
A Formal Approach to Robustness Testing of Network
Protocol

Chuanming Jing1, 3, Zhiliang Wang2, 3, Xia Yin1, 3, Jianping Wu1, 2, 3

1 Department of Computer Science & Technology, Tsinghua University,

2 Network Research Center of Tsinghua University,
3 Tsinghua National Laboratory for Information Science and Technology,

Beijing, P. R. China, 100084
{jcm,wzl,yxia}@csnet1.cs.tsinghua.edu.cn,

jianping@cernet.edu.cn

Abstract. Robustness testing of network protocol aims to detect vulnerabilities
of protocol specifications and implementations under critical conditions.
However, related theory is not well developed and prevalent test practices have
deficiencies. This paper builds a novel NPEFSM model containing sufficient
inputs and their processing rules to formalize complex protocol. Based on this
model, Normal-Verification Sequence is proposed to enhance verdict
mechanism. We adopt various strategies to generate anomalous values for some
fields of messages and further apply pairwise combination to systematically
mutate messages. We propose compound anomalous test case to simplify test
sequences and give its generation algorithm. Standard test specification
language TTCN-3 is extended to describe compound anomalous test cases. As a
case study, we test OSPFv2 sufficiently with a test system based on extended
TTCN-3. Our method and test system can effectively discover vulnerabilities of
protocol implementations as well as their inconsistencies with specifications.

1 Introduction

Network protocols are often partially specified. There are numerous invalid inputs for
protocol implementations and how to handle these inputs is usually unspecified or
specified ambiguously in protocol. Also protocol specifications contain optional
requirements specified by “MAY” statements. These two cases provide certain
flexibility to protocol implementations. As conformance testing only verifies whether
an implementation conforms to its specification or not, the capability of
error-detection is limited. National Vulnerability Database [1] reports that about 60%
of the software vulnerabilities detected in 2007 were caused by input validation,
format string vulnerability and buffer errors. Protocol robustness testing is the test to
verify whether IUT (Implementation under Test) can function correctly in the
presence of invalid inputs or stressful environmental conditions [2]. Robustness
testing aims to detect vulnerabilities of protocol specifications and implementations,
including [3]: vulnerabilities of malformed message parsing; vulnerabilities of state
transitions; hole of buffer overflow etc. There have been large previous works about
robustness testing [4-14]. Although their test practices have found vulnerabilities of
protocol implementations, these approaches have certain limitations: 1) test cases
generation lacks guidance of theory; 2) verdict mechanism needs improvement; 3)
structure of test case is not optimal, resulting in large test costs; 4) test system is not

generic to other protocols; 5) most use programming languages (e.g. C) to build test
suite, so the readability, extensibility and maintainability of test suite are not good.

To cope with these deficiencies, we build a novel Nondeterministic Parameterized
Extended Finite State Machine model. Our model has distinct benefits: 1) it contains
sufficient inputs and their processing rules, thus it can guide robustness testing; 2) it
supports variables, parameters of inputs/outputs and operations based on these values,
thus it can model complex protocols. Based on this model, Normal-Verification
Sequence is proposed to enhance verdict mechanism. Data-driven robustness testing
focuses on inputting various invalid messages. We adopt various mutation strategies
to generate anomalies for some fields of messages and further apply pairwise strategy
[15,16] to systematically import anomalies to mutate multiple fields for each message.
To inject test data efficiently and effectively, compound anomalous test case is
proposed to simplify test sequences. The algorithm of test case generation is given.
TTCN-3 [20] is extended to describe compound anomalous test cases. Implementing
the function of generating test data automatically, the extended description is very
simple and convenient to use. As a case study, we test OSPFv2 [21] sufficiently with
a test system based on extended TTCN-3.

The rest of this paper is organized as follows. Related works are introduced in
section 2. Section 3 proposes NPEFSM model. In section 4, pairwise strategy is used
to combine anomalies and test case generation is discussed. We apply TTCN-3 to
robustness testing and extend it in section 5. In section 6, we test OSPFv2 using our
method. Conclusions and future work are given in section 7.

