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Abstract. This paper presents a run-time pointer aliasing disambiguation 
method for software pipelining techniques. By combining hardware with 
software, the method is better than run-time checking method or run-time 
compensation method, which is capable of dealing with irreversible code, and 
has limited compensation code space without serious rerollability problem. The 
new method solves pointer aliasing problem efficiently and makes it possible to 
obtain potential instruction-level parallel speedup. In this paper instruction-
level parallel speedups of the new method are analyzed in detail. Three 
theoretical speedups, i.e., general speedup, probabilistic speedup and mean 
speedup with probability, are given, which will be helpful for studying and 
evaluating instruction-level parallelism of the new method. 

1 Introduction 

To exploit instruction-level parallelism (ILP), compilers for a very-long instruction 
word (VLIW) machine often employ static code scheduling and software pipelining 
[1] [2] [3] [4]. It is, however, restricted by ambiguous dependencies between memory 
fetches. Even though great progress has been made in the analysis of static aliases 
among arrays, analysis of pointer aliasing is a formidable task for most compilers. In 
order to solve this key problem to achieving the potential speedup in instruction-level 
parallel processing, two types of run-time disambiguation (RTD) methods, i.e., run-
time checking and run-time compensation, have been presented in [5]. 

When applying both of the run-time disambiguation methods to software 
pipelining, however, the run-time compensation approach allows speculative memory 
fetch but is suitable only for reversed code, while the run-time checking approach can 
be used for any code but has serious rerollability problem. Moreover, both of the run-
time disambiguation methods have code space problem. In particular, when applying 
run-time disambiguation to global software pipelining the space of compensation 
code could be tremendous. 

Followed Su and his co-operators [6], the paper presents a new hardware/software 
combined method. The basic ideas are as follows. First, during run time, let the 
function units execute NOP operations instead of using compensation code to 
implement the postponement of the incorrect memory load operation and its 
successive operations. Second, to guarantee the consistency of the execution sequence 
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of all postponed operations, the order of function units that execute NOPs and the 
number of NOPs must be determined during compiler time. 

This paper is organized as follows. Section 2 discusses the hardware support for 
the RTPAD method before how to use the RTPAD method is discussed by a sample 
example in detail in Section 3. Section 4 presents three theoretical parallel speedups 
and analyzes the example. Section 5 gives some experimental results while Section 6 
draws conclusions. 

2 Hardware Architecture 

Fig.1 illustrates a hypothetical VLIW architecture that has ten function units: two 
ALU, two multipliers (MUL), two memory ports (MEM), and four branch-and-loop- 
control units (BRLC). In addition, the hardware support of the RTPAD method 
includes an instruction buffer (IB) storing postponed operations, a multiplexer set 
(MUX) selecting operations from regular instruction memory or from instruction 
buffer, an RTPAD control instruction buffer, and a read register called RTPAD 
WORD. This VLIW processor is capable of starting four integer operations, two 
memory operations, and four branch operations every cycle. 

MUX

Control Instruction Buffer

Instruction Buffer (IB)

Instruction Memory (IM)

ALU1 BRLCsMEM1 MEM2MUL2MUL1ALU2

RTPAD WORDRTPAD  

Fig. 1. Hardware support for the RTPAD method 

3 Using the RTPAD Method 

The RTPAD method has been used for software pipelining of non-loop programs in 
[7] [8] [9]. This paper extends the work by using it for software pipelining of loop 
programs. 

Table 1 and Table 2 illustrates how to use the RTPAD method for software 
pipelining algorithms. Fig. 2 shows the original code and Fig. 3 shows the modified 
code into which RTPAD operations are inserted. 

Because the software pipelining algorithm overlaps several iterations, some 
RTPAD operations are inserted before the ambiguous load operation as shown in Fig. 
3. Table 1 shows the normal execution sequence of the result of software pipelining 
when no address conflict is detected, where opi

(j) denotes operation opi belongs to the 
j-th iteration of the loop. 
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Table 1. The result of software pipelining without address conflicts 

CLK ALU1 ALU2 MUL1 MUL2 MEM1 MEM2 BRLC0 BRLC1 BRLC2 
1   op1

(1)       
2   op1

(2)  op5
(1)    RTPAD(op5

(2), op8
(1)) 

3 op6
(1)  op1

(3)  op5
(2)   RTPAD(op5

(3), op8
(1)) RTPAD(op5

(3), op8
(2)) 

