the run-time checking approach can
be used for any code but has serious rerollability problem. Moreover, both of the run-
time disambiguation methods have code space problem. In particular, when applying
run-time disambiguation to global software pipelining the space of compensation
code could be tremendous.

Followed Su and his co-operators [6], the paper presents a new hardware/software
combined method. The basic ideas are as follows. First, during run time, let the
function units execute NOP operations instead of using compensation code to
implement the postponement of the incorrect memory load operation and its
successive operations. Second, to guarantee the consistency of the execution sequence

2 Lin Qiao, Weitong Huang, Zhizhong Tang

of all postponed operations, the order of function units that execute NOPs and the
number of NOPs must be determined during compiler time.

This paper is organized as follows. Section 2 discusses the hardware support for
the RTPAD method before how to use the RTPAD method is discussed by a sample
example in detail in Section 3. Section 4 presents three theoretical parallel speedups
and analyzes the example. Section 5 gives some experimental results while Section 6
draws conclusions.

2 Hardware Architecture

Fig.1 illustrates a hypothetical VLIW architecture that has ten function units: two
ALU, two multipliers (MUL), two memory ports (MEM), and four branch-and-loop-
control units (BRLC). In addition, the hardware support of the RTPAD method
includes an instruction buffer (IB) storing postponed operations, a multiplexer set
(MUX) selecting operations from regular instruction memory or from instruction
buffer, an RTPAD control instruction buffer, and a read register called RTPAD
WORD. This VLIW processor is capable of starting four integer operations, two
memory operations, and four branch operations every cycle.

MUX

Control Instruction Buffer

Instruction Buffer (IB)

Instruction Memory (IM)

ALU1 BRLCsMEM1 MEM2MUL2MUL1ALU2

RTPAD WORDRTPAD

Fig. 1. Hardware support for the RTPAD method

3 Using the RTPAD Method

The RTPAD method has been used for software pipelining of non-loop programs in
[7] [8] [9]. This paper extends the work by using it for software pipelining of loop
programs.

Table 1 and Table 2 illustrates how to use the RTPAD method for software
pipelining algorithms. Fig. 2 shows the original code and Fig. 3 shows the modified
code into which RTPAD operations are inserted.

Because the software pipelining algorithm overlaps several iterations, some
RTPAD operations are inserted before the ambiguous load operation as shown in Fig.
3. Table 1 shows the normal execution sequence of the result of software pipelining
when no address conflict is detected, where opi

(j) denotes operation opi belongs to the
j-th iteration of the loop.

A Dynamic Data Dependence Analysis Approach for Software Pipelining 3

Table 1. The result of software pipelining without address conflicts

CLK ALU1 ALU2 MUL1 MUL2 MEM1 MEM2 BRLC0 BRLC1 BRLC2
1 op1

(1)
2 op1

(2) op5
(1) RTPAD(op5

(2), op8
(1))

3 op6
(1) op1

(3) op5
(2) RTPAD(op5

(3), op8
(1)) RTPAD(op5

(3), op8
(2))

4 op6
(2) op7

(1) op1
(4) op5

(3) RTPAD(op5
(4), op8

(1)) RTPAD(op5
(4), op8

(2)) RTPAD(op5
(4), op8

(3))
5 op6

(3) op7
(2) op1

(5) op5
(4) op8

(1) RTPAD(op5
(5), op8

(2)) RTPAD(op5
(5), op8

(3)) RTPAD(op5
(5), op8

(4))
6 op6

(4) op7
(3) op1

(6) op9
(1) op5

(5) op8
(2) RTPAD(op5

(6), op8
(3)) RTPAD(op5

(6), op8
(4)) RTPAD(op5

(6), op8
(5))

7 op6
(5) op7

(4) op1
(7) op9

(2) op5
(6) op8

(3) RTPAD(op5
(7), op8

(4)) RTPAD(op5
(7), op8

(5)) RTPAD(op5
(7), op8

(6))
8 op6

(6) op7
(5) op1

(8) op9
(3) op5

(7) op8
(4) RTPAD(op5

(8), op8
(5)) RTPAD(op5

(8), op8
(6)) RTPAD(op5

(8), op8
(7))

9 op6
(7) op7

(6) op1
(9) op9

(4) op5
(8) op8

(5) RTPAD(op5
(9), op8

(6)) RTPAD(op5
(9), op8

(7)) RTPAD(op5
(9), op8

(8))

Table 2. An address conflict between op5
(6) and op8

(4) is detected

CLK ALU1 ALU2 MUL1 MUL2 MEM1 MEM2 BRLC0 BRLC1 BRLC2
6 op6

(4) op7
(3) op1

(6) op9
(1) op5

(5) op8
(2) RTPAD(op5

(6), op8
(3)) RTPAD(op5

(6), op8
(4)) RTPAD(op5

(6), op8
(5))

