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Abstract. Robustness testing of network protocol aims to detect vulnerabilities 
of protocol specifications and implementations under critical conditions. 
However, related theory is not well developed and prevalent test practices have 
deficiencies. This paper builds a novel NPEFSM model containing sufficient 
inputs and their processing rules to formalize complex protocol. Based on this 
model, Normal-Verification Sequence is proposed to enhance verdict 
mechanism. We adopt various strategies to generate anomalous values for some 
fields of messages and further apply pairwise combination to systematically 
mutate messages. We propose compound anomalous test case to simplify test 
sequences and give its generation algorithm. Standard test specification 
language TTCN-3 is extended to describe compound anomalous test cases. As a 
case study, we test OSPFv2 sufficiently with a test system based on extended 
TTCN-3. Our method and test system can effectively discover vulnerabilities of 
protocol implementations as well as their inconsistencies with specifications.  

1   Introduction 

Network protocols are often partially specified. There are numerous invalid inputs for 
protocol implementations and how to handle these inputs is usually unspecified or 
specified ambiguously in protocol. Also protocol specifications contain optional 
requirements specified by “MAY” statements. These two cases provide certain 
flexibility to protocol implementations. As conformance testing only verifies whether 
an implementation conforms to its specification or not, the capability of 
error-detection is limited. National Vulnerability Database [1] reports that about 60% 
of the software vulnerabilities detected in 2007 were caused by input validation, 
format string vulnerability and buffer errors. Protocol robustness testing is the test to 
verify whether IUT (Implementation under Test) can function correctly in the 
presence of invalid inputs or stressful environmental conditions [2]. Robustness 
testing aims to detect vulnerabilities of protocol specifications and implementations, 
including [3]: vulnerabilities of malformed message parsing; vulnerabilities of state 
transitions; hole of buffer overflow etc. There have been large previous works about 
robustness testing [4-14]. Although their test practices have found vulnerabilities of 
protocol implementations, these approaches have certain limitations: 1) test cases 
generation lacks guidance of theory; 2) verdict mechanism needs improvement; 3) 
structure of test case is not optimal, resulting in large test costs; 4) test system is not 



generic to other protocols; 5) most use programming languages (e.g. C) to build test 
suite, so the readability, extensibility and maintainability of test suite are not good. 

To cope with these deficiencies, we build a novel Nondeterministic Parameterized 
Extended Finite State Machine model. Our model has distinct benefits: 1) it contains 
sufficient inputs and their processing rules, thus it can guide robustness testing; 2) it 
supports variables, parameters of inputs/outputs and operations based on these values, 
thus it can model complex protocols. Based on this model, Normal-Verification 
Sequence is proposed to enhance verdict mechanism. Data-driven robustness testing 
focuses on inputting various invalid messages. We adopt various mutation strategies 
to generate anomalies for some fields of messages and further apply pairwise strategy 
[15,16] to systematically import anomalies to mutate multiple fields for each message. 
To inject test data efficiently and effectively, compound anomalous test case is 
proposed to simplify test sequences. The algorithm of test case generation is given. 
TTCN-3 [20] is extended to describe compound anomalous test cases. Implementing 
the function of generating test data automatically, the extended description is very 
simple and convenient to use. As a case study, we test OSPFv2 [21] sufficiently with 
a test system based on extended TTCN-3. 

The rest of this paper is organized as follows. Related works are introduced in 
section 2. Section 3 proposes NPEFSM model. In section 4, pairwise strategy is used 
to combine anomalies and test case generation is discussed. We apply TTCN-3 to 
robustness testing and extend it in section 5. In section 6, we test OSPFv2 using our 
method. Conclusions and future work are given in section 7. 

