A Performance-Based Parallel L oop Self-Scheduling on
Grid Computing Environments

Wen-Chung Shih', Chao-Tung Yang'?, and Shian-Shyong Tseng*®

!Department of Computer and Information Science, National Chiao Tung University
Hsinchu 300, Taiwan, R.O.C.
{gis90805, sstseng} @cis.nctu.edu.tw

2High-Performance Computing Laboratory
Department of Computer Science and Information Engineering
Tunghai University
Taichung 407, Taiwan, R.O.C.
ctyang@thu.edu.tw

3Department of Information Science and Applications
Asia University
Taichung 413, Taiwan, R.O.C.
sstseng@asia.edu.tw

Abstract. Efficient loop scheduling on paralel and distributed systems depends
mostly on load balancing, especially on heterogeneous PC-based cluster and
grid computing environments. In this paper, a general approach, named
Performance-Based Paralld Loop Self-Scheduling (PPLSS), was given to
partition workload according to performance of grid nodes. This approach was
applied to three types of application programs, which were executed on a
testbed grid. Experimental results showed that our approach could execute
efficiently for most scheduling parameters when estimation of node
performance was accurate.

Keywor ds. Pardlel 1oops, Loop scheduling, Self-scheduling, Grid computing,
Globus, MPI

1 Introduction

A promising approach to paralledl computing is grid computing, which utilizes
heterogeneous computers through the Internet to compute [2, 5, 6]. Traditional
schemes for paralle loop scheduling include static scheduling and dynamic
scheduling [8]. While the former might incur load imbalancing on heterogeneous
environments, the latter has not been investigated thoroughly on grid environments.
Self-scheduling is a major class of dynamic loop scheduling schemes. Well-known
self-scheduling schemes include Pure Self-Scheduling (PSS), Chunk Sdlf-Scheduling

* Corresponding author.

mailto:@cis.nctu.edu.tw
mailto:ctyang@thu.edu.tw
mailto:sstseng@asia.edu.tw

(CSS), Guided Sdf-Scheduling (GSS) [9], Factoring Self-Scheduling (FSS) [7], and
Trapezoid Self-Scheduling (TSS) [10]. These schemes partition work load according
to asimple formula, not considering performance of processors.

In [11], a method (o self-scheduling) is proposed to improve well-known seif-
scheduling schemes. Although this scheme partition work load according to CPU
clock speed of processors, CPU could not completely represent performance of
processors. In [12], an approach is proposed to adjust o scheduling parameter, but
performance is still estimated only by CPU speed. In [4], a class of salf-scheduling
schemes is extended to heterogeneous distributed systems.

In this paper, we address the performance estimation issue in paralel loop
scheduling, and propose a general approach called Performance-Based Parallel Loop
Self-Scheduling (PPLSS). This approach estimates the performance ratio of each node
to partition loop iterations. For verification, this approach is applied to three types of
application programs.

We organize the rest of this paper as follows. Section 2 describes the background
about paralle loop self-scheduling schemes. Next, our approach is presented in
section 3. In section 4, our system configuration is specified and experimental results
on three application programs are a so reported. Finally, the conclusion is given in the
last section.

2 Background

In this section, related work on self-scheduling schemes is described. First, we review
several well-known self-scheduling schemes. Next, two recently proposed schemes
areintroduced.

2.1 Wel-Known Self-scheduling Schemes

Traditional self-scheduling schemes operate in common. At each step, the master
assigns some amount of loop iterations to an idle dave. These schemes differ in the
way how the master computes the amount to next idle dave. The well-known
schemes include PSS, CSS, GSS, FSS and TSS. Table 1 shows the different chunk
sizes for a problem with the number of iteration N=1536 and the number of processor
p=4.

Table 1. Sample partition size

Scheme Sample partition size

PSS 1,1,1,111,111, ...

CSS(125) | 125, 125, 125, 125, 125, 125, 125, 125, 125, ...
FSS 192, 192, 192, 192, 96, 96, 96, 96, 48, ...

GSS 384, 288, 216, 162, 122, 91, 69, 51, 39, ...

TSS 192, 180, 168, 156, 144, 132, 120, 108, 96, ...

