
An Instruction Folding Solution to a Java Processor

Tan Yiyu 1, Anthony S. Fong 2, Yang Xiaojian1

1 College of Information Science and Engineering, Nanjing University of Technology
NO.5 Xinmofan Road, Nanjing, China

2 Department of Electronic Engineering, City University of Hong Kong
Tat Chee Avenue, Kowloon Tong, Hong Kong

Abstract. Java is widely applied into embedded devices. Java programs are
compiled into Java bytecodes, which are executed into the Java virtual machine.
The Java virtual machine is a stack machine and instruction folding is a
technique to reduce the redundant stack operations. In this paper, a simple
instruction folding algorithm is proposed for a Java processor named jHISC,
where bytecodes are classified into five categories and the operation results of
incomplete folding groups are hold for further folding. In the benchmark
JVM98, with respect to all stack operations, the percentage of the eliminated P
and C type instructions varies from 87% to 98% and the average is about 93%.
The reduced instructions are between 37% and 50% of all operations and the
average is 44%.

Keywords: Instruction folding, Java processor, Java virtual machine, Bytecode

1. Introduction

As a result of its object-oriented feature and corresponding advantages of security,
robustness and platform independence, Java is widely applied in network applications
and embedded devices, such as PDAs, mobile phones, TV set-up boxes and Palm PCs
[1]. Java programs are compiled into Java bytecodes, which are executed into the
Java virtual machine. The Java virtual machine is a stack machine, where all
operands, such as temporary data, intermediate results, and method arguments, are
frequently pushed onto or popped out from the stack during execution. Thus some
redundant load or store operations are performed, which results in the low execution
efficiency and affects system performance, especially in embedded devices, where
real-time operations and low power consumption are needed. For example, when the
bytecode stream “iload_0, iload_1, iadd, istore_2” are executed in the Java virtual
machine, firstly, the load type instructions iload_0 and iload_1, push data from the
local variable onto the top of the operand stack. Secondly, the instruction iadd pops
data from the top of the stack, operates on them and stores the operation result onto
the stack. Finally, the store type instruction istore_2 moves the operation result from
the top of the operand stack to the local variable. This execution procedure needs
extra clock cycles to push or pop data from the operand stack. Moreover, operations
are executed one at a time by using the operand stack, thus introducing a virtual data

dependency between the successive instructions, which restricts instruction level
parallelism and adversely affects system performance.

To address these shortcomings, Sun Microsystems introduced the notion of
instruction folding [2][3], which was a technique to eliminate the unnecessary load or
write-back operations to the stack by detecting some contiguous instructions and
executing them collectively like a single, compound instruction. For example, to
execute the bytecode stream mentioned above, the generated compound instruction
may read data into ALU from the local variable directly, operate on them and write
the operation result back to the local variable. Thus the intermediate operands and
data do not need to push onto or pop out from the operand stack.

In this paper, a new folding algorithm is presented in jHISC, a Java processor for
embedded devices. The rest of this paper is structured as follows. The previous work
on instruction folding is summarized in Section 2. The jHISC instruction set is
described in Section 3. Section 4 depicts our proposed folding algorithm, including
bytecode type definitions and categories, folding rules, and system diagram. In
Section 5, the performance estimation results based on JVM98 benchmarks are
introduced. Finally, a summary is made in Section 6.

2. Related work

In Sun Microsystems solution, the bytecodes were classified into six types and nine
folding patterns were predefined. The Instruction Folding Unit (IFU) monitored the
successive bytecodes to determine how many instructions were folded according to
the folding patterns. N. Vijaykrishnan et al and L. R. Ton et al also proposed the
similar folding algorithm to Sun Microsystems by introducing different folding
patterns [4][5]. Although these folding algorithms are simple and easily
implemented, only the continuous bytecodes that exactly match the predefined folding
patterns are folded. If the bytecode stream does not match the folding patterns, the
bytecodes will be executed in serial. Thus the folding is inefficient.