2   Related Works 

Related works can be classified into research on model-based robustness testing [4,5] 
and test practices (often called Fuzz testing [6-14]). The model and framework for 
robustness testing are not well developed. [4,5] propose a formal framework, but 
mutation operations and fault injections are not done automatically. Hence it is 
difficult to generate large number of test cases.  
  Fuzz testing is a black-box testing method by injecting faults. The procedure is to 
generate test data, inject test data to IUT and make verdict. Currently, there are two 
methods to obtain numerous invalid messages: designing manually using script 
language [6-12]; generating semi-randomly data (e.g. most of tools listed in [13]). 
Various script languages are used to describe invalid messages such as BNF 
(Backus-Naur Form) [6], SBNF (Strengthened BNF)[7,8], SCL (Semantic Constraint 
Language) [9,10] and XML [11,12]. The production and injection of invalid PDUs are 
all done by tools implemented by C or Java. Also, other Fuzzing tools [13] can 
produce semi-random messages which are often blind to testing and each tool can 
only test a certain protocol due to weak extensibility. Intelligent Fuzzing requires 
injecting invalid inputs on the corresponding state. [7,8,11] all propose state 
identification by inferring from I/O sequences logged, but it is not practical for 
complex protocols. Related works about verdict mechanism are also not well 
developed. In test practice, they observe whether IUT is crashed or monitor the 
performance (e.g. CPU usage) of IUT under invalid injections. In [10,11], a simple 
sequence consisting of a valid request and corresponding reply is used to make verdict 
after fault injection.  



So, it is highly desirable to have a formal approach to robustness testing. In our 
previous work [17], single-field mutation testing is studied. Based on this work, we 
give our full solutions for protocol robustness testing in this paper. 

3   Formal Model and Testing Framework 

3.1   Model Definition  

Usual protocol specifications include variables and operations based on variable 
values. Extended Finite State Machine (EFSM) can be used in this situation. However, 
it is still not powerful enough to model some protocol systems where there are 
parameters associated with inputs and have effects on the predicates and actions of 
transitions [18]. Hence Parameterized Extended Finite State Machine (PEFSM) [18] 
is used to model protocol specifications. Robustness testing requires injecting many 
invalid messages. As most invalid messages and their processing rules are not well 
prescribed, state transitions after these invalid injections are often nondeterministic. 
So, we build a model for protocol robustness testing using NPEFSM 
(Nondeterministic Parameterized Extended Finite State Machine). Our model covers 
more detailed and precise nondeterministic features than traditional nondeterministic 
FSM and EFSM model. 
Definition 1: NPEFSM for Protocol Robustness Testing 

A Nondeterministic Parameterized Extended Finite State Machine (NPEFSM) is a 
6-tuple M=<I, O, , S, s , T>, where: X 0
1. I={ } is the input alphabet with parameters1 1 2 2( ), ( ),..., ( )p pi v i v i v v ; each input symbol 

(1≤k≤p) carries a vector of parameter values( )k ki v kv ; 
Also, we define I=Ispec∪Iunspec. Ispec includes inputs that are prescribed in protocol 

specification and composed of valid PDUs as well as some invalid PDUs. Iunspec 
includes numerous inputs that are not prescribed definitely in protocol specification 
and composed of various invalid PDUs. 

2.O= is the output alphabet with parameters1 1 2 2{ ( ), ( ),..., ( )}q qo w o w o w w ; each output 
symbol ( )k ko w (1≤k≤q) carries a vector of parameter values kw .   

3. is a vector denoting a finite set of variables with default initial values. X
4. S is a finite set of states, S=Sspec, Sspec includes states prescribed in protocol 

specification. We introduce and define S?={s?i | i=1,2,…}, s?1, s?2…are all 
nondeterministic states after nondeterministic or undefined transitions but within a 
range of states according to corresponding ambiguous protocol specification, i.e. 
for i=1, 2,…, s?i ∈Si ⊆Sspec. So, S =Sspec =Sspec ∪ S?.  

5. s0: initial state.  
6. T: a set of transitions. For t∈T, =t ( ) / ( ) / ( , ( )) / ( , ( ), ( )) *i v o w P X i v A X i v o ws s⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ (s∈S, s*∈S) is 

a transition where s and s*are the starting and ending state of this transition 
respectively; / is the input/output with parameters;( )i v ( )o w ( , ( ))P X i v  is a predicate of 
the variables and input parameters; the action ( , ( ), ( ))A X i v o w  is an operation on 
variables as well as output parameters and this operation is based on current 
variable values and input parameter values. 