7 op6
(5) op7

(4) op9
(2) op8

(3) RTPAD(op5
(7), op8

(4)) RTPAD(op5
(7), op8

(5)) RTPAD(op5
(7), op8

(6))
8 op7

(5)
NOP
NOP op9

(3)
NOP
NOP Op8

(4) RTPAD(op5
(8), op8

(5)) RTPAD(op5
(8), op8

(6)) RTPAD(op5
(8), op8

(7))
9

NOP
NOP op1

(7) op5
(6)

10 op6
(6)

NOP
NOP op1

(8)
NOP
NOP op5

(7)
NOP
NOP

NOP
NOP

NOP
NOP

NOP
NOP

11 op6
(7) op7

(6) op1
(9) op9

(4) op5
(8) op8

(5) RTPAD(op5
(9), op8

(6)) RTPAD(op5
(9), op8

(7)) RTPAD(op5
(9), op8

(8))

for(i=0; i<n; i++) for(i=0; i<n; i++)
{ {
 R2 = 2 * R1 op1: R2 = 2 * R1
 R1 = M(P) op2: RTPAD
 R4 = R2 – R1 op3: RTPAD
 R4 = R4 + R3 op4: RTPAD
 M(Q) = R6 op5: R1 = M(P)
 R7 = R4 * R5 op6: R4 = R2 – R1
} op7: R4 = R4 + R3

 op8: M(Q) = R6

 op9: R7 = R4 * R5

 }

Fig. 2. The original code Fig. 3. After RTPAD inserted

The prologue stage of the loop is from cycle 1 to cycle 5, and the pipelining stage
of the loop begins from cycle 6. In Table 1, each VLIW instruction executes 6
operations belonging to adjoining iterations, namely, it takes a VLIW CPU one cycle
to complete an iteration of the loop. Assume that l be the loop length and n be the
loop counter. If n >> l, the corresponding parallel speedup is l approximately.

Three RTPAD operations are inserted to determine whether memory address
conflict between the ambiguous load operation of the iteration and store operations of
previous three iterations, respectively. As Table 2 shows, all operations at cycle 11
are the same as original run-time VLIW code at cycle 9, which means that all
operations within cycle 7 and cycle 8 in Table 1 are performed within cycle 7 to cycle
10 in Table 2. All data dependencies of these operations are guaranteed by the order
of inserted NOP operations. The RTPAD method totally needs two extra cycles to
complete compensation NOP operations, which is equal to the compensation code
measure, when the address conflict is detected.

It takes a sequential CPU 6n cycles to execute the original code as shown in Fig. 2.
When the RTPAD method is used, it takes a VLIW CPU n cycles to execute the
corresponding VLIW code in parallel if no address conflict is detected. Thus, the
speedup of the VLIW code is 6 approximately.

4 Lin Qiao, Weitong Huang, Zhizhong Tang

4 Theoretical Speedups

Because of the indeterminacy of parallel execution of programs, it is very difficult to
precisely analyze the complexity and code space of the final VLIW code. The results
we obtained are related to probabilities of events that address conflicts occur.

For the sake of clarity, assume that (a) all operations complete within one cycle,
(b) all PEs share only one memory bank, and (c) each of PEs have a memory read
unit, a memory load unit and four BRLC units. Proofs of theorems can be found in
[8].

Definition 1. Let op1 and op2 be two operations of a program. The number of
operations between op1 and op2 plus 1 is referred to as operation distance, denoted by
dis(op1, op2).

Definition 2. Let op1 and op2 be two operations of a VLIW program, and operation
op1 executes before operation op2 in the original sequential code. If op1 and op2 have
been arranged and the number of VLIW instructions between these two operations is
N, arrangement distance of these two operations, denoted by d(op1, op2), is

1 2

1 2 1 2

1, if executes before ,
(,) 1 if executes after ,

0 otherwise.

N op o
d op op N op op

+
= − −



，

，

p
 (1)

Definition 3. Let op1 and op2, respectively, be two ambiguous store and load
operations. Let the arrangement distance d(op1, op2) < 0. When an address conflict is
detected during run-time, some NOP operations are inserted to implement the
postponement of the incorrect memory load operation and its successive operations.
The number of inserted NOP operations is called compensation code measure,
denoted by Ω.

Definition 4. The duration when compensation NOP operations are executed
before op2 is referred to as pre-compensation period, denoted by D1. Similarly, the
duration when compensation NOP operations are executed after op1 is referred to as
post-compensation period, denoted by D2.

Given a loop program, an operation has different arrangement place in different
iterations. The following definition presents specific arrangement information of
operations in different iterations.