L. C. Chang proposed the POC folding algorithm [6] to improve folding efficiency,
where bytecodes were classified into P (Producer), O (Operator), and C (Consumer)
types according to the bytecode operation characteristics. The O type bytecodes were
further divided into four subtypes: OE, OB, OC and OT. Recursive check was
performed for every two consecutive instructions according to the POC folding rules.
If the two checked instructions were foldable, they were marked with a new POC
type, which was then checked with the following unfolded bytecode instructions until
no folding was possible. The POC folding algorithm has no fixed folding patterns
and can be implemented as finite automation through a state machine. But like the
previous folding algorithms, it is only used to fold the consecutive instructions.

Based on the POC folding algorithm, A. Kim and M. Chang introduced the
advanced POC folding algorithm by adding additional four discontinuous folding
sequence patterns to fold the discontinuous bytecode instructions [7]. Different with
the original POC folding algorithm, the O type bytecodes were further divided into
two subtypes: Oc (Consumable operator) and Op (Producible operator), according to
their operation results were written back onto the operand stack or not. This

algorithm achieves higher folding efficiency with a relatively simple implementation
circuitry. However, improper type definitions for each bytecode exist [8]. For
example, the bytecode lastore should be Oc type according to its operation behavior,
but it is defined to be C type in the advanced POC algorithm.

L. R. Ton et al presented the Enhanced POC (EPOC) folding algorithm by using a
stack reorder buffer to hold the extra P type bytecodes and the incomplete folding
groups for further folding [8]. The incomplete folding groups were treated as P types.
M. W. El-Kharashi et al introduced an operand extraction-based algorithm by tagging
the incomplete folding groups as tagged producers and tagged consumers, which
were further used as producers or consumers in the following folding groups [9][10].
In the algorithm, bytecodes were classified into twelve types according to the way
they handled the stack, and five folding pattern templates were defined. Although it
claimed that 97% of stack operations and 50% of all operations were eliminated, the
foldability check and bytecode type decoder are complicate to implement by hardware
due to so many bytecode categories.

3. jHISC instruction set

In jHISC, the instruction set supports up to three operands. Each instruction is 32 bits
in length with 8 bits for the opcode to define the instruction operation. T The
operands may be registers or 11-bit, 16-bit, and 24-bit immediate data. The current
local variable frame is accessed with 5-bit index, therefore addressing up to 32
general-purpose registers.

Seven groups of instructions are defined in jHISC. They are logical instructions,
arithmetic instructions, branching instructions, array manipulation instructions,
object-oriented instructions, data manipulation instructions and miscellaneous
instructions. Excluding the instructions for floating-point operations, 94% of all
bytecodes and 83% of the object-oriented related bytecodes are implemented in
hardware directly [13]. Moreover, some quick instructions are provided to perform
the operations of putting or getting variables after the first execution.

4. Proposed instruction folding algorithm

4.1 Bytecode categories

The Java virtual machine provides a rich set of instructions to manipulate the operand
stack. In the original POC folding algorithm and its extensions (EPOC and the
advanced POC), the O (Operator) type was defined as the bytecodes which popped
data from the operand stack and perform operations. Thus some bytecodes, such as
getstatic, which perform operations without popping data from the operand stack, are
not O type. However, in the original POC folding algorithm and its later extensions,
these bytecodes were defined as O type. In our proposed folding algorithm, they are
defined as Tp or T type according to their behaviors of handling the operand stack.

The other bytecode types and their definitions are similar to those in the advanced
POC algorithm. The type definitions are presented as follows [11].

• Producer (P): instructions that get data from constant registers or local
variables and push them onto the operand stack, such as iconst_1, iload_3.

• Operator (O): instructions that pop data from the top of the operand stack
and perform operations. This type is further divided into two subtypes,
namely Producible Operator (OP), such as iaload, which pushes its
operation result onto the operand stack, and Consumable Operator (OC),
which does not push the operation result, such as if_icmpeq.

• Consumer (C): instructions that remove data from the operand stack and
store them back into local variables, such as istore.