T=Tdeter∪Tnondeter=Tdeter∪(Tnondeter-spec∪Tnondeter-unspec). Each transition of Tdeter is 

uniquely deterministic in protocol. Tdeter=∪t: sj
( ) / ( ) / ( , ( )) / ( , ( ), ( ))j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ sk, 

where sj∈Sspec, sk∈Sspec; ∈I( )ji v spec; ( )jo w ∈O or ( )jo w =Null. Each of Tnondeter-spec is 
nondeterministic but specified clearly in protocol specification. Tnondeter-spec=∪t:sj 

( ) / ( ) / ( , ( )) / ( , ( ), ( ))j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ s?k, where sj∈Sspec, s?k∈S?; ( )ji v ∈Ispec; ∈O 
or =Null. Each of T

( )jo w

( )jo w nondeter-unspec is nondeterministic and unspecified or specified 

ambiguously in specification. Tnondeter-unspec=∪t: sj
( ) / / /ji v true− −⎯⎯⎯⎯⎯→ s?k, where sj∈Sspec, 

s?k∈S? ; ∈I, output and action are unspecified or specified ambiguously. □  ( )ji v

Figure 1 shows a part of NPEFSM for OSPFv2 [21] Neighbor State Machine, 
predicates and actions are omitted. An example of transition is given in Table 1. The 
inputs and outputs are parameterized Database Description Packets (DDP). The 
parameters of DDP are DD sequence number (denoted as Seq) and I/M/MS (denoted 
as Ims). Predicate includes sequence number checking, I/M/MS checking and other 
validations. y is a variable used to check sequence number.  

Figure 2 shows two kinds of state transitions under invalid injections. Figure 2(a) 
shows that after receiving an invalid input ik (ik∈Ispec), si transits to sj according to 
related description in protocol specification. For example, OSPFv2 specification 
prescribes that receiving duplicate DDP will trigger “SeqNumberMismatch” and 
transit the state from “Exchange” or higher to “Exstart”. Figure 2(b) shows that si 
transits to state s?k (s?k∈Sk={ski | i=1,2,…}⊆Sspec) because the transition after receiving 
ij (ij∈I) is prescribed indeterminately, ambiguously or even not prescribed in protocol 
specification. For example, during Database Exchanging, after receiving DDP, 
whether to check the syntax of each field of DDP.LSAHeader is not specified 
definitely. Suppose this syntax error: LSAHeader.LinkStateID=“FFFFFFFF”, if IUT 
checks this field, event “SeqNumberMismatch” will be triggered to transit the state to 
“Exstart”. Otherwise, exchanging will go on until this fault can be found (maybe in 
LSA requesting process). So, after receiving ij (DDP), s?k∈Sk={sk1 =“Exstart”, sk2 

=“Exchange”} and tj∈Tnondeter-unspec.  
Some “MAY” statements in protocol specification also specify transitions 

belonging to Tnondeter-spec. We omit further exemplification. 

 

Table 1.  An Example of Transition 

Name TExchange-Exchange-1
Start State Exchange 
End State Exchange 
Input DDP(Seq1, Ims1) 
Output DDP(Seq2, Ims2) 
Variables y,… 
Predicate (Seq1==y)&& 

(Ims1==011)&&… 
Action Seq2=y; y=Seq1+1;... 

