
MagicStore: A New Out-of-Band
Virtualization System in SAN Environments?

Guangyan Zhang, Jiwu Shu, Wei Xue, and Weimin Zheng

Department of Computer Science and Technology,
Tsinghua University, 100084 Beijing, China

zhang-gy04@mails.tsinghua.edu.cn

http://www.cs.tsinghua.edu.cn

Abstract. In this paper, MagicStore, a new out-of-band virtualization
system designed for SAN environments is proposed. Online multiplica-
tion of the components in a striped volume can help enhance both the
I/O performance and storage capacity of a system, but it requires on-
line redistribution of the data on the volume. MagicStore employs a new
mapping management solution based on a sliding window to support the
online data redistribution without loss of scalability. Furthermore, some
virtualization transactions, such as online resizing, require modification
of the virtualization metadata, which results in the challenge of keeping
the persistent consistency of metadata. MagicStore, by using a combi-
nation of ordered writes, REDO logging and log integrity checking, can
survive across panics and power failures robustly. In order to support log
integrity checking effectively, MagicStore also uses a new log format.

1 Introduction

Storage virtualization [1] can enhance the overall quality of service in storage
area networks because it enables the competence of a logical volume to go beyond
the limit of single physical storage devices. For example, the online resizing and
reconfiguration of logical volumes ensure business continuity. The disk utilization
rate can also be increased from only 50% up to 80% through the centralized and
more flexible administration of virtualization software [2].

However, an issue facing storage virtualization is the likelihood that it will put
an inordinate strain on existing hosts. This concern has led to two schemes for
offloading some of the work associated with virtualization: in-band and out-of-
band virtualization. The in-band device, which is placed inside the data stream,
could itself become a performance bottleneck. Conversely, out-of-band virtual-
ization may provide better scalability because its main function device resides
outside the data stream and does not touch the actual data.

In this paper, we propose a new out-of-band virtualization system working in
SAN environments called MagicStore. It employs a new mapping management
? This research was supported by the National High-Tech Research and Development

Plan of China under Grant No. 2004AA111120 and the National Grand Fundamental
Research 973 Program of China under Grant No. 2004CB318205.

2 Guangyan Zhang et al.

solution based on a sliding window. When the data redistribution is not needed,
our solution is equal to the mapping function. A sliding window is introduced
when the data needs to be redistributed. The solution not only supports online
data redistribution but also occupies a small amount of memory space.

Moreover, MagicStore uses a combination of ordered writes, REDO logging
and log integrity checking to obtain high persistency. Ordered writes keep the
sliding window and physical Extents consistent. REDO logging ensures that
the multiple writes to metadata blocks in single virtualization transactions are
atomic. And a new log format enables MagicStore to detect whether writing to
the log is complete.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the MagicStore system. In Section 3, we propose a new mapping
management solution based on a sliding window. The strategies for persistent
consistency are presented in Section 4. In Section 5, we evaluate the I/O perfor-
mance of MagicStore through the representative experiments. We conclude with
related works and a summary.

2 Overview of the MagicStore System

MagicStore is made up of the manager and the agent software on each host
(Figure 1). The manager knows the states of physical devices and manages logical
volumes. Instructed by the manager, the agent virtualizes logical volume devices
and does the address mapping from the logical address space to the physical
address space. Each agent is connected to the manager via TCP/IP.

SAN

Data

Stream

Control Stream

Linux Agent

SAN

Monitor

Manager

Metadata

Manager

Solaris Agent

loadconf

Mapper

Windows Agent

Batman

Storage Subsystem

.
conf
 loadconf
 .
conf
 loadconf
 .
conf

Storage Subsystem

Mapper
 Batman
 Mapper
 Batman

 Mapper
 Batman

Fig. 1. Architecture of the MagicStore system

The manager consists of two cooperative modules: the metadata manager
and the SAN monitor. The metadata manager organizes virtualization meta-
data using a simple 3-layered model separating physical volumes, volume groups

MagicStore: A New Out-of-Band Virtualization System. . . 3

and logical volumes [3]. Logical volumes may be allocated to hosts with access
permissions. Information about the state of the SAN is collected by the SAN
Monitor. In addition, the manager enables the applications on itself to access
any logical volume by loading the agent on the corresponding platform.