4 op6
(2) op7

(1) op1
(4)  op5

(3)  RTPAD(op5
(4), op8

(1)) RTPAD(op5
(4), op8

(2)) RTPAD(op5
(4), op8

(3)) 
5 op6

(3) op7
(2) op1

(5)  op5
(4) op8

(1) RTPAD(op5
(5), op8

(2)) RTPAD(op5
(5), op8

(3)) RTPAD(op5
(5), op8

(4)) 
6 op6

(4) op7
(3) op1

(6) op9
(1) op5

(5) op8
(2) RTPAD(op5

(6), op8
(3)) RTPAD(op5

(6), op8
(4)) RTPAD(op5

(6), op8
(5)) 

7 op6
(5) op7

(4) op1
(7) op9

(2) op5
(6) op8

(3) RTPAD(op5
(7), op8

(4)) RTPAD(op5
(7), op8

(5)) RTPAD(op5
(7), op8

(6)) 
8 op6

(6) op7
(5) op1

(8) op9
(3) op5

(7) op8
(4) RTPAD(op5

(8), op8
(5)) RTPAD(op5

(8), op8
(6)) RTPAD(op5

(8), op8
(7)) 

9 op6
(7) op7

(6) op1
(9) op9

(4) op5
(8) op8

(5) RTPAD(op5
(9), op8

(6)) RTPAD(op5
(9), op8

(7)) RTPAD(op5
(9), op8

(8)) 

Table 2. An address conflict between op5
(6) and op8

(4) is detected 

CLK ALU1 ALU2 MUL1 MUL2 MEM1 MEM2 BRLC0 BRLC1 BRLC2 
6 op6

(4) op7
(3) op1

(6) op9
(1) op5

(5) op8
(2) RTPAD(op5

(6), op8
(3)) RTPAD(op5

(6), op8
(4)) RTPAD(op5

(6), op8
(5)) 

7 op6
(5) op7

(4) op9
(2) op8

(3) RTPAD(op5
(7), op8

(4)) RTPAD(op5
(7), op8

(5)) RTPAD(op5
(7), op8

(6)) 
8 op7

(5) 
NOP 
NOP op9

(3) 
NOP
NOP Op8

(4) RTPAD(op5
(8), op8

(5)) RTPAD(op5
(8), op8

(6)) RTPAD(op5
(8), op8

(7)) 
9 

NOP 
NOP op1

(7) op5
(6)

10 op6
(6) 

NOP 
NOP op1

(8) 
NOP 
NOP op5

(7)
NOP
NOP

NOP 
NOP 

NOP 
NOP 

NOP 
NOP 

11 op6
(7) op7

(6) op1
(9) op9

(4) op5
(8) op8

(5) RTPAD(op5
(9), op8

(6)) RTPAD(op5
(9), op8

(7)) RTPAD(op5
(9), op8

(8)) 

for( i=0; i<n; i++ )   for( i=0; i<n; i++ ) 
{     { 
  R2 = 2 * R1    op1: R2 = 2 * R1 
  R1 = M(P)    op2: RTPAD 
  R4 = R2 – R1    op3: RTPAD 
  R4 = R4 + R3    op4: RTPAD 
  M(Q) = R6    op5: R1 = M(P) 
  R7 = R4 * R5    op6: R4 = R2 – R1 
}     op7: R4 = R4 + R3 

     op8: M(Q) = R6 

     op9: R7 = R4 * R5 

     } 

Fig. 2. The original code   Fig. 3. After RTPAD inserted 

The prologue stage of the loop is from cycle 1 to cycle 5, and the pipelining stage 
of the loop begins from cycle 6. In Table 1, each VLIW instruction executes 6 
operations belonging to adjoining iterations, namely, it takes a VLIW CPU one cycle 
to complete an iteration of the loop. Assume that l be the loop length and n be the 
loop counter. If n >> l, the corresponding parallel speedup is l approximately. 

Three RTPAD operations are inserted to determine whether memory address 
conflict between the ambiguous load operation of the iteration and store operations of 
previous three iterations, respectively. As Table 2 shows, all operations at cycle 11 
are the same as original run-time VLIW code at cycle 9, which means that all 
operations within cycle 7 and cycle 8 in Table 1 are performed within cycle 7 to cycle 
10 in Table 2. All data dependencies of these operations are guaranteed by the order 
of inserted NOP operations. The RTPAD method totally needs two extra cycles to 
complete compensation NOP operations, which is equal to the compensation code 
measure, when the address conflict is detected. 