Fig.1. A Part of NPEFSM for OSPFv2 Neighbor State Machine: Database Exchange  
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              Fig.2. (a)                     Fig.2. (b)           

Fig.2. (a) State transition prescribed definitely in protocol specification after invalid input 
     Fig.2. (b) State transition prescribed ambiguously, indeterminately, or even not 

prescribed in protocol specification after invalid input 

Some special inputs can transit each of several states (denoted as ) to the same 
state, we propose Forced Transition as follows:  

'S

Definition 2: Forced Transition 
Let S’ ⊆ Sspec and sj ∈ Sspec. 
(∀s∈S’)→sj is a Forced Transition, iff, ∃ ( )ji v ∈Ispec, such that ∀s∈S’, 

s ( ) / / /ji v true− −⎯⎯⎯⎯⎯→ sj. 
Especially, if sj = s0, such a forced transition is also called Reset Transition. 
In Figure 3, if Forced Transition exists, s?k can receive certain input and transit to a 

deterministic state sj according to Definition 2. In the former example about OSPFv2 
Data Exchanging, event “SeqNumberMismatch” can force the machine to transit from 
s?k to sj (sj =“Exstart”), whether s?k =“Exstart” or “Exchange”. 

3.2  Robustness Requirement and Normal-Verification Sequence 

The structure of a test case in conformance testing can be described as follows: Test 
Case=<State Leading Sequence, Executing Sequence, State Verification Sequence> 
[17, 18]. In robustness testing, we introduce a term called “anomalous test case” 
which can inject invalid data on corresponding state and make verdict. Instead of 
State Verification Sequence of conformance testing, Normal-Verification Sequence of 
robustness testing is executed to verify whether the state machine works properly. If it 
returns “Fail”, we conclude that IUT behaves abnormally and has poor robustness. 
The structure of an anomalous test case can be described as follows: Anomalous Test 
Case=<State Leading Sequence, Invalid PDU Inputting, Normal-Verification 
Sequence>. The first step of robustness testing is to construct robustness requirement. 
In this paper, we use an intuitive and practical robustness requirement that IUT must 
keep normal state and continue normal operations conforming to protocol 
specification under invalid injections. According to the state transitions shown in 
Figure 2, we propose two types of Normal-Verification Sequences as follows: 

Normal-Verification Sequence_1:  
Suppose at state si, an invalid PDU ( )ji v  is received and ( )ji v ∈ Ispec . 

If t: si
( ) / ( ) / ( , ( )) / ( , ( ), ( ))j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ sj, i.e. t∈Tdeter. Normal-Verification 

Sequence= state verification sequence of sj. 
Normal-Verification Sequence_2: 



Suppose at state si, an invalid PDU ( )ji v  is received and ( )ji v ∈I. 

If t: si
( ) / ( ) / ( , ( )) / ( , ( ), ( ))j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ s?k or t: si

( ) / / /ji v true− −⎯⎯⎯⎯⎯→ s?k , i.e. 
t∈(Tnondeter-spec∪Tnondeter-unspec)=Tnondeter. Normal-Verification Sequence = state 
identification sequence of s?k. 
State identification [18][19] will cause the robustness test sequences to be very 

complex, so we define another Normal-Verification Sequence to approximately 
replace Normal-Verification Sequence_2: 

Normal-Verification Sequence_2-1: 
After receiving invalid PDU, the ending state transited to is s?k∈S? and 

s?k∈Sk={ski | i=1,2,…}⊆Sspec, If there exists Forced Transition: (s?k∈Sk)→sj, 
Normal-Verification Sequence ≈ ((s?k∈Sk)→sj) + (state verification sequence of sj ).  
Forced Transition and Reset Transition are very common in network protocols. For 

OSPFv2, event “1-Way”, “KillNbr”, “SeqNumberMismatch” and “BadLSReq” can 
trigger Forced transition. So Normal-Verification Sequence_2-1 can be widely used.  

A PEFSM can be unfolded into a FSM. In this paper, we do not discuss the 
construction of state verification sequence for FSM or PEFSM model which is a 
classical problem in conformance testing [18]. We further illustrate our robustness 
requirement. For anomalous test cases using Normal-Verification Sequence_1, 
robustness requirement is the same with conformance testing. For test cases using 
Normal-Verification Sequence_2-1, robustness requirement can be illustrated using a 
Probabilistic Finite State Machine (PFSM) shown in Figure 4. s* is a trap state which 
is not an element of Sspec. P1 is the probability of state transition from si to s* after 
receiving an invalid input. P2 is the probability of state transition from s* to s* after 
receiving an input which is used to trigger Forced Transition. Strict robustness 
requirement discussed before is P1=0. In order to ease test practices, we adopt 
P1⋅P2=0 as our robustness requirement. 