2.2 Schemesfor Cluster and Grid Environments

In [11], the authors revise known loop sdf-scheduling schemes for extremely
heterogeneous PC-cluster environments. The agorithm is divided into two phases. In
phase one, 0% of workload is partitioned according to CPU clock of processors.
Then, the rest of workload is scheduled according to some well-known sdif-
scheduling in the second phase.

In [3, 12], a new scheme for heterogeneous grid computing environments is
proposed. This scheme is still a two-phased approach. However, it can adjust the o
scheduling parameter according to the relative heterogeneity of the environment.

3 Performance-based Parallel Loop Self-Scheduling (PPL SS)

In this section, the concept of performance estimation is presented first. After that, the
algorithm of our approach is described.

3.1 Perfor mance Estimation

We propose to estimate performance of each grid node, and assign work load to each
node accordingly. In this paper, our performance function (PF) for nodej is defined as

T, (2)
au

" nodel S

PFJ':W

where

- Sistheset of all grid nodes.

- T, is the execution time (sec.) of node i for some application program, such as
matrix multiplication.

- wistheweight of thisterm.

The performance ratio (PR) is defined to be the ratio of all performance functions.
For ingtance, assume the PF of three nodes are 1/2, 1/3 and 1/4. Then, the PR is 1/2 :
1/3:1/4;i.e, the PR of thethreenodesis6: 4 : 3. In other words, if there are 13 loop
iterations, 6 iterations will be assigned to the first node, 4 iterations will be assigned
to the second node, and 3 iterationswill be assigned to the last one.

3.2 Algorithm

The agorithm of our approach is modified from [11], and master program and dave
program are listed as follows.
Module MASTER

Gat her performance ratio of all slave nodes

r = 0;

for (i = 1; i < nunber_of_slaves; i++) {

partition o% of |oop iterations according to the
per formance rati o;
send data to slave nodes;
r++;
}
Partition (100-«)% of loop iterations into the task
gueue usi ng sone known sel f-schedul i ng schene
Probe for returned results
Do {
Di stingui sh source and receive returned data
If the task queue is not enpty then
Send another data to the idle slave
r--.
el se
send TAG= 0 to the idle slave
} while (r > 0)
END MASTER
Module SLAVE
Probe if sonme data in
VWiile (TAG > 0) {
Receive initial solution and size of subtask
work and conpute to fine solution
Send the result to the master
Probe if sonme data in

}
END SLAVE

4 Experimental Results

In this section, our grid configuration is presented. Then, experimental results for
matrix multiplication, Mandelbrot and circuit satisfiability are shown respectively.

4.1 Grid Environments

The testbed grid includes three clusters which are located in three universities
respectively. Cluster 1, located in Providence University, has five nodes. One of the
nodes is designated as the master node. Cluster 2, located in Hsiuping Ingtitute of
Technology, has four nodes. Cluster 3, located in Tunghai University, also has four
nodes. We use the following middleware to build the grid:

Globus Toalkit 3.0.2

Mpich library 1.2.6

For readability of experimental results, the naming of our implementation is listed
inTable 2.

Table 2. Description of our implementation for all programs

AP Name Description
Matrix Multiplication, | G(F, T)SS Dynamic scheduling G(F, T)SS
Mandelbrot, and NG(F, T)SS | Fixed a scheduling + G(F, T)SS
Circuit Satisfiability PG(F, T)SS | Our scheduling + G(F, T)SS

4.2 Application 1: Matrix Multiplication

The matrix multiplication is a fundamenta operation in many applications. In this
subsection, we investigate how scheduling parameters influence performance. In the
experiment as shown in Fig. 1(a), we find NGSS get best performance when a= 50.
Therefore, thisvalue is adopted for the next experiment. Fig. 1(b) illustrates the result
for o= 50. Although both NGSS and our PGSS seem to perform well the same, PGSS
isnot restricted by the selection of « value. In other words, PGSS is more robust.

160

50 /0/. 140 /.