Definition 5. For any op1 and op2 belonging to a loop whose loop counter is n,
suppose that op1

(k) and op2
(j) denote the k-th iteration of op1 and the j-th iteration of

op2, respectively, where 1 ≤ j ≤ n and 1 ≤ k ≤ n. If j ≠ k, d(op1
(k), op2

(j)) is referred to as
inter-body arrangement distance. Otherwise, d(op1

(k), op2
(j)) is referred to as inner-

body arrangement distance.
Any modulo scheduling algorithm of a loop has to determine the initial interval, II,

of the loop before scheduling it. That is, the modulo scheduling algorithm has to
determine the inter-body arrangement distance of the first operation in two adjoining
iterations, d(op1

(k), op1
(k+1)). It is easily found that the inner-body arrangement distance

of op1 and op2 in different iterations are the same, abbreviated as dinn(op1, op2). If op1
executes before op2 in the original code, op1

(j) executes before op2
(j) in the VLIW code

when software pipelining algorithm is applied, i.e., dinn(op1, op2) > 0.

A Dynamic Data Dependence Analysis Approach for Software Pipelining 5

Theorem 1. Let II = 1. Suppose that l be the length of the sequential code of the
loop and n be the loop counter. op1

(k) and op2
(j) are two arranged ambiguous load and

store operations, respectively, and their inner-body arrangement distance is
. After some address conflicts have occurred, that is, the address

conflict whose body difference is i has occurred j
dopopd =),(21inn

i times, where di ≤≤1 for any i, the
parallel speedup of the VLIW program, called general speedup, is

()
1

2 4 1
d

i
i

lnS
n l j d i

=

=
+ − + − +∑

. (2)

After address conflicts have occurred m times, the average value of general speedups
is of the form

2()
2 4

lnS m
n md m l

=
8+ + + −

. (3)

Theorem 2. Suppose that probabilities of events that address conflicts between any
two different iterations occur are independent of each other and probabilities of events
that address conflicts with different body differences in an iteration occur are mutual.
Let pi be the probability of the event that an address conflict whose body difference is
i, occur in an iteration, where di ≤≤1 for any i. Other assumptions of the theorem
are the same as those of Theorem 1. If address conflicts occur m times with
probability, the compensation code measure, Ω , is related to m′s probability,
that is,

)(mP

(
1 2

1 2

... 1 111 2
0 , ,...,

() 1 1
, ,..., ,

i

d
d

n m dd d
j

P i i i
j j j m i iid

j j j m

n
Ω m p

j j j n m

−

+ + + = = ==
≤ ≤

   = −     −    
∑ ∑ ∑∏)p j d i− + . (4)

The corresponding parallel speedup with probability, called probabilistic speedup, is
of the form

42)(
)(

−++
×=

lnmΩ
nlmS

P
P . (5)

Parallel speedups of the VLIW program are different from each other when distinct
address conflicts occur. Being the means of estimating speedup before program
execution, the probabilistic speedup S denotes the expected value of the parallel
speedup. The probabilistic speedup is an important parameter to show the efficiency
of the RTPAD method.

)(mP

Theorem 3. Assumptions of the theorem are the same as Theorem 2. The average
value of parallel speedups when some address conflicts occur with probability, called
mean speedup with probability, is

2 4
lnS

Ω n l
=

+ + −
, (6)

6 Lin Qiao, Weitong Huang, Zhizhong Tang

where Ω is the average value of compensation code measures with probability and

()
nd

i
i

d

i
i

p

idpn
Ω







 −−

+−
=

∑

∑

=

=

1

1

11

1
. Convergence of mean speedup with probability is

()∑
=

∞→
+−+

= d

i
i

n
idp

lS

1
11

lim . (7)

The mean speedup with probability S denotes the average value of the parallel
speedups, which is an important parameter to show the average performance of the
RTPAD method. When the probability of events that address conflicts occur is 0,
convergence of mean speedup with probability is l.

5 Experiment Results

This section briefly introduces and analyzes experimental results of the RTPAD
algorithm for the sample code. For load operations which can possibly result in run-
time address conflicts, the method inserts some RTPAD instructions before them. For
the sake of the clarity, we only discuss the loop program shown in Fig. 3. More
detailed experimental results and practical applications can be seen in [8].

The RTPAD method inserts three RTPAD operations before op5. That is, there
exist three probabilistic parameters, p1, p2 and p3, when software pipelining is applied.
Suppose that p1 = p2 = p3, and p1 + p2 + p3 =p. We executes the compiled code of the
loop program 10,000 times repeatedly where the loop counter n = 10,000.