∈
∈∈

∈

 
Fig.3. Forced Transition of s?k       Fig.4. Robustness requirement analysis 

4   Test Case Generation 

4.1   Invalid Inputs Generation 

A PDU is composed of several fields denoted as f1, f2…Invalid PDUs can be 
syntactically or semantically invalid. The former disobey protocol specification data 
formats. The latter have valid syntax but conflict with protocol state, configuration 



and policies. We mutate several valid inputs to generate many messages either 
syntactically invalid or semantically invalid.  
Single-field mutation rules: FunFieldMutation() 

We define some typical invalid field values which attackers tend to exploit: 
1) Field value mutation rules: 
  In [17], we define Boundary value; Field values mismatch; Format error; Length, 
Checksum and Encapsulation error. We also define input partition values: {Min, 
Min+(Max-Min)/n, Min+2*(Max-Min)/n,…,Max}(Suppose Field fi∈(Min,Max)). n is 
a parameter set by tester. All these values can be used to replace a valid field value. 
2) Field mutation rules: 

  Removal and Addition: a field of PDU is removed or added;  
  Overflow: one field is replaced with another field with bigger bytes; 
  Permutation: sequence of fields in PDU changes. 

Multi-field mutation rules using pairwise algorithm 
Some fields of one message may have consistency with each other. Value changing 

of one field may influence values of other fields. Also, protocol implementations may 
not parse fields of receiving message in the sequence of one by one. So it is necessary 
to inject messages whose multiple fields are invalid. Suppose 8 fields of one PDU will 
be mutated and each field has 5 invalid values, total of mutated PDUs will be 
58=390625. So exhaustive testing is impractical. In this paper we introduce pairwise 
combination which can guarantee that each pair of faults between any two fields is 
covered by at least one combination. Pairwise combination is a good trade-off 
between test effort and test coverage. Algorithm 1 adopts a heuristic pairwise 
algorithm called In-Parameter-Order [15,16] to generate test data. 

Algorithm 1:  pairwise (F, Q)   

Input: F={f1, f2,…, fn}; Q={
1 2
, ,...,

nf fq q q f }; /*each 
if

q is a set of values for field fi. */ 

Output: T={T1,T2,…Tm}; /*each Ti ={vf1, vf2,…,vfn}, where
jfv ∈

jfq (1≤j≤n), i.e. Ti is a 

n-dimension vector containing values for field f1, f2,…, fn, respectively.*/ 
1  T={(v1, v2) | v1and v2 are values of f1and f2 ,respectively}; 
2  if (n ==2) return T; 
3  for each field fi, i=3,4,…,n do 
4     T= In-Parameter-Order (T, Q, fi);  /*see references [15,16] */ 
5  return T;  
Then we give an example 1: 

Suppose F={f1, f2, f3, f4}, each has 
four unsigned boundary values and 
one 2-partition values. 

1f
q =

4f
q ={00,01,7F,FE,FF};

2f
q ={00

00,0001,7FFF,FFFE,FFFF};
3f

q ={00
0000, 000001, 7FFFFF, FFFFFE, 
FFFFFF}. Applying Algorithm 1, we 
can get test data shown in Figure 5: 

00 0000 000000  00
00 0001 000001  01
00 7FFF 7FFFFF 7F
00 FFFE FFFFFE FE 
00 FFFF FFFFFF FF 
01 0000 000001  7F
01 0001 000000  FE
...     ...      ...          ...
00 FFFF 000000 7F

1

2

3

4

32

...

T
T
T
T

T
Fig.5. test generation using pairwise  

combination  
In above example, compared to the exhaustive combination (test data set total: 

54=625), Algorithm 1 only generates 32 test data and each pair of faults between any 
two fields is covered by at least one PDU. 