• Termination (T): instructions that do not operate on the stack and some
non-foldable bytecodes, such as goto and return. Such instructions contain
table jump, multidimensional array creation, exception throw, and monitor
enter and exit. They are more suitable to be emulated by software traps.

• Temporary (Tp): instructions that perform operations without popping data
from the operand stack, but push the operation results onto it, such as
getstatic.

4.2 Folding algorithm

4.2.1 Folding rules
The folding rules can be simply summarized and shown as follows.

(1) P type bytecodes are folded into the following adjacent C or O type
bytecodes.

(2) C type bytecodes are folded into the previous adjacent P, Op or Tp type
bytecodes.

(3) T type bytecodes cannot be folded.
(4) The intermediate results of incomplete folding groups are written into

buffers and treated as P type bytecodes for further folding. When an Op or
Tp type bytecode is directly followed by a C type bytecode, the C type
bytecode, Op or Tp type bytecode, and the previous P type bytecode(s) form
a complete folding group. If an Op or Tp type bytecode is not followed by a
C type bytecode, the operation result is treated as a P type bytecode and the
corresponding information is written into buffers for further folding.

In every folding group, there is a central instruction, which operates on the operand
stack and modifies its contents. The central instruction, the necessary producer(s) and
consumer instructions form a folding group. Typically, each folding group only has
one central instruction, which may be an O or TP type instruction. When a consumer
bytecode follows a producer instruction directly, it can also be a central instruction.
In the generated jHISC instruction, the central instruction determines the opcode
while the related producer and consumer instructions affect the operands.

4.2.2 System diagram
The block diagram of instruction folding and translation unit is illustrated in Fig. 1.
Bytecodes are fetched from the instruction cache or memory and stored into the
Instruction Buffer. The Instruction Classifier classifies bytecodes according to their
opcodes and the type definitions. The bytecode types, opcodes, operand types, the
constant values and local variable indices are stored in different buffers, respectively.
The Folding Manager Unit checks the foldability and identifies the central
instructions according to the bytecode types and folding rules. If some bytecodes can
be folded, the Folding Manager Unit will generate the relevant jHISC opcode,
foldable signal and folding length signal. The jHISC opcode is determined by the
central instruction and the related operand type. The foldable signal is used to trigger
the Operand Generator to generate the operands of jHISC instruction. The folding
length signal is applied to update the pointer of the buffers. If a bytecode is not
folded, it will be simply translated into a jHISC instruction in sequence.

Fig. 1 Block diagram of instruction folder

4.2.3 Instruction folding
In jHISC, the constant registers and local variable frames are implemented by register
files. Typically, local variables are mapped into register files with the same index and
all bytecodes are translated into jHISC instructions by one to one if no folding occurs.
For example, if a bytecodes stream is “iload_2, iload_1, iload_3, iadd, istore_1,

iload_4, isub, istore_3, return”, their corresponding types will be “P, P, P, OP, C, P,
OP, C, T”. The one-to-one mapping results are shown in Table 1.

In the table, registers Rb, Rc and Rd are temporary registers allocated by the

register file control engine. When bytecodes are fetched, the Folding Manager Unit
will detect the first O, TP or C type bytecode. Since it is OP type (iadd), the Folding
Manager Unit will check whether the next bytecode to the iadd is C type or not. The
two previous P type bytecodes adjacent to the iadd and the C type bytecodes will then
form a folding group and are folded into the jHISC instruction arith.add R1 R1 R3. In
the same way, bytecodes in group 2 can also be folded into the jHISC instruction
(arith.sub R3 R4 R2). The bytecode return is T type and is translated into the jHISC
instruction rvk directly. The folding results are presented in Table 2. We observe that
the instruction length is reduced from 9 to 3 after folding and the temporary registers
are not needed.