The agent consists of the mapper in the kernel space and the loadconf utility
and a configuration file in the user space. The mapper is a light-weight driver
residing between the file system driver and the disk driver. When the mapper
is loaded, it creates the batman, a kernel thread which receives virtualization
instructions from the manager and executes them. The mapper maps the I/O
requests sent to logical volumes to the corresponding physical volumes. The
loadconf utility is used to ask the mapper to reload the configuration information
from the configuration file.

The mapping mode for each logical volume can be alternated between the
buffer mode and the non-buffer mode. The former can eliminate the overhead of
the network communications for sending frequent mapping requests to the man-
ager. The latter is convenient for online updating of the mapping information.

3 Mapping Management Based on a Sliding Window

To enhance the I/O performance and storage capacity of a system, users often
have a reasonable need for increasing the number of components in a striped vol-
ume online. It is necessary for the data on the striped volume to be redistributed
across the old and new volume components.

The address mapping can be expressed through the mapping function [3,4,5]
and the mapping table [1,6] traditionally. The mapping table makes it possible
to handle the data redistribution and normal I/O operations at the same time
because it can keep track of the movement of data. However, the mapping ta-
ble occupies a very large space. The transfer and storage of a large amount of
mapping information puts tremendous pressure on both the network and the
memory, and further impairs the scalability of the whole system.

In contrast to the mapping table, the mapping function which only stores its
own function eliminates the transfer and storage of a large amount of mapping
information. In this technique, unfortunately, the I/O operation occurring during
the data redistribution can not find the correct location of relevant data because
the data can exist on the original or new location.

We propose a new solution for managing mapping information. The key idea
behind the solution is to introduce the concept of a sliding window into the
mapping function. When the data redistribution is not needed, our solution is
equal to the mapping function. A sliding window is introduced when the data
needs to be redistributed.

Figure 2 illustrates how the metadata is updated when the components in a
striped volume are multiplied from 2 to 3. The sliding window is a quite small
mapping table which describes the mapping information of a continuous segment
of the striped volume. At any time, only data within the range of the sliding
window is redistributed. The normal I/O requests to the logical address before

4 Guangyan Zhang et al.

the sliding window are mapped through the original function; those sent to the
address after the sliding window are mapped through the new function, and
those to the address in the range of the sliding window are mapped through
the sliding window. After all the data in the sliding window are moved, the
window slides ahead by one window width. The data redistribution of the whole
volume is completed when the sliding window reaches the end of the original
striped volume. From then on, the address mapping of the whole volume is done
through the new mapping function.

original function

new function

sliding window

Fig. 2. The components in a striped volume are multiplied from 2 to 3

Introducing the concept of a sliding window enables online redistribution of
the data on logical volumes. Additionally, the fact that the size of the sliding
window is small and independent of the size of the logical volume contributes to
the high performance and scalability of the whole system.

4 Strategies for Persistent Consistency

To enable the out-of-band virtualization system to survive across panics and
power failures, virtualization metadata has to be both available and consistent
when the system reboots. When the mapping information of a logical volume
is modified, the manager asks the mapper to switch the mapping mode of the
logical volume to the non-buffer mode. Thus, only the metadata consistency on
the manager side has to be ensured.

Whenever online multiplication of the components in a striped volume oc-
curs, we have to keep the sliding window and physical Extents consistent. This
consistency can be achieved by the method of ordered writes. The physical Ex-
tent is first copied to the new location and then the map block is written to the
disk. Even if the power fails in between, just an extent copy is wasted and the
consistency is not destroyed. The opposite order is problematic.

Another issue of persistent consistency is that some virtualization transac-
tions write multiple metadata blocks. MagicStore, by using REDO logging, en-
sures that the multiple writes to metadata blocks in single virtualization trans-
actions are atomic. In this case, intentions are logged first and the metadata
updates can be done. In case of a crash, when the manager comes up, it scans
through and replays the log. Thus the metadata remains consistent.

MagicStore: A New Out-of-Band Virtualization System. . . 5

A new issue that REDO logging brings is that, in case of a power crash
while writing to the log, we must be able to detect that writing to the log is
not complete. We propose a new log format, with which MagicStore can detect
whether writing to the log is complete by checking the log integrity.