4.2   Robustness Test Case Generation   

According to the definition of robustness testing (see section 1), the quantity and 
variety of invalid messages are important criterions for testing. There are numerous 
invalid PDUs and how to inject needs to be well studied. So we propose compound 
anomalous test case which can also simplify test sequences: 1) One compound 
anomalous test case focuses on several fields of one PDU (the combination of these 
fields can be denoted as Fl⊆PDU). If the verdict is “Fail”, it means IUT cannot parse 
Fl with robustness; 2) Two or more anomalous messages with different invalid values 
of Fl should be injected in one compound anomalous test case. Values of other fields 
of these messages cannot be mutated and keep valid.  
  If |Fl|=1, it means only one field is mutated and the corresponding test case belongs 
to single-field robustness testing. If |Fl|≥2 (means multiple fields are mutated), this 
test case belongs to multi-field robustness testing. For test case returning “Fail” in 
multi-field testing, we should decompose it into several separated test cases executed 
further to analyze why it fails. As robustness testing is often done after conformance 
testing, the pass rate is often high, thus test execution of separated test cases will not 
consume much work. For test cases using Normal-Verification Sequence_1, the 
formats of Compound Anomalous Test Cases are constructed as follows: 

Compound Anomalous Test Case-1(m, pdu.Fl) = < State (s0 to si ) Leading 
Sequence, {Invalid pdu Inputting, State (sj to si) Leading Sequence}*m, State 
Verification Sequence of si >.  

Where, “{}*m” means the sequences contained in “{}” are executed m times. Also, 
the fields under test must be mutated before each executing loop. m means the number 
of invalid messages generated by mutation rules for pdu.Fl.  

For test cases using Normal-Verification Sequence_2-1, the formats of Compound 
Anomalous Test Cases are constructed as follows: 

Compound Anomalous Test Case-2 (m, pdu.Fl) = <State (s0 to si) Leading 
Sequence, {Invalid pdu Inputting, State(s?k to sj)Leading Sequence (suppose Forced  
Transition (s?k∈Sk)→sj exists), State(sj to si) Leading Sequence }*m,  State 
Verification Sequence of si >.   

Figure 6 shows structures of compound anomalous test cases. Algorithm 2 is 
defined for Compound Anomalous Test Case-1 generation. We omit the algorithm of 
Compound Anomalous Test Case-2 generation due to space limitation. 

 
(a) Compound Anomalous Test Case-1    (b) Compound Anomalous Test Case-2 

Fig.6. Two Types of Compound Anomalous Test Cases (pdu.Fl is under test)  



Algorithm 2: Compound Anomalous Test Case-1 generation  

Input: PDU pdu={f1, f2,…, fn};   /* pdu: a valid PDU */ 
Fl ⊆ pdu ;  /* Fl :a fields set under test */ 

si, sj;/*inject anomalies on state si and the state transits to sj in protocol specification*/ 
Output:

lFTestCase ;         /* test case for pdu.Fl */ 

Initial Value: 
lFTestCase =Null;  

1   Q={
1 2
, ,...,

nf f fq q q };
1 2
, ,...,

nf fq q q f =Null ; /*
if

q is a set of values for field fi */ 

2   
lFT ={T1,T2,…Tm}; T1,T2,... Tm=Null;   /* see Algorithm 1 in section 4.1*/ 

3   For each fk ∈Fl  do 
4      

kf
q = FunFieldMutation (fk); /*generate anomalous values, see section 4.1*/ 

5   If (|Fl|=1 )              /*single-field robustness testing*/  
6      

lFT = Q;              

7   If (|Fl|≥2)               /*multi-field robustness testing*/ 
8      

lFT = pairwise (Fl, Q);  /* see Algorithm 1 in section 4.1*/ 

9   
lFTestCase .add(State (s0 to si)Leading Sequence); 

10  For each Th ∈ lFT  do 
11      replace each field of pdu.Fl with values in Th, respectively; 
12     

lFTestCase .add (Invalid pdu Inputting, State (sj to si) Leading Sequence); 

13  
lFTestCase .add(State Verification Sequence of si); 