It takes a sequential CPU 6n cycles to execute the original code as shown in Fig. 2. 
When the RTPAD method is used, it takes a VLIW CPU n cycles to execute the 
corresponding VLIW code in parallel if no address conflict is detected. Thus, the 
speedup of the VLIW code is 6 approximately. 
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4 Theoretical Speedups 

Because of the indeterminacy of parallel execution of programs, it is very difficult to 
precisely analyze the complexity and code space of the final VLIW code. The results 
we obtained are related to probabilities of events that address conflicts occur. 

For the sake of clarity, assume that (a) all operations complete within one cycle, 
(b) all PEs share only one memory bank, and (c) each of PEs have a memory read 
unit, a memory load unit and four BRLC units. Proofs of theorems can be found in 
[8]. 

Definition 1. Let op1 and op2 be two operations of a program. The number of 
operations between op1 and op2 plus 1 is referred to as operation distance, denoted by 
dis(op1, op2). 

Definition 2. Let op1 and op2 be two operations of a VLIW program, and operation 
op1 executes before operation op2 in the original sequential code. If op1 and op2 have 
been arranged and the number of VLIW instructions between these two operations is 
N, arrangement distance of these two operations, denoted by d(op1, op2), is 

1 2

1 2 1 2

1,    if  executes  before  ,
( , ) 1   if executes  after  ,

0   otherwise.

N op o
d op op N op op

+
= − −



，

，

p
 (1) 

Definition 3. Let op1 and op2, respectively, be two ambiguous store and load 
operations. Let the arrangement distance d(op1, op2) < 0. When an address conflict is 
detected during run-time, some NOP operations are inserted to implement the 
postponement of the incorrect memory load operation and its successive operations. 
The number of inserted NOP operations is called compensation code measure, 
denoted by Ω. 

Definition 4. The duration when compensation NOP operations are executed 
before op2 is referred to as pre-compensation period, denoted by D1. Similarly, the 
duration when compensation NOP operations are executed after op1 is referred to as 
post-compensation period, denoted by D2. 

Given a loop program, an operation has different arrangement place in different 
iterations. The following definition presents specific arrangement information of 
operations in different iterations. 

Definition 5. For any op1 and op2 belonging to a loop whose loop counter is n, 
suppose that op1

(k) and op2
(j) denote the k-th iteration of op1 and the j-th iteration of 

op2, respectively, where 1 ≤ j ≤ n and 1 ≤ k ≤ n. If j ≠ k, d(op1
(k), op2

(j)) is referred to as 
inter-body arrangement distance. Otherwise, d(op1

(k), op2
(j)) is referred to as inner-

body arrangement distance. 
Any modulo scheduling algorithm of a loop has to determine the initial interval, II, 

of the loop before scheduling it. That is, the modulo scheduling algorithm has to 
determine the inter-body arrangement distance of the first operation in two adjoining 
iterations, d(op1

(k), op1
(k+1)). It is easily found that the inner-body arrangement distance 

of op1 and op2 in different iterations are the same, abbreviated as dinn(op1, op2). If op1 
executes before op2 in the original code, op1

(j) executes before op2
(j) in the VLIW code 

when software pipelining algorithm is applied, i.e., dinn(op1, op2) > 0. 
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Theorem 1. Let II = 1. Suppose that l be the length of the sequential code of the 
loop and n be the loop counter. op1

(k) and op2
(j) are two arranged ambiguous load and 

store operations, respectively, and their inner-body arrangement distance is 
. After some address conflicts have occurred, that is, the address 

conflict whose body difference is i has occurred j
dopopd =),( 21inn

i times, where di ≤≤1  for any i, the 
parallel speedup of the VLIW program, called general speedup, is 

( )
1

2 4 1
d

i
i

lnS
n l j d i

=

=
+ − + − +∑

. (2) 

After address conflicts have occurred m times, the average value of general speedups 
is of the form 

2( )
2 4

lnS m
n md m l

=
8+ + + −

. (3) 