Table 2 Folding results

Original bytecodes Folding group jHISC instruction
iload_2 group 1: iload_1, iload_3, iadd, istore_1 arith.add R1 R1 R3
iload_1 group 2: iload_2, iload 4, isub, istore_3 arith.sub R3 R4 R2
iload_3 group 3: return rvk

iadd
istore_1
iload 4

isub
istore_3
return

5. Performance Estimation

The proposed folding algorithm was evaluated based on the JVM98 benchmark trace
analysis, which was a Java benchmark suit released by the Standard Performance
Evaluation Corporation (SPEC) [14]. JVMTI profiler [12] was used to implement the
proposed folding algorithm, trace bytecodes at run-time, and dump the executed

Table 1 Mapping results by one to one

Bytecode jHISC instruction
iload_2 data.move Rb R2
iload_1 data.move Rc R1
iload_3 data.move Rd R3

iadd arith.add Rc, Rc Rd
istore_1 data.move R1 Rc
iload 4 data.move Rc R4

isub arith.sub Rb Rb Rc
istore_3 data.move R3 Rb
return rvk

bytecodes, the folding jHISC instructions and some other results. The analysis in this
Section is based on these dumped results.

5.1 Folded P and C type bytecodes

Fig. 2 shows the percentages of the folded P and C type bytecodes relative to all
operations and stack operations. With respect to all stack operations, the percentage
of the eliminated P and C type instructions varies from 87% to 98% and the average is
about 93%. However, the Sun’s folding algorithm in PicoJava II folded up to 60% of
all stack operations [2-3] [10]. The POC folding algorithm with 4-foldable strategy
reduced up to 84% of all stack operations [6]. And the advanced POC folding
algorithm claimed to eliminate about 93% of all stack operations in case load and
store operations on array were mistaken to be treated as P and C type operations,
respectively. Thus the actual folding ratio is smaller than 93%. With respect to all
operations, the percentage of the eliminated P and C type instructions is from 42.2%
to 51.8% and the average is 47% in the proposed folding algorithm.

Fig. 2 Folded P and C type bytecodes

5.2 Added data move operations

During instruction folding or translation, some data move operations are added
because the two operated data may be 16-bit immediate value in Java bytecodes and
the jHISC instruction is only 32 bits in length. For example, if two 16-bit immediate
data precede a bytecode iadd, during instruction folding and translation, one
immediate datum needs to firstly move to a register through a data move operation,
and then the corresponding bytecodes are translated into the jHISC instruction

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

_201_compress _202_jess _209_db _222_mpegaudio 228_jack Average

Benchmarks

Relative to all operation

Relative to stack operation

Pe
rc

en
ta

ge
 o

f e
lim

in
at

ed
 in

st
ru

ct
io

ns

arith.addi. The percentage of the added operations relative to all operations is shown
in Fig. 3, which varies from 0.3% to 7.4%.

Fig. 3 Added data move operations

5.3 Generated jHISC instructions

Fig. 4 shows the percentage of the generated jHISC instructions relative to all
operations. The number of the generated jHISC instructions is much smaller than the
original bytecodes. The minimum number of the generated jHISC instructions is
about 50% of the original operations in the benchmark program _222_mpegaudio
while the maximum occurs in the benchmark program _202_jess, which is about
63.7% of the original operations. This indicates that our proposed algorithm is useful
and effective.

Fig. 4 Generated jHISC instructions

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

_201_compress _202_jess _209_db _222_mpegaudio _228_jack
Benchmarks

Pe
rc

en
ta

ge
 r

el
at

iv
e

to
 a

ll
op

er
at

io
ns

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%

_201_compress _202_jess _209_db _222_mpegaudio _228_jack
Benchmarks

Pe
rc

en
ta

ge
 r

el
at

iv
e

to
 a

ll
op

er
at

io
ns

5.4 Performance enhancement

The overall reduced instructions can be calculated through the following equation.
The overall reduced instructions N = Ntotal-NjHISC

Where Ntotal is the number of bytecodes, NjHISC denotes the number of the generated
jHISC instructions.

Thus the percentage of the reduced instructions over all operations is obtained and
shown in Fig. 5. The worst folding efficiency is in the benchmark program
_202_jess, where the reduced instructions are about 37% of all operations. The best
folding efficiency appears in the benchmark program _222_mpegaudio, where more
than 50% of all operations are reduced. And averagely, about 44% of all operations
can be reduced in the benchmarks, which means that the actually executed
instructions are only 56% of the original bytecode instructions before folding.