2 Related Works

Related works can be classified into research on model-based robustness testing [4,5]
and test practices (often called Fuzz testing [6-14]). The model and framework for
robustness testing are not well developed. [4,5] propose a formal framework, but
mutation operations and fault injections are not done automatically. Hence it is
difficult to generate large number of test cases.
 Fuzz testing is a black-box testing method by injecting faults. The procedure is to
generate test data, inject test data to IUT and make verdict. Currently, there are two
methods to obtain numerous invalid messages: designing manually using script
language [6-12]; generating semi-randomly data (e.g. most of tools listed in [13]).
Various script languages are used to describe invalid messages such as BNF
(Backus-Naur Form) [6], SBNF (Strengthened BNF)[7,8], SCL (Semantic Constraint
Language) [9,10] and XML [11,12]. The production and injection of invalid PDUs are
all done by tools implemented by C or Java. Also, other Fuzzing tools [13] can
produce semi-random messages which are often blind to testing and each tool can
only test a certain protocol due to weak extensibility. Intelligent Fuzzing requires
injecting invalid inputs on the corresponding state. [7,8,11] all propose state
identification by inferring from I/O sequences logged, but it is not practical for
complex protocols. Related works about verdict mechanism are also not well
developed. In test practice, they observe whether IUT is crashed or monitor the
performance (e.g. CPU usage) of IUT under invalid injections. In [10,11], a simple
sequence consisting of a valid request and corresponding reply is used to make verdict
after fault injection.

So, it is highly desirable to have a formal approach to robustness testing. In our
previous work [17], single-field mutation testing is studied. Based on this work, we
give our full solutions for protocol robustness testing in this paper.

3 Formal Model and Testing Framework

3.1 Model Definition

Usual protocol specifications include variables and operations based on variable
values. Extended Finite State Machine (EFSM) can be used in this situation. However,
it is still not powerful enough to model some protocol systems where there are
parameters associated with inputs and have effects on the predicates and actions of
transitions [18]. Hence Parameterized Extended Finite State Machine (PEFSM) [18]
is used to model protocol specifications. Robustness testing requires injecting many
invalid messages. As most invalid messages and their processing rules are not well
prescribed, state transitions after these invalid injections are often nondeterministic.
So, we build a model for protocol robustness testing using NPEFSM
(Nondeterministic Parameterized Extended Finite State Machine). Our model covers
more detailed and precise nondeterministic features than traditional nondeterministic
FSM and EFSM model.
Definition 1: NPEFSM for Protocol Robustness Testing

A Nondeterministic Parameterized Extended Finite State Machine (NPEFSM) is a
6-tuple M=<I, O, , S, s , T>, where: X 0
1. I={ } is the input alphabet with parameters1 1 2 2(), (),..., ()p pi v i v i v v ; each input symbol

(1≤k≤p) carries a vector of parameter values()k ki v kv ;
Also, we define I=Ispec∪Iunspec. Ispec includes inputs that are prescribed in protocol

specification and composed of valid PDUs as well as some invalid PDUs. Iunspec
includes numerous inputs that are not prescribed definitely in protocol specification
and composed of various invalid PDUs.

2.O= is the output alphabet with parameters1 1 2 2{ (), (),..., ()}q qo w o w o w w ; each output
symbol ()k ko w (1≤k≤q) carries a vector of parameter values kw .

3. is a vector denoting a finite set of variables with default initial values. X
4. S is a finite set of states, S=Sspec, Sspec includes states prescribed in protocol

specification. We introduce and define S?={s?i | i=1,2,…}, s?1, s?2…are all
nondeterministic states after nondeterministic or undefined transitions but within a
range of states according to corresponding ambiguous protocol specification, i.e.
for i=1, 2,…, s?i ∈Si ⊆Sspec. So, S =Sspec =Sspec ∪ S?.

5. s0: initial state.
6. T: a set of transitions. For t∈T, =t () / () / (, ()) / (, (), ()) *i v o w P X i v A X i v o ws s⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ (s∈S, s*∈S) is

a transition where s and s*are the starting and ending state of this transition
respectively; / is the input/output with parameters;()i v ()o w (, ())P X i v is a predicate of
the variables and input parameters; the action (, (), ())A X i v o w is an operation on
variables as well as output parameters and this operation is based on current
variable values and input parameter values.