14  Return 
lFTestCase ; 

Compound Anomalous Test Case-1 is similar to test case of conformance testing 
and we do not discuss its property. For Compound Anomalous Test Case-2, different 
invalid PDU is injected in each loop. We have deduced that the “Fail” probability for 
each loop is P1⋅P2 (see section 3.2 and Figure 4).Then the “Fail”probability of 
Compound Anomalous Test Case-2 can be deduced:  

( )failP m =1-
1

m

i=
∏ (1-Pi_1 ⋅Pi_2) (where Pi_1 ⋅Pi_2 is the fail rate for ith invalid injection) 

From this equation, we can deduce that the fail rate increases as m increases. An 
intuitive reason is that the more invalid data are injected, the more holes may be 
discovered. 

5  TTCN-3 Extensions and Test System 

TTCN-3 [20] is developed by ETSI (European Telecommunications Standards 
Institute) and standardized by the ITU-T. Test suite described by TTCN-3 has good 
readability, extensibility and maintainability. But TTCN-3 is not flexible: 1) TTCN-3 
cannot support mutation operations well, so we should define thousands of invalid test 
data using TTCN-3 [17]; 2) Using TTCN-3, it is difficult or even impossible to give 
the description of compound anomalous test cases. 
  We extend TTCN-3 in syntax for robustness testing as follows: 1) Add a new 
keyword “pairwise” which represents the complex algorithm of compound anomalous 
test case generation; 2) Add a new keyword “count”, the value behind this keyword 



means the number of mutations for one field; 3) In the description statement using 
“pairwise”, each field of the message in format of “global template” can be modified 
to be invalid so test suite need define only a little data. 

If the parameters of “pairwise” statement are only for one field of one message, the 
test case belongs to single-field testing. Otherwise, it belongs to multi-field testing 
and pairwise combination will be used. Similar to extension using “pairwise”, we can 
make extensions to accomplish other mutations rules (e.g. Removal, Overflow) 
defined in section 4.1. We omit these due to space limitation. “pairwise” statement 
supports describing two types of Compound Anomalous Test Cases. We give a 
description of test case belonging to Compound Anomalous Test Case-2:    

 
Most anomalies are generated automatically according to FunFieldMutation() (see 

section 4.1). “octetstring n count m” means generating invalid data set which 
consists of 4 boundary unsigned values and m-4 partition values (see section 4.1), 
each is in the format of n octetstrings. Some anomalies can be defined manually in 
“Const Record” (e.g. “record_value” in above statements). When above statements 
(other keywords in bold are introduced in [20]) are compiled, invalid data for field 
HL1.Mask, HL1.Hint and HL1.Opt are generated (e.g. 

Maskfq ={4 boundary values, 
(5-4) partition values and values in “record_value”}), further pairwise algorithm 
Tpairwise(F(fMask, fHint, fOpt)) is executed to generate invalid messages. “Onebyone_HL1” 
is a function using Forced Transition. During test case executing, “Onebyone_HL1” 
will be executed continually for many loops until all the invalid test data are injected 
to IUT. Finally, Normal_Verification() is executed to make verdict.  

testcase Onebyone_HL1_Opt( )  runs on MyTestComponentAsync 
system SystemComponent   { 
map(mtc:MyPortAsync, system:SystemPort1); 
P1( ); 
pairwise HL1( Mask octetstring 4 count 5 record_value; 

Hint octetstring 2 count 6; 
Opt octetstring 1 count 8) {  

Onebyone_HL1(); 
} 
Normal_Verification( ); 

} 

Based on TTCN-3 and its extension, we have developed a test system called 
PITSv3 which is introduced sufficiently in [23]. We omit this due to space limitation. 