Theorem 2. Suppose that probabilities of events that address conflicts between any 
two different iterations occur are independent of each other and probabilities of events 
that address conflicts with different body differences in an iteration occur are mutual. 
Let pi be the probability of the event that an address conflict whose body difference is 
i, occur in an iteration, where di ≤≤1  for any i. Other assumptions of the theorem 
are the same as those of Theorem 1. If address conflicts occur m times with 
probability, the compensation code measure, Ω , is related to m′s probability, 
that is, 

)(mP

(
1 2

1 2

... 1 111 2
0 , ,...,

( ) 1 1
, ,..., ,

i

d
d

n m dd d
j

P i i i
j j j m i iid

j j j m

n
Ω m p

j j j n m

−

+ + + = = ==
≤ ≤

   = −     −    
∑ ∑ ∑∏ )p j d i− + . (4) 

The corresponding parallel speedup with probability, called probabilistic speedup, is 
of the form 

42)(
)(

−++
×=

lnmΩ
nlmS

P
P . (5) 

Parallel speedups of the VLIW program are different from each other when distinct 
address conflicts occur. Being the means of estimating speedup before program 
execution, the probabilistic speedup S  denotes the expected value of the parallel 
speedup. The probabilistic speedup is an important parameter to show the efficiency 
of the RTPAD method. 

)(mP

Theorem 3. Assumptions of the theorem are the same as Theorem 2. The average 
value of parallel speedups when some address conflicts occur with probability, called 
mean speedup with probability, is 

2 4
lnS

Ω n l
=

+ + −
, (6) 
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where Ω  is the average value of compensation code measures with probability and 

( )
nd

i
i

d

i
i

p

idpn
Ω







 −−

+−
=

∑

∑

=

=

1

1

11

1
. Convergence of mean speedup with probability is 

( )∑
=

∞→
+−+

= d

i
i

n
idp

lS

1
11

lim . (7) 

The mean speedup with probability S  denotes the average value of the parallel 
speedups, which is an important parameter to show the average performance of the 
RTPAD method. When the probability of events that address conflicts occur is 0, 
convergence of mean speedup with probability is l. 

5 Experiment Results 

This section briefly introduces and analyzes experimental results of the RTPAD 
algorithm for the sample code. For load operations which can possibly result in run-
time address conflicts, the method inserts some RTPAD instructions before them. For 
the sake of the clarity, we only discuss the loop program shown in Fig. 3. More 
detailed experimental results and practical applications can be seen in [8]. 

The RTPAD method inserts three RTPAD operations before op5. That is, there 
exist three probabilistic parameters, p1, p2 and p3, when software pipelining is applied. 
Suppose that p1 = p2 = p3, and p1 + p2 + p3 =p. We executes the compiled code of the 
loop program 10,000 times repeatedly where the loop counter n = 10,000. 

Fig. 4 illustrates the speedups of the compiled code shown in Fig. 3, while the p-
axis denotes the probability of occurring address conflicts between two iterations, and 
the S-axis means the speedup. In Fig. 4 max, min, and mean denote the maximum 
speedup, minimum speedup, and mean speedup obtained through 10,000 times 
executions respectively, while limS denotes convergence of mean speedup with 
probability obtained by Theorem 3. The experiment shows that the RTPAD method 
works very well. 

6 Conclusion 

This paper has proposed a method of run-time pointer aliasing disambiguation, 
RTPAD. Applying the RTPAD approach to a typical loop example, this paper has 
indicated that it has solved pointer aliasing problem with the same speed as software 
pipelining only applying compensation approach. 

The RTPAD approach presented in this paper has its own advantages. First, it is 
good for irreversible code because the run-time checking method has no redo 
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problem. Second, the code space for compensation code is limited because any 
RTPAD operation only needs one RTPAD control instruction. and last, it has no 
rerollability problem that other run-time checking methods have. 
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5.00

S

6.00

2.80

2.60

2.40

2.20

3.80

3.60

3.40

3.20

4.80

4.60

4.40
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limS

min
mean

 
Fig. 4. Speedups of the compiled code shown in Fig. 3 

In addition, this paper has theoretically described three parallel speedups of the 
RTPAD approach, i.e., general speedup, probabilistic speedup and mean speedup with 
probability. Because of the indeterminacy of parallel execution of programs, it is very 
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difficult to precisely analyze the complexity and code space of the final VLIW code. 
The obtained results are related to probabilities of events that address conflicts occur. 
These theoretical speedups will be helpful for studying and evaluating the instruction-
level parallel techniques. 
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