T=Tdeter∪Tnondeter=Tdeter∪(Tnondeter-spec∪Tnondeter-unspec). Each transition of Tdeter is

uniquely deterministic in protocol. Tdeter=∪t: sj
() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ sk,

where sj∈Sspec, sk∈Sspec; ∈I()ji v spec; ()jo w ∈O or ()jo w =Null. Each of Tnondeter-spec is
nondeterministic but specified clearly in protocol specification. Tnondeter-spec=∪t:sj

() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ s?k, where sj∈Sspec, s?k∈S?; ()ji v ∈Ispec; ∈O
or =Null. Each of T

()jo w

()jo w nondeter-unspec is nondeterministic and unspecified or specified

ambiguously in specification. Tnondeter-unspec=∪t: sj
() / / /ji v true− −⎯⎯⎯⎯⎯→ s?k, where sj∈Sspec,

s?k∈S? ; ∈I, output and action are unspecified or specified ambiguously. □ ()ji v

Figure 1 shows a part of NPEFSM for OSPFv2 [21] Neighbor State Machine,
predicates and actions are omitted. An example of transition is given in Table 1. The
inputs and outputs are parameterized Database Description Packets (DDP). The
parameters of DDP are DD sequence number (denoted as Seq) and I/M/MS (denoted
as Ims). Predicate includes sequence number checking, I/M/MS checking and other
validations. y is a variable used to check sequence number.

Figure 2 shows two kinds of state transitions under invalid injections. Figure 2(a)
shows that after receiving an invalid input ik (ik∈Ispec), si transits to sj according to
related description in protocol specification. For example, OSPFv2 specification
prescribes that receiving duplicate DDP will trigger “SeqNumberMismatch” and
transit the state from “Exchange” or higher to “Exstart”. Figure 2(b) shows that si
transits to state s?k (s?k∈Sk={ski | i=1,2,…}⊆Sspec) because the transition after receiving
ij (ij∈I) is prescribed indeterminately, ambiguously or even not prescribed in protocol
specification. For example, during Database Exchanging, after receiving DDP,
whether to check the syntax of each field of DDP.LSAHeader is not specified
definitely. Suppose this syntax error: LSAHeader.LinkStateID=“FFFFFFFF”, if IUT
checks this field, event “SeqNumberMismatch” will be triggered to transit the state to
“Exstart”. Otherwise, exchanging will go on until this fault can be found (maybe in
LSA requesting process). So, after receiving ij (DDP), s?k∈Sk={sk1 =“Exstart”, sk2

=“Exchange”} and tj∈Tnondeter-unspec.
Some “MAY” statements in protocol specification also specify transitions

belonging to Tnondeter-spec. We omit further exemplification.

Table 1. An Example of Transition

Name TExchange-Exchange-1
Start State Exchange
End State Exchange
Input DDP(Seq1, Ims1)
Output DDP(Seq2, Ims2)
Variables y,…
Predicate (Seq1==y)&&

(Ims1==011)&&…
Action Seq2=y; y=Seq1+1;...

Fig.1. A Part of NPEFSM for OSPFv2 Neighbor State Machine: Database Exchange

∈
∈∈

∈∈
∈

 Fig.2. (a) Fig.2. (b)

Fig.2. (a) State transition prescribed definitely in protocol specification after invalid input
 Fig.2. (b) State transition prescribed ambiguously, indeterminately, or even not

prescribed in protocol specification after invalid input

Some special inputs can transit each of several states (denoted as) to the same
state, we propose Forced Transition as follows:

'S

Definition 2: Forced Transition
Let S’ ⊆ Sspec and sj ∈ Sspec.
(∀s∈S’)→sj is a Forced Transition, iff, ∃ ()ji v ∈Ispec, such that ∀s∈S’,

s () / / /ji v true− −⎯⎯⎯⎯⎯→ sj.
Especially, if sj = s0, such a forced transition is also called Reset Transition.
In Figure 3, if Forced Transition exists, s?k can receive certain input and transit to a

deterministic state sj according to Definition 2. In the former example about OSPFv2
Data Exchanging, event “SeqNumberMismatch” can force the machine to transit from
s?k to sj (sj =“Exstart”), whether s?k =“Exstart” or “Exchange”.

3.2 Robustness Requirement and Normal-Verification Sequence

The structure of a test case in conformance testing can be described as follows: Test
Case=<State Leading Sequence, Executing Sequence, State Verification Sequence>
[17, 18]. In robustness testing, we introduce a term called “anomalous test case”
which can inject invalid data on corresponding state and make verdict. Instead of
State Verification Sequence of conformance testing, Normal-Verification Sequence of
robustness testing is executed to verify whether the state machine works properly. If it
returns “Fail”, we conclude that IUT behaves abnormally and has poor robustness.
The structure of an anomalous test case can be described as follows: Anomalous Test
Case=<State Leading Sequence, Invalid PDU Inputting, Normal-Verification
Sequence>. The first step of robustness testing is to construct robustness requirement.
In this paper, we use an intuitive and practical robustness requirement that IUT must
keep normal state and continue normal operations conforming to protocol
specification under invalid injections. According to the state transitions shown in
Figure 2, we propose two types of Normal-Verification Sequences as follows:

Normal-Verification Sequence_1:
Suppose at state si, an invalid PDU ()ji v is received and ()ji v ∈ Ispec .