Transaction log

seq

size

-
1

data

seq
-
1

data

...

...

Log data

...

...

...

...

Start signature
 End signature

Fig. 3. The new design of the log format

Our new design of the log format is shown in Figure 3. It uses two special
signatures to label the beginning and end of the log respectively. The sequence
number fields of the start and end signatures store the sequence number of the
transaction log, while that of the log data is set to the invalid sequence number
value -1. The size of the whole log is recorded at the end of the start signature.
This design eliminates the need for scanning through the whole transaction log
to find the end signature because the size of the log has been introduced. In
addition, there is no possibility of mistaking the old metadata or end signature
for the current end signature since the values in their sequence number fields are
different.

5 Experiments

The manager was implemented in the user space on the Linux platform. The
agent software were implemented on the Windows, Solaris and Linux platforms.
In this section, we compare the performance of the linear, striped and mirrored
volumes managed by MagicStore with that of the plain volumes managed by the
original operating systems.

5.1 Experimental Setup

The Solaris agent was installed on a two-way 300 MHz UltraSPARC-IIi machine
with 256 MB of memory and an Emulex LP9802 HBA card running SunOS
Release 5.10 Version. Each other subsystem of MagicStore was installed on a two-
way 2.4 GHz Intel Xeon machine with 1 GB of memory and an Emulex LP982
HBA card running Linux kernel v.2.4.16 of RedHat 9 distribution or Windows
Server 2003. The file systems used were NTFS, UFS and EXT2 respectively. Via
a Brocade Silk Worm 3800 fibre channel switch, these machines were connected
with an FC disk array controlling five 146 GB Seagate Cheetah 10K disks.

6 Guangyan Zhang et al.

We configured IOmeter[7] to generate the representative workloads, and all
of them consisted of 20% writes and 80% reads since Vogels found that 79% of
accesses to files were read only [8]. All workloads used random addresses with
transfer request size doubled from 8 KB to 4096 KB.

5.2 Results

8
 16
 32
 64
 128
 256
 512
 1024
 2048
 4096

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Transfer
Request Size (KB)

 Windows

 Solaris

 Linux

(a) Linear Volumes

8
 16
 32
 64
 128
 256
 512
 1024
 2048
 4096

0

20

40

60

80

100

120

140

160

180

200

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

Transfer Request Size (KB)

Windows

 Linux

(b) Striped Volumes

8
 16
 32
 64
 128
 256
 512
 1024
 2048
 4096

-10

0

10

20

30

40

50

60

70

80

90

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Transfer Request Size (KB)

Windows

 Linux

(c) Mirrored Volumes

Fig. 4. The Performance of the MagicStore system

We first measured the I/O throughput (MB/s) of each logical volume x
managed by MagicStore with different transfer request sizes. According to the
following equation, we got its corresponding normalized performance, where
Thrput(plain) denotes the I/O throughput of the plain volume, which resides on
the same platform with x, with the same transfer request size.

MagicStore: A New Out-of-Band Virtualization System. . . 7

Norm Perfx =
Thrputx − Thrputplain

Thrputplain
∗ 100. (1)

Figure 4 shows a plot of the normalized performance of logical volumes ver-
sus the transfer request size. The minimum, maximum and average normalized
performances of linear volumes were respectively, -2.70, 1.10 and -0.29 on the
Windows platform, -1.27, 0.39 and -0.43 on the Solaris platform, -3.46, 0.64 and
-2.10 on the Linux platform.

All the striped volumes in the experiments were constructed of four FC disks
with a stripe width of 64 KB. The minimum, maximum and average normalized
performances of striped volumes were respectively 39.16, 194.81 and 103.89 on
the Windows platform, 21.94, 36.21 and 30.03 on the Linux platform.

In the experiments, all the mirrored volumes were constructed of two com-
ponents. Writes to mirrored volumes were initiated concurrently and reads were
alternated between the copies. The minimum, maximum and average normalized
performances of mirrored volumes were respectively, 14.47, 75.25 and 40.11 on
the Windows platform, -4.16, 2.46 and -0.98 on the Linux platform.

