

A Direction to Avoid Re-encryption in Cryptographic
File Sharing

Lanxiang Chen, Dan Feng, Lingfang Zeng, and Yu Zhang

School of Computer, Huazhong University of Science and Technology, Key Laboratory of

Data Storage System, Ministry of Education, Wuhan, China
lxiangchen@gmail.com, dfeng@hust.edu.cn

Abstract. Almost all cryptographic file sharing systems need re-encryption
when the sharing was revoked. These systems differ from each other only in the
timing of re-encryption. As re-encryption is an expensive operation, it is sig-
nificant to avoid re-encryption. The purpose of this paper is to advise a direc-
tion to avoid re-encryption and facilitate file sharing in cryptographic file shar-
ing system. A Black-box model is set up to achieve this objective. In the model,
FPGA or ASIC chips are used to act as the black-box as they have been exten-
sively researched and applied in cryptography. Some applications of FPGA and
ASIC in cryptography are detailed in this paper. Their feasibility to be func-
tioned as the black-box is discussed. Also a software implementation on FPGA
is attached with tested and effective performance.

Key Words: cryptographic file system, FPGA, ASIC, access control

1 Introduction

It goes without saying the importance of information sharing. The rapid development
of computer networks brings convenience for information sharing. As the computer
network is open and pervasive, there are many security threats. How to securely share
information? How to make you (adversary) can’t ‘see’ the information even if you get
the related data? One important way is to encrypt information before publishing. Only
the authorized user can access the information. With this in mind, it gives birth to a
set of cryptographic file sharing system.

Blaze’s CFS [1] is the first cryptographic file system. But it was designed as a se-
cure local file system, so it lacks features for sharing encrypted files among different
users. The only way to share a protected file is to directly hand out keys for protected
directories to other users. Compared to CFS, TCFS [2] makes file encryption trans-
parent to users, provides data integrity, and enables file sharing between users of a
group (UNIX group). There are similar systems such as SiRiUS [3] and SNAD [4].
All these systems need owner to provide file keys to share their files to others. Once
owners want to revoke some users or the users leave their groups, owners have to re-

encrypt their files as the keys have been exposed to the revoked users and distribute
the new keys to the other un-revoked users. According to seven months of AFS pro-
tection server logs obtained from MIT, there were 29,203 individual revocations of
users from 2,916 different access control lists (counting the number of times a single
user was deleted from an ACL) [5]. Revocation will introduce masses of expensive
cryptographic computation and key distribution to these systems.

To reduce the impact of aggressive re-encryption cost on performance, Cepheus [6]
proposes the concept of lazy revocation which delays re-encryption to next file up-
date. Plutus [5] exploits this concept. There are three types of re-encryption schemes
when revocation:

1) Aggressive re-encryption – immediately re-encrypt data with a new key after a
revocation.

2) Lazy re-encryption – delay re-encryption of the file to the next time it is updated
or read. This saves encryption work for rarely-accessed files, but leaves data vulner-
able longer.

3) Periodic re-encryption – change keys and re-encrypt data periodically to limit
the window of vulnerability.

The difference of the three types of re-encryption is just the timing of re-
encryption. All the above systems need re-encryption when revocation. There are
systems that don’t need re-encryption when revocation, such as NCryptfs [7].
NCryptfs file system is a stackable file system designed to provide kernel-level en-
cryption services. Its file key is stored in the kernel memory, the user and the owner
have to access files from the same machine. Since the encryption keys are always
stored in the kernel’s memory, it is never revealed to other users. Therefore, revoca-
tion of users does not require re-encryption. But the user has to (remember and) sup-
ply to the owner a hash of his password for every directory he wishes to access and
the owner’s machine must be online. Therefore, NCryptfs is quite inconvenient to use
for distributed file sharing. As the key is pinned in memory, it is also vulnerable to
attacks.

As discussed above, either system needs re-encryption or it needs not re-
encryption but is inconvenient to file sharing. How to avoid re-encryption at the same
time having convenient file sharing? In this paper a new direction is presented. Sec-
tion 2 introduces the Black-box model. Section 3 will explain the technology which
will be used to build the model. We will analysis feasibility in section 4 and conclude
in section 5.