Fig. 4 illustrates the speedups of the compiled code shown in Fig. 3, while the p-
axis denotes the probability of occurring address conflicts between two iterations, and
the S-axis means the speedup. In Fig. 4 max, min, and mean denote the maximum
speedup, minimum speedup, and mean speedup obtained through 10,000 times
executions respectively, while limS denotes convergence of mean speedup with
probability obtained by Theorem 3. The experiment shows that the RTPAD method
works very well.

6 Conclusion

This paper has proposed a method of run-time pointer aliasing disambiguation,
RTPAD. Applying the RTPAD approach to a typical loop example, this paper has
indicated that it has solved pointer aliasing problem with the same speed as software
pipelining only applying compensation approach.

The RTPAD approach presented in this paper has its own advantages. First, it is
good for irreversible code because the run-time checking method has no redo

A Dynamic Data Dependence Analysis Approach for Software Pipelining 7

problem. Second, the code space for compensation code is limited because any
RTPAD operation only needs one RTPAD control instruction. and last, it has no
rerollability problem that other run-time checking methods have.

0.15 0.30 0.45 0.60 0.75 0.900 1
p1.80

3.00

4.00

5.00

S

6.00

2.80

2.60

2.40

2.20

3.80

3.60

3.40

3.20

4.80

4.60

4.40

4.20

5.80

5.60

5.40

5.20

2.00

max
limS

min
mean

Fig. 4. Speedups of the compiled code shown in Fig. 3

In addition, this paper has theoretically described three parallel speedups of the
RTPAD approach, i.e., general speedup, probabilistic speedup and mean speedup with
probability. Because of the indeterminacy of parallel execution of programs, it is very

8 Lin Qiao, Weitong Huang, Zhizhong Tang

difficult to precisely analyze the complexity and code space of the final VLIW code.
The obtained results are related to probabilities of events that address conflicts occur.
These theoretical speedups will be helpful for studying and evaluating the instruction-
level parallel techniques.

Acknowledgement

This work was supported by National Nature Science Foundation, grant number
60173010, of P. R. China.

References

1. Rau, B. R., Fisher, A.: Instruction-Level Parallel Processing: History, Overview, and
Perspective. Journal of Supercomputing 7 (1993) 9–50

2. Rong, H. B., Tang, Z. Z., Govindarajan, R., Douillet, A., Gao, G. R.: Single-Dimension
Software Pipelining for Multi-Dimensional Loops. In: Proceedings of the 2nd IEEE/ACM
International Symposium on Code Generation and Optimization, 21-24 Mar. 2004, San Jose,
CA. IEEE Computer Society, Los Alamitos, CA (2004) 163–174

3. Qiao, L., Huang, W. T., Tang, Z. Z.: A Static Data Dependence Analysis Approach for
Software Pipelining. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP
International Conference on Network and Parallel Computing, Beijing, Lecture Notes in
Computer Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by
NPC'05

4. Qiao, L., Huang, W. T., Tang, Z. Z.: Coping with Data Dependencies of Multi-Dimensional
Array References. In: Jin, H., Reed, D., Jiang, W. (eds.): Proceedings of IFIP International
Conference on Network and Parallel Computing, Beijing, Lecture Notes in Computer
Science. Springer-Verlag, Berlin Heidelberg New York (2005) accepted by NPC'05

5. Nicolau, A.: Run-Time Disambiguation: Coping with Statically Unpredictable
Dependencies. IEEE Transactions on Computers 38 (1989) 663–678

6. Su, B., Hu, E. W., Najarian, J.: Technical Description of SPLIT – A Hardware/Software
Combined Approach for Run-Time Pointer Aliasing Disambiguation. Tech. Rep. 108,
Department of Computer Science, William Paterson University, NJ (1996)

7. Qiao, L., Tang, Z. Z., Wang, S. Y.: Control Strategies of Software Pipelining: Dealing with
the Prologue and the Epilogue of Nested Loops. In: Zhou, X., Xu, M., Lou, S., Yang, X.
(eds.): Proceedings of the 3rd Workshop on Advanced Parallel Processing Technologies, 19-
21 Oct. 1999, Changsha, China. Publishing House of Electronics Industry, Beijing (1999)
177–181

8. Qiao, L.: On Data Dependencies in Software Pipelining. Doctorial Dissertation, Department
of Computer Science, Tsinghua University, Beijing (2001)

9. Qiao, L., Zou, H. X., Wen, Q., Tang, Z. Z.: Exploiting Instruction-Level Parallelism for the
FMMlet Transformation. In: Ip, H. S., Shi, Y. C., Zhang, X. J., (eds.): Proceedings of the
10th Joint International Computer Conference, 4-6 Nov. 2004, Kunming, China.
International Academic Publishers, Word Publishing Corporation, Beijing (2004) 587–592