6 Related Works

In recent years, considerable attention has been paid to the storage virtualiza-
tion systems for SAN environments. Some of them, such as the Pool Driver [4],
CLVM[5] and the SANtopia volume manager[1], employ symmetric architecture.
This means that they only apply to clusters running a single operating system.

There are also some systems which use asymmetric architecture. However,
they all have some limitations. For example, OpenView[9] only applies to the
specified HBA card and driver because its agent is implemented on the HBA
driver. When the SANfs-VM[6] or V:drive[2] is used, only Linux can be run on
the hosts.

Among all the above systems, only the SANtopia volume manager supports
online multiplication of the components in a striped volume. Unfortunately, the
mapping management using a mapping table restricts its scalability and makes
it inadequate for SAN environments with a large amount of storage. Jose and
Toni proposed an algorithm for increasing the capacity of RAID5 [10], which
has an easily controlled overhead. A similarity between the algorithm and our
solution is that the new disks are gradually available to serve requests during
the multiplication process.

Reference [11] presents a log format for detecting whether writing to the log
is complete. However, it has no capability to tell log data blocks from the trans-
action epilogue block belonging to the same transaction log by their transaction
ids and offsets. Furthermore, without introducing the size of the log, this solu-
tion makes it necessary to scan through the whole transaction log to find the
transaction epilogue. If some data block of the transaction log exactly matches
the current transaction epilogue, a checking mistake will appear.

8 Guangyan Zhang et al.

7 Conclusions

MagicStore employs a new mapping management solution based on a sliding
window. This solution enables it to support online multiplication of the com-
ponents in a striped volume. Furthermore, it contributes to MagicStore’s high
scalability since it occupies a very small space. By employing a combination of
ordered writes, REDO logging and log integrity checking, MagicStore can survive
across panics and power failures robustly. Moreover, a new log format effectively
supports log integrity checking. In the representative experiments, MagicStore
demonstrated its ability to provide high performance.

References

1. Chang-Soo Kim, Gyoung-Bae Kim, Bum-Joo Shin. Volume Management in SAN
Environ-ment. In: Proceedings of the 8th International Conference on Parallel and
Distributed Sys-tems, ICPADS 2001. 2001. pages 500-505.

2. A. Brinkmann, M. Heidebuer, F. Meyer auf der Heide, et al. V:Drive - Costs
and Benefits of an Out-of-Band Storage Virtualization System. In: Proceedings of
the 12th NASA God-dard, 21st IEEE Conference on Mass Storage Systems and
Technologies (MSST), pages 153-157, College Park, Maryland, USA, 13-16 Apr.
2004.

3. David Teigland, Heinz Mauelshagen. Volume Managers in Linux. In: Proceedings
of the 2001 USENIX Annual Technical Conference, pages 185-198, June 2001.

4. David Teignald. The Pool Driver: A Volume Driver for SANs, In Partial of Fulfill-
ment of the Requirements for the Degree of Master of Science, Oct 1999.

5. Heinz Mauelshagen. Linux Cluster Logical Volume Manager, In: Proceedings of
the 11th International Linux System Technology Conference. Erlangen, Germany.
Sept. 2004.

6. Seung-Ho Lim, Joo Young Hwang, Kyung Ho Kim, et al. Resource Volume Manage-
ment for Shared File System in SAN Environment. In: Proceedings of the 16th In-
ternational Con-ference on Parallel and Distributed Computing Systems (PDCS),
2003.

7. Intel Corporation, Iometer, July, 2004. http://www.iometer.org.
8. W. Vogels. File system usage in Windows NT 4.0. In Proceedings of the 17th ACM

Sympo-sium on Operating Systems Principles, pages. 93-109, Dec. 1999.
9. Hewlett-Packard Development Company. HP OpenView Storage

Operations Manager v1.2. Sept. 2004. http://h18006.www1.hp.
com/products/quickspecs/11778 div/11778 div.html.

10. Jose Luis Gonzalez and Toni Cortes. Increasing the capacity of RAID5 by online
gradual assimilation. International Workshop on Storage Network Architecture and
Parallel I/Os. Antibes Juan-les-pins, France, September 30, 2004

11. Suresh B Siddha, K Gopinath. A Persistent Snapshot Device Driver for Linux. In:
Proceed-ings of 5th Annual Linux Showcase & Conference, 2001.