2 Model

To share files with others distributed everywhere, it is inevitable to transfer file data
over network. Once data is on the wire, the best way to secure data is encryption.
User can access the encrypted file only if he can decrypt the file: he must have the file
key or some other special tools to complete. If the user has file key, when file owner
doesn’t hope him to access the file or the user leaves the group that is authorized to
access the file, the file owner has to re-encrypt the file as the file key is exposed to the
revoked user. How to share file with others without revealing key to them? The pos-

sible way is to access the shared file as NCryptfs, file key just only exists in owner’s
kernel memory. All users who want to access the file have to supply to the owner a
hash of his password for every directory he wishes to access. First, it is quite incon-
venient to use for distributed file sharing. Also, once owner is compromised, all users
can’t access files. Thirdly, as the key is pinned in memory, it is also vulnerable to
attacks.
 Is there a scheme to avoid re-encryption while having convenient file sharing?

We already know the requirements. It is to avoid re-encryption while sharing file
with others conveniently. To avoid re-encryption, the only way is not to reveal file
key to others while they can use the file key to decrypt the file. So the file key should
be encrypted using their private key. User who can access file can get encrypted file
and corresponding encrypted key. There are also other requirements such as the
scheme is easy to configure, portable and low cost etc. A black box is supposed here.
The encrypted file and encrypted key are the inputs of the black-box. And it outputs
the decrypted file which we wish to get. Figure 1 is the illustration. The Black-box
should be implemented utilizing existing technology and have preferable performance
and is transparent to users.

Fig. 1. Black-box model with inputs of encrypted key and ciphertext and it outputs cleartext

The Black-box may be implemented in many ways. But as Field Programmable
Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC) technologies
have been extensively researched and applied in Cryptography, we think they are the
most suitable to act as Black-box. Along with avoiding re-encryption, hardware-
based cryptographic solutions can provide significant security and performance im-
provements over software solutions.

3 The Application of VLSI in Cryptography

Very Large Scale Integration (VLSI) circuit is the field which involves packing more
and more logic devices into smaller and smaller areas. Obeying Moore's law, the
capability of an integration circuit has increased exponentially over the years, in
terms of computation power, utilization of available area, yield. People can now put
diverse functionality into the integration circuit, opening up new frontiers. Examples
are embedded systems, where intelligent devices are put inside everyday objects, and
ubiquitous computing.

The application of VLSI has been extensively researched in cryptography. These
researches can be categorized into two types: the ASIC implementations and the
FPGA implementations. The ASIC implementations have the advantage of fully op-
timized structure and thus resulted in smaller circuit area, higher speed of operation,
and lower power consumption. But the design and implementation of ASIC is com-
plex and time consuming and the cost is very high. The ASIC circuit can not be modi-
fied once it has been implemented. So it can not be adopted to often changed envi-
ronment. Most of these designs were carried out on reconfigurable platforms. The
reconfigurable platforms make use of the FPGA technology which combined the high
speed of specialized hardware architecture and the agility of the software platform.
And also the FPGA implementations cost much less than the ASIC.

Existing cryptographic algorithms utilizing ASIC and FPGA cover various fields,
like AES [8], DES, SHA, HMAC and RSA [23]. For different design objectives and
requirement, there are many design alternatives [9] as follows:

− Low area, low bandwidth designs, and high area, high bandwidth designs,
− Iterated architectures (frequent feedback), and fully unrolled pipelined architec-

tures (zero feedback),
− Designs where part of the logic is executed using pre-computed SRAM operations,

and designs where no pre-computed tables of SRAM are used,
− Designs with pre-computed key/round material, and designs with runtime genera-

tion of key/round material with the data to be encoded,
− Designs supporting dynamic selection of variable key sizes, and designs support-

ing a singular fixed key size,
− Designs supporting generic block-cipher encryption / decryption, and designs

supporting full-duplex encryption and decryption paths,
− A wide range of target hardware chipsets and architectures,
− A broad range of power consumption objectives.