If t: si
() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ sj, i.e. t∈Tdeter. Normal-Verification

Sequence= state verification sequence of sj.
Normal-Verification Sequence_2:

Suppose at state si, an invalid PDU ()ji v is received and ()ji v ∈I.

If t: si
() / () / (, ()) / (, (), ())j j j j ji v o w P X i v A X i v o w⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ s?k or t: si

() / / /ji v true− −⎯⎯⎯⎯⎯→ s?k , i.e.
t∈(Tnondeter-spec∪Tnondeter-unspec)=Tnondeter. Normal-Verification Sequence = state
identification sequence of s?k.
State identification [18][19] will cause the robustness test sequences to be very

complex, so we define another Normal-Verification Sequence to approximately
replace Normal-Verification Sequence_2:

Normal-Verification Sequence_2-1:
After receiving invalid PDU, the ending state transited to is s?k∈S? and

s?k∈Sk={ski | i=1,2,…}⊆Sspec, If there exists Forced Transition: (s?k∈Sk)→sj,
Normal-Verification Sequence ≈ ((s?k∈Sk)→sj) + (state verification sequence of sj).
Forced Transition and Reset Transition are very common in network protocols. For

OSPFv2, event “1-Way”, “KillNbr”, “SeqNumberMismatch” and “BadLSReq” can
trigger Forced transition. So Normal-Verification Sequence_2-1 can be widely used.

A PEFSM can be unfolded into a FSM. In this paper, we do not discuss the
construction of state verification sequence for FSM or PEFSM model which is a
classical problem in conformance testing [18]. We further illustrate our robustness
requirement. For anomalous test cases using Normal-Verification Sequence_1,
robustness requirement is the same with conformance testing. For test cases using
Normal-Verification Sequence_2-1, robustness requirement can be illustrated using a
Probabilistic Finite State Machine (PFSM) shown in Figure 4. s* is a trap state which
is not an element of Sspec. P1 is the probability of state transition from si to s* after
receiving an invalid input. P2 is the probability of state transition from s* to s* after
receiving an input which is used to trigger Forced Transition. Strict robustness
requirement discussed before is P1=0. In order to ease test practices, we adopt
P1⋅P2=0 as our robustness requirement.

∈
∈∈

∈

Fig.3. Forced Transition of s?k Fig.4. Robustness requirement analysis

4 Test Case Generation

4.1 Invalid Inputs Generation

A PDU is composed of several fields denoted as f1, f2…Invalid PDUs can be
syntactically or semantically invalid. The former disobey protocol specification data
formats. The latter have valid syntax but conflict with protocol state, configuration

and policies. We mutate several valid inputs to generate many messages either
syntactically invalid or semantically invalid.
Single-field mutation rules: FunFieldMutation()

We define some typical invalid field values which attackers tend to exploit:
1) Field value mutation rules:
 In [17], we define Boundary value; Field values mismatch; Format error; Length,
Checksum and Encapsulation error. We also define input partition values: {Min,
Min+(Max-Min)/n, Min+2*(Max-Min)/n,…,Max}(Suppose Field fi∈(Min,Max)). n is
a parameter set by tester. All these values can be used to replace a valid field value.
2) Field mutation rules:

 Removal and Addition: a field of PDU is removed or added;
 Overflow: one field is replaced with another field with bigger bytes;
 Permutation: sequence of fields in PDU changes.

Multi-field mutation rules using pairwise algorithm
Some fields of one message may have consistency with each other. Value changing

of one field may influence values of other fields. Also, protocol implementations may
not parse fields of receiving message in the sequence of one by one. So it is necessary
to inject messages whose multiple fields are invalid. Suppose 8 fields of one PDU will
be mutated and each field has 5 invalid values, total of mutated PDUs will be
58=390625. So exhaustive testing is impractical. In this paper we introduce pairwise
combination which can guarantee that each pair of faults between any two fields is
covered by at least one combination. Pairwise combination is a good trade-off
between test effort and test coverage. Algorithm 1 adopts a heuristic pairwise
algorithm called In-Parameter-Order [15,16] to generate test data.