40 — 120
2% W. ——NGSS g —+—GSS
2 @ 8o —m—NGSS
E2 —®— PGSS E A —4PGSS
[60 —

10 0 &

0 L L L L L L L 20 / _w
0 10 20 30 40 50 60 70 80 90 100 0
512 *512 1024 * 1024 1536 * 1536
Alpha Value (%)

Matrix Size

Fig. 1. (a)Execution time for different apha values (b) Execution Time of Matrix
Multiplication with GSS

Fig. 2(a) illustrates the result for a= 30. Although FSS, NFSS and our PFSS seem
to perform well the same, PFSS is not restricted by the selection of a value. In other
words, PFSS is more robust. Fig. 2(b) illustrates the result for a= 30. Although TSS,
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the
selection of o value. In other words, PTSS is more robust.

80 100
0 90
/ % A
60 . 7/
70 -
s 50 y PR=YY @ 60 — —e—TSS
° 40 —m—NFSS © 50 —— —m—NTSS
£ £ S/
(=3 & PFSS E 40 —a—PTSS
/l/ 30
20 :
Z N 20 A
10 '/ 10 -
7~ 7~
0 . . 0 t/
512 %512 1024+1024 1536 * 1536 512 * 512 1024*1024 1536 * 1536
Matrix Size Matrix Size

Fig. 2. (a) Execution Time of Matrix Multiplication with FSS (b) Execution Time of Matrix
Multiplication with TSS

For application of Matrix Multiplication, experimenta results show that our
performance-based approach is efficient and robust.

4.3 Application 2: Mandelbrot

The Mandelbrot set is a problem involving the same computation on different data
points which have different convergence rates [1]. In this subsection, we investigate
how scheduling parameters influence performance. In the experiment as shown in Fig.
3(a), we find NGSS get best performance when o= 50. Therefore, this value is
adopted for the next experiment. Fig. 3(b) illustrates the result for o= 50. Although
both NGSS and our PGSS seem to perform well the same, PGSS is not restricted by
the selection of o value. In other words, PGSS is more robust.

80

70 v

70 60

60 2 g A —e—GSS
@ig ozl ——NGSS g - T hese
P '/A\\' o s F 30 /‘// —A—PGSS
= w/k" 2 /

10 10

ol 0 ~ .

0 10 20 30 40 50 60 70 80 90 100 128+128 256 * 256 384+ 384
Alpha Value (%) Image Size

Fig. 3. (d)Execution time for different apha vaues (b) Execution Time of Mande brot with
GSS

Fig. 4(a) illustrates the result for a= 50. Although FSS, NFSS and our PFSS seem
to perform well the same, PFSS is not restricted by the selection of a value. In other
words, PFSS is more robust. Fig. 4(b) illustrates the result for a= 50. Although TSS,
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the
selection of a value. In other words, PTSS is more robust.

50
45
40
35
30
25
20
15
10

Time (s)

-
W
/) § A

—e—FSS

i

—m—NFSS

— & PFSS

128* 128

256 * 256

Image Size

384 * 384

60

T

//

i

—e—TSS
—m—NTSS
—4&—PTSS

///
V4
i
Kk

128 * 128

256 * 256
Image Size

384 * 384

Fig. 4. (a) Execution Time of Mandelbrot with FSS (b) Execution Time of Mandelbrot with
TSS

For application of the Mandelbrot set, experimental results show that our
performance-based approach is efficient and robust.

4.4 Application 3: Circuit Satisfiability

The circuit satisfiability problem is one involving a combinational circuit composed
of AND, OR, and NOT gates. In this subsection, we investigate how scheduling
parameters influence performance. In the experiment as shown in Fig. 5(a), we find
NGSS get best performance when a= 50. Therefore, this value is adopted for the next
experiment. Fig. 5(b) illugtrates the result for a= 50. Although both NGSS and our
PGSS seem to perform well the same, PGSS is not restricted by the selection of a
value. In other words, PGSSis more robust.

160

140 ’
o >
60 - 3 10 x —e—GSs
© 50 2 g0 - —m— NGSS
-~ —4— NGSS| £ //
2 40 - S a 4 PGSS
EIEN a | |-=—Pess —
N . . B, 40 Z
20 7
10 20 /;//
ob_ o ‘/‘
0 10 20 30 40 50 60 70 80 90 100 15 16 17
Alpha Value (%) Number of Variables

Fig. 5. (@)Execution time for different alpha vaues (b) Execution Time of Circuit Satisfiability
with GSS

Fig. 6(a) illustrates the result for a= 50. Although FSS, NFSS and our PFSS seem
to perform well the same, PFSS is not restricted by the selection of « values. In other
words, PFSS is more robust. Fig. 6(b) illustrates the result for a= 50. Although TSS,
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the
selection of a value. In other words, PTSS is more robust.