6   Case Study: OSPFv2 

OSPFv2 [21] defines five kinds of messages including: Hello, Database Description 
(DDP), Link State Request (LSR), Link State Update (LSU) and Link State 
Acknowledgment (Ack). It also defines five kinds of Link State Advertisements 
(LSAs). We design test suites for single-field and multi-field robustness testing 
respectively. We use Forced Transitions (e.g. “1-Way”, “SeqNumberMismatch” and 
“BadLSReq” [21]) to construct Normal-Verification Sequence.  
  Table 2 lists test suite. Invalid messages are injected on corresponding state. In test 
practice, we use PITSv3 to connect with IUT through a link. We choose Zebra-0.94 
[22] installed in Linux as IUT. 



Table 2. Test suite of compound anomalous test cases for OSPFv2 

Test Content Number Test Group (State / Invalid PDU received) Single-field Multi-field 
OSPF Head Init / Hello 14 8 
Hello 2-way / Hello 16 6 
DDP0 Exstart / DDP0(without LSA Header) 8 4 
DDP1 Exchange / DDP1(include one LSA Header) 22 12 
LSR Exchange / LSR 6 2 
Ack Exchange / Ack 16 6 
LSA_HEAD Exchange / LSU(include Router_LSA) 14 10 
LSU_RLSA Exchange / LSU(include Router_LSA) 16 10 
LSU_NLSA Full / LSU (include Network _LSA) 4 5 
LSU_S3LSA Full / LSU (include Type3 Summary _LSA) 4 1 
LSU_S4LSA Full / LSU (include Type4 Summary _LSA) 4 1 
LSU_AsLSA Full / LSU (include As External_LSA) 6 2 

Total 130 67 
For single-field testing, we set m with 

different values using “count” keyword 
in TTCN-3 (see section 4.2 and 5). 
During test, we choose m=5~30. Thus, 
about 650~3900 invalid messages are 
injected in total 130 test cases. Test 
results are shown in Figure 7 (Fail Rate 
I). Test verdicts of Fail Rate I base on 
robustness requirement (see section 3.2). 
Fail rate is 5.38% when m=5~20 and it 
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Fig.7. Test results for single-field robustness 
testing of Zebra-0.9

increases to 6.92% when m=25, 30. These results indicate that the more invalid data 
are injected, the more holes may be discovered (see section 4.2). During test, we also 
sum up test cases (Fail Rate II) returning “fail” due to critical vulnerabilities which 
cause IUT to crash or be quiescent (IUT may not crash, but can not reply to inputs). 
Fail Rate II shows that there are always 4 test cases (fail rate: 3.08%) returning “Fail” 
due to critical vulnerabilities as m increases from 5 to 30.  

In multi-field testing, we assign m=5 (each field has 5 invalid values). Each test 
case can inject about 25~40 messages generated by pairwise algorithm. So invalid 
messages injected are about 1675~2680 in total 67 test cases. Test verdicts are based 
on robustness requirement (see section 3.2) and the fail rate is 8/67=11.9%. 

Based on test results, critical vulnerabilities of Zebra-0.94 are analyzed: 1) Zebra 
cannot parse invalid messages with mutated “length” field in OSPF header robustly 
and the OSPF routine crashes. Analyzing the source code, we find that the checksum 
routine (in_cksum in checksum.c) does not compare the “length” field in OSPF 
header with the “length” field in the IP header so that the routine reads past the end of 
the heap into unauthorized memory space. 2)LSA header also exists the same 
vulnerability. The LSA checksum routine (ospf_lsa_checksum in ospf_lsa.c) does not 
verify the validity of the length field in the LSA header. This occurs only for LSA 
Header in LSU packets. 

7   Conclusions and Future Work 
It is desirable to test the robustness, reliability of network devices. The work and 
contribution of this paper are given as follows: we build a novel NPEFSM to 



effectively guide robustness testing; Normal-Verification Sequence is proposed to 
enhance verdict mechanism; we apply pairwise strategy to systematically import 
anomalies to mutate messages and further generate compound test cases which can 
simplify test sequences; TTCN-3 is extended to describe compound anomalous test 
cases. While our approach and test system are generic enough to be applied to all 
protocols, we will focus on application layer protocols (e.g. HTTP, SMTP) in future 
work as they typically handle human user level inputs that may have more faults. We 
will also apply our method to test real-time distributed systems.  
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