From the first ASIC implementation [10] of AES, there are serials of related im-
plementation schemes [11, 12]. The best performance implementation of AES-ECB
128-bit on ASIC is Hodjat’s [13]. It uses 473K gates with 606MHz clock frequency,
and its highest speed is 77.6Gbps. The best performance implementation of AES-
ECB 192-bit and 256-bit on ASIC is North Pole Engineering’s [14]. It uses 26K gates
with 323MHz clock frequency, and its highest speed is 41.3Gbps. The best perform-
ance implementation of AES-FEEDBACK on ASIC is Morioko’s [15]. It uses 168K
gates with 909MHz clock frequency and its highest speed is 11.6Gbps.

References [16-19] are some of the early implementations of the Rijndael algo-
rithm before it was accepted as the Advanced Encryption Standard on FPGA. There
are also serials of implementation schemes [20, 21].The best performance implemen-
tation of AES-ECB 128-bit on FPGA is Fu’s [21]. It uses 17887 slices with
212.5MHz clock frequency, and its highest speed is 27.1Gbps. The best performance
implementation of AES-ECB 192-bit and 256-bit on FPGA is North Pole Engineer-
ing’s [14]. It uses 5840 slices with 100MHz clock frequency, and its highest speed is
12.8Gbps. The best performance implementation of AES-FEEDBACK on FPGA is
Helion Tech’s [22]. It uses 447 slices with 219MHz clock frequency and its highest
speed is 25.48Gbps.

Implementations of RSA on ASIC refer to [24, 25] and implementations on FPGA
can refer to [26, 27]. The best performance implementation of RSA is the implemen-
tation of McIvor [28].

Due to space limitations, the process of other related algorithms implementation
won’t be discussed.

4 Feasibility

Using FPGA and ASIC to act as the Black-box, they must satisfy following charac-
teristics.

− User doesn’t know the private key which is used to encrypt the file key. Usually,
user should know their private key. As we can’t expose the file key to user and the
file key is encrypted with the private key. So each user’s Black-box can generate
public-private pair for user and submit the public part to user. As only Black-box
knows user’s private key, it can sign for user,

− User can’t change Black-box data flow. Once the Black-box is distributed to users,
they can’t modify the Black-box,

− Convenience to file sharing. We will illustrate a FPGA scheme to show how to
share files conveniently,

− Performance and cost. The Black-box should have preferable performance and
acceptable cost.
As the ASIC circuit can not be modified once it has been implemented and FPGA

is through configure file to set work pattern. The configure file is binary file and there
isn’t way to compile the file in reverse. How FPGA is organized is not known by
anyone else except the designer. So they both satisfy characteristic two. As detailed
above, the performance of ASIC and FPGA are excellent.

4.1 An FPGA Scheme

Figure 2 shows a simple architecture of the FPGA scheme. The files are stored to
storage device by owners. File owner establishes ACL (Access Control List) accord-
ing to local policy in which the owner defines who can access the file and uses whose
public key to encrypt the file key. The encrypted file key is inserted to ACL and
stored in storage device. The client who wants to access the file, he fetches file data
and ACL from storage device. The ACL is signed by owner then client first verify the
ACL. There is timestamp in ACL to avoid the client reuses the ACL. Client knows
whether he can access the file from the ACL. He can fetch corresponding file key
encrypted using his public key. Figure 3 illustrates the data flow between user and
storage device.

Fig. 2. Storage architecture

Client application program requests system call to read file from storage device.
File system module verifies the ACL and fetches corresponding file key, then sends
the encrypted file key and file to FPGA module which decrypts file key and en-
crypted file. A write request first causes system to create file key and establish ACL.
Client system encrypts the file using the file key and requires FPGA module to sign
the ACL, then attaches the signed ACL to encrypted file and sends to storage device.
It only needs to provide file and file key for user and the rest work is transparently
completed by FPGA module. As user doesn’t know file key, it needs not to re-
encryption when revoking the user. And this way authentication server or other center
server can be eliminated, so it is well suitable to distributed file sharing.