120
120
100 »
100 /: /'
»
/ 80
80 = A
= A —e—FsS o Y TSs
e 5}
2 60 —m—NFSS g 6o 7 —®—NTSS
S —a—PFSS = / —A—PTSS
. . /
i ’//l “ /
0 0 .
15 16 17 15 16 17
Number of Variables Number of Variables

Fig. 6. (a) Execution Time of Circuit Setisfiability with FSS (b) Execution Time of Circuit
Satisfiability with TSS

For application of the Circuit Satisfiability problem, experimental results show that
our performance-based approach is efficient and robust.

5 Conclusions and Future Work

We have proposed a performance-based paralel loop self-scheduling (PPLSS)
approach, which partitions work load according to performance ratio of grid nodes. It
has been compared with previous algorithms by experiments on three types of
application programs. In each case, our approach can obtain performance
improvement on previous schemes. Besides, our approach isless sensitive to o values
than previous schemes; in other words, it is more robust. In our future work, we will
implement more types of application programs to verify our approach. Furthermore,
we hope to find better ways of modeling the performance function, incorporating
network information.

References

1. Introduction To The Mande brot Set, http://www.ddewey.net/mandel brot/

2. What Is Grid Computing, http://www-1.ibm.com/grid/about_grid/what_is.shtml/

3. Kuan-Wei Cheng, Chao-Tung Yang, Chuan-Lin Lai, and Shun-Chyi Chang, “A Pardlel

Loop Self-Scheduling on Grid Computing Environments,” Proceedings of the 2004 | EEE
International Symposium on Parallel Architectures, Algorithms and Networks, pp. 409-
414, KH, China, May 2004.

4. A. T. Chronopoulos, R. Andonie, M. Benche and D.Grosu, “A Class of Loop Self-
Scheduling for Heterogeneous Clusters,” Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 282-291, 2001.

5. K. Czajkowski, S. Fitzgerald, |. Foster, and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing,” Proceedings of the 10th | EEE International Symposium on
High-Performance Distributed Computing (HPDC-10), pp. 181-194, August 2001.

6. |. Foster, “The Grid: A New Infrastructure for 21% Century Science,” Physics Today,
55(2):42-47, 2002.

7. S F. Hummd, E. Schonberg, and L. E. Hynn, “Factoring: a method scheme for
scheduling paralld loops,” Communications of the ACM, vol. 35, 1992, pp. 90-101.

8. H.Li, S Tandri, M. Stumm and K. C. Sevcik, “Locality and Loop Scheduling on NUMA
Multiprocessors,” Proceedings of the 1993 International Conference on Paralld
Processing, vol. I1, pp. 140-147, 1993.

9. C. D. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: a Practica Scheduling
Scheme for Parallel Supercomputers,” IEEE Trans. on Computers, vol. 36, no. 12, pp.
1425-1439, 1987.

10. T. H. Tzen and L. M. Ni, “Trapezoid self-scheduling: a practical scheduling scheme for
paralel compilers,” |IEEE Transactions on Parallel and Distributed Systems, vol. 4, 1993,
pp. 87-98.

11. Chao-Tung Yang and Shun-Chyi Chang, “A Pardle Loop Self-Scheduling on Extremely
Heterogeneous PC Clugters,” Journal of Information Science and Engineering, vol. 20, no.
2, pp. 263-273, March 2004.

12. Chao-Tung Yang, Kuan-Wei Cheng, and Kuan-Ching Li, “An Efficient Perallel Loop
Self-Scheduling on Grid Environments,” NPC’2004 IFIP International Conference on
Network and Paralld Computing, Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, Hai Jin, Guangrong Gao, Zhiwei Xu (Eds.), vol. 3222, pp. 92-100, Oct. 2004.

http://www.ddewey.net/mandelbrot/
http://www-1.ibm.com/grid/about_grid/what_is.shtml