Fig. 5 Performance enhancement

6. Conclusion

More and more complex Java programs are applied in embedded devices, such as
complicate games, network application programs. These require processors in
embedded devices to have good performance to run Java programs. To address this, a
new instruction folding algorithm is presented to improve the performance of a Java
processor. In this folding algorithm, all bytecodes are classified into five types
according to their behaviors of handling the operand stack, and the intermediate
results of incomplete folding groups are written into buffers and treated as P type
bytecodes for further folding.

With respect to all stack operations, the percentage of the eliminated P and C type
instructions varies from 87% to 98% and the average is about 93% in the proposed
folding algorithm. The overall reduced instructions are from 37% to 50% of all

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

_201_compress _202_jess _209_db _222_mpegaudio _228_jack Average

Benchmarks
Percentage

operations, and averagely, about 44% of all operations can be reduced in the
benchmarks. Compared with other folding algorithms, the proposed algorithm has a
great improvement on folding efficiency and system performance.

Acknowledgment:

This work is partially supported by the City University of Hong Kong under Strategic
Research Grant 7001847.

References:

[1] Y. M. Lee, B. C. Tak, H. S. Maeny, S. D. Kim, “Real-time Java Virtual Machine for
Information Appliances,” IEEE Transactions on Consumer Electronics, Vol. 46, No. 4,
November, 2000, pp. 949-957.

[2] J. M. O’Connor, M. Tremblay, “PicoJava-I: The Java Virtual Machine in Hardware”, IEEE
MICRO, March 1997, pp. 45-53.

[3] Sun Microsystems: PicoJava-II: Java Processor Core, Sun Microsystems Data Sheet, April
1998.

[4] N. Vijaykrishnan, and N. Ranganathan, “Object-oriented Architecture Support for a Java
Processor”, The 12th European Conference on Object-Oriented Programming, 1998,
pp.330-354.

[5] L. R. Ton, L.C. Chang, M.F. Kao, C.P. Chung, “Instruction folding in Java processors”,
Proceedings of the International Conference on Parallel and Distributed Systems, 1997, pp.
138–143.

[6] L. C. Chang, L. R. Ton, M. F. Kao, and C. P. Chung, “Stack Operations Folding in Java
Processors”, IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 5, September 1998, pp. 333-
340.

[7] A. Kim, M. Chang, “Java Bytecode Optimization with Advanced Instruction Folding
Mechanism”, Lecture Notes in Computer Science, Vol. 1940, 2000, pp. 268-275.

[8] L. R. Ton, L. C. Chang, J. J. Shann, and C. P. Chung, “Design of an Optimal Folding
Mechanism for Java Processors’, Microprocessors and Microsystems, Vol.26, 2002, pp.
341–352.

[9] M. W. El-Kharashi: The JAFARDD Processor: A Java Architecture Based on Folding
Algorithm, with Reservation Stations, Dynamic Translation, and Dual Processing. Phd.
Dissertation, University of Victoria.

[10] M. W. El-Kharashi, F. Elguibaly, and K. F. Li, “A Robust Stack Folding Approach for
Java Processor: an Operand Extraction-based Algorithm”, Journal of Systems Architecture,
Vol. 47, 2001, pp. 697-726.

[11] Tan Yiyu, Yau Chi Hang, et al, “Design and Implementation of a Java Processor”, IEE
Proceedings on Computer and Digital Techniques, Vol. 153, No. 1, Jan., 2006, pp. 20-30.

[12] Sun Microsystems: JVMTM Tool Interface (JVMTI) Version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html.

[13] Tan Yiyu, Lo Wan Yiu, Yau Chi Hang, et al, “A JAVA Processor with Hardware-Support
Object-Oriented Instructions”, Microprocessors and Microsystems, Vol. 30, No. 8, 2006, pp.
469-479.

[14] SPEC: JVM98 benchmark suits. http://www.spec.org/jvm98/