Fig. 3. Data flow between user and storage device

4.2 Experimental Results

In this section, a software solution on XC4VLX200 is implemented. The read/write
costs on FPGA are tested in Figure 4. The AES in 128-bit ECB mode and 1024-bit

RSA are used and the size of ACL is limited to 32K bytes. The cost includes verifica-
tion and decryption for a file read, correspondingly signature and encryption for a file
write. The costs of small file read/write and large file read/write with small size ACL
and large size ACL respectively are illustrated. Figure 4 (a) and (b) demonstrate the
costs of small file read/write, and Figure 4 (c) and (d) demonstrate the costs of large
file read/write. It indicates that read operation is slower than write and the size of
ACL affects the costs of read/write greatly. It results from the operation of RSA
which is time-consuming operation.

Fig. 4. (a)Small file read/write with a 32K bytes ACL. (b) Small file read/write with a 4K bytes
ACL. (c) Large file read/write with a 32K bytes ACL. (d) Large file read/write with a 4K bytes

ACL

5 Conclusion and Future Work

In this paper, a direction is proposed which can avoid re-encryption when revocation
in cryptographic file sharing system. As re-encryption is an expensive operation, it is
significant to avoid re-encryption. We set up a Black-box model which is used to
avoid re-encryption. In the model, FPGA or ASIC chips are used to act as the Black-
box. The application of FPGA and ASIC in cryptography is detailed and their feasi-
bility to function as the Black-box is discussed. We demonstrate the feasibility
through a software implementation on FPGA with tested and effective performance.

The software implementation on FPGA just testifies that it is feasible, however it
can’t reflect the impact of avoiding re-encryption on performance. And the perform-
ance of software implementation on FPGA is far worse than hardware implementa-
tion. So we can‘t compare the performance of our scheme with other cryptographic
file system described above. The future work is to evaluate the impact of re-
encryption on performance quantitatively and compare the performance of our
scheme using hardware implementation on FPGA with other cryptographic file sys-
tem.

Acknowledgments. This work was supported by the National Basic Research Pro-
gram of China (973 Program) under Grant No. 2004CB318201, and the National
Science Foundation of China under Grant No. 60603048.

References

1. Matt Blaze, “A Cryptographic File System for Unix”, First ACM Conference on Communi-
cations and Computing Security, Fairfax, VA November (1993)

2. Giuseppe Cattaneo, Luigi Catuogno, Pino Persiano, Aniello Del Sorbo, “Design and imple-
mentation of a transparent cryptographic file system for UNIX”, In FREENIX Track: 2001
USENIX Annual Technical Conference (2001)

3. Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, Dan Boneh, “SiRiUS: Securing Remote
Untrusted Storage”, In Proceedings of the Tenth Network and Distributed Systems Security
(NDSS) Symposium (2003) 131–145

4. Ethan L. Miller, Darrell D. E. Long, William E. Freeman, and Benjamin C. Reed, “Strong
security for network-attached storage”, In Proceedings of the 2002 Conference on File and
Storage Technologies , Monterey, CA (2002) 1–13

5. Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, Kevin Fu, “Plutus: scalable
secure file sharing on untrusted storage”, In USENIX File and Storage Technologies (2003)

6. Kevin Fu, “Group sharing and random access in cryptographic storage file system”, Master’s
thesis, MIT (1999)

7. Charles P. Wright, Michael C. Martino, Erez Zadok, “Ncryptfs: A secure and convenient
cryptographic file system”, In USENIX Annual Technical Conference (2003)

8. National Institute of Standards and Technology (NIST), Advanced Encryption Standard
(AES), Federal Information Processing Standards Publications 197 (2001)

9. Benjamin Gittins, Howard Landman, Sean O’Neil, Ron Kelson, “A Presentation on VEST
Hardware Performance, Chip Area Measurements, Power Consumption Estimates and
Benchmarking in relation to AES, SHA-256 and SHA-512”, 14th November 2005.

10. Ingrid Verbauwhede, Patrick Schaumont, Henry Kuo, “Design and Performance Testing of
a 2.29 Gb/s Rijndael Processor”, IEEE J. Solid-State Circuits (JSSC 2003) 569-572

11. Chih-Pin Su, Chia-Lung Horng, Chih-Tsun Huang, Cheng-Wen Wu, “A configurable AES
processor for enhanced security”, ASP-DAC (2005) 361-366

12. Alireza Hodjat, Ingrid Verbauwhede, “Area-Throughput Trade-Offs for Fully Pipelined 30
to 70 Gbits/s AES Processors”, IEEE Trans. Computers 55(4), (2006) 366-372

13. Alireza Hodjat, Ingrid Verbauwhede, “Speed-area trade-off for 10 to 100 Gbits/s through-
put AES processor”, 2003 IEEE Asilomar Conference on Signals, Systems, and Computers,
November 2003. http://www.ee.ucla.edu/~ahodjat/AES/asilomar_paper_alireza.pdf

14. “AES Core”, North Pole Engineering. http://www.northpoleengineering.com/aescore.htm

15. Sumio Morioka, Akashi Satoh, “A 10 Gbps Full-AES Crypto Design with a Twisted-BDD
S-Box Architecture”, 2002 IEEE International Conference on Computer Design (ICCD
2002)

16. Kris Gaj, Pawel Chodowiec, “Fast Implementation and Fair Comparison of the Final Can-
didates for Advanced Encryption Standard Using Field Programmable Gate Arrays”, Proc.
Cryptographers Track RSA Conf. (CT-RSA 2001) 84-99

17. Tetsuya Ichikawa, Tomomi Kasuya, Mitsuru Matsui, “Hardware Evaluation of the AES
Finalists”, Proc. Third AES Candidate Conf. (2000)

18. Kris Gaj, Pawel Chodowiec, “Comparison of the Hardware Performance of the AES Can-
didates Using Reconfigurable Hardware”, Proc. Third Advanced Encryption Standard Can-
didate Conf. (AES3 2000) 40-54

19. Viktor Fischer, “Realization of the Round 2 Candidates Using Altera FPGA”, Comments
Third Advanced Encryption Standard Candidates Conf. (AES3 2000)

20. Gael Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater, Jean-Didier Legat,
“Compact and Efficient Encryption/Decryption Module for FPGA Implementation of AES
Rijndael Very Well Suited for Small Embedded Applications”, ITCC 2004, special session
on embedded cryptographic hardware Volume II of , IEEE Computer Society (2004) 583-
587

21. Yongzhi Fu, Lin Hao and Xuejie Zhang, Rujin Yang, “Design of An Extremely High Per-
formance Counter Mode AES Reconfigurable Processor”, (ICESS 2005)

22. “ AES Core for FGPA and ASIC”, Helion Technology,
http://www.heliontech.com/core2.htm

23. Rivest R L, Shamir A, Adleman L M, “A Method for Obtaining Digital Signatures and
Public-key Cryptosystems”, Communications of the ACM, 21(2), (1978) 120–126

24. Min-Sup Kang, Kurdahi F.J, “ A Novel Systolic VLSI Architecture for Fast RSA Modular
Multiplication”, Proceedings of the 2002 IEEE Asia-Pacific Conference on ASIC (2002)
81-84

25. Soner Yeşil, Neslin İsmailoğlu, Çağatay Tekmen, Murat Aşkar, “Two Fast RSA Implemen-
tations Using High-Radix Montgomery Algorithm”, 2004 IEEE International Symposium
on Circuits and Systems (2004) 557-560

26. Thomas Blum, Christof Paar, “Montgomery Modular Exponentiation on Reconfigurable
Hardware”, In Proceedings 14th IEEE Symposium on Computer Arithmetic (1999) 70–77

27. A. Cilardo, A. Mazzeo, L. Romano, and G.P. Saggese, “ Carry-Save Montgomery Modular
Exponentiation on Reconfigurable Hardware”, Procs of the Design, Automation, and Test in
Europe Conference (DATE 2004)

28. Ciaran McIvor, Máire McLoone, John V McCanny, “High-Radix Systolic Modular Multi-
plication on Reconfigurable Hardware”, IEEE International Conference on Field Program-
mable Technology (2005) 13-19