Algorithm 1: pairwise (F, Q)

Input: F={f1, f2,…, fn}; Q={
1 2
, ,...,

nf fq q q f }; /*each
if

q is a set of values for field fi. */

Output: T={T1,T2,…Tm}; /*each Ti ={vf1, vf2,…,vfn}, where
jfv ∈

jfq (1≤j≤n), i.e. Ti is a

n-dimension vector containing values for field f1, f2,…, fn, respectively.*/
1 T={(v1, v2) | v1and v2 are values of f1and f2 ,respectively};
2 if (n ==2) return T;
3 for each field fi, i=3,4,…,n do
4 T= In-Parameter-Order (T, Q, fi); /*see references [15,16] */
5 return T;
Then we give an example 1:

Suppose F={f1, f2, f3, f4}, each has
four unsigned boundary values and
one 2-partition values.

1f
q =

4f
q ={00,01,7F,FE,FF};

2f
q ={00

00,0001,7FFF,FFFE,FFFF};
3f

q ={00
0000, 000001, 7FFFFF, FFFFFE,
FFFFFF}. Applying Algorithm 1, we
can get test data shown in Figure 5:

00 0000 000000 00
00 0001 000001 01
00 7FFF 7FFFFF 7F
00 FFFE FFFFFE FE
00 FFFF FFFFFF FF
01 0000 000001 7F
01 0001 000000 FE
...
00 FFFF 000000 7F

1

2

3

4

32

...

T
T
T
T

T
Fig.5. test generation using pairwise

combination
In above example, compared to the exhaustive combination (test data set total:

54=625), Algorithm 1 only generates 32 test data and each pair of faults between any
two fields is covered by at least one PDU.

4.2 Robustness Test Case Generation

According to the definition of robustness testing (see section 1), the quantity and
variety of invalid messages are important criterions for testing. There are numerous
invalid PDUs and how to inject needs to be well studied. So we propose compound
anomalous test case which can also simplify test sequences: 1) One compound
anomalous test case focuses on several fields of one PDU (the combination of these
fields can be denoted as Fl⊆PDU). If the verdict is “Fail”, it means IUT cannot parse
Fl with robustness; 2) Two or more anomalous messages with different invalid values
of Fl should be injected in one compound anomalous test case. Values of other fields
of these messages cannot be mutated and keep valid.
 If |Fl|=1, it means only one field is mutated and the corresponding test case belongs
to single-field robustness testing. If |Fl|≥2 (means multiple fields are mutated), this
test case belongs to multi-field robustness testing. For test case returning “Fail” in
multi-field testing, we should decompose it into several separated test cases executed
further to analyze why it fails. As robustness testing is often done after conformance
testing, the pass rate is often high, thus test execution of separated test cases will not
consume much work. For test cases using Normal-Verification Sequence_1, the
formats of Compound Anomalous Test Cases are constructed as follows:

Compound Anomalous Test Case-1(m, pdu.Fl) = < State (s0 to si) Leading
Sequence, {Invalid pdu Inputting, State (sj to si) Leading Sequence}*m, State
Verification Sequence of si >.

Where, “{}*m” means the sequences contained in “{}” are executed m times. Also,
the fields under test must be mutated before each executing loop. m means the number
of invalid messages generated by mutation rules for pdu.Fl.

For test cases using Normal-Verification Sequence_2-1, the formats of Compound
Anomalous Test Cases are constructed as follows:

Compound Anomalous Test Case-2 (m, pdu.Fl) = <State (s0 to si) Leading
Sequence, {Invalid pdu Inputting, State(s?k to sj)Leading Sequence (suppose Forced
Transition (s?k∈Sk)→sj exists), State(sj to si) Leading Sequence }*m, State
Verification Sequence of si >.

Figure 6 shows structures of compound anomalous test cases. Algorithm 2 is
defined for Compound Anomalous Test Case-1 generation. We omit the algorithm of
Compound Anomalous Test Case-2 generation due to space limitation.

(a) Compound Anomalous Test Case-1 (b) Compound Anomalous Test Case-2

Fig.6. Two Types of Compound Anomalous Test Cases (pdu.Fl is under test)

Algorithm 2: Compound Anomalous Test Case-1 generation

Input: PDU pdu={f1, f2,…, fn}; /* pdu: a valid PDU */
Fl ⊆ pdu ; /* Fl :a fields set under test */

si, sj;/*inject anomalies on state si and the state transits to sj in protocol specification*/
Output:

lFTestCase ; /* test case for pdu.Fl */

Initial Value:
lFTestCase =Null;

1 Q={
1 2
, ,...,

nf f fq q q };
1 2
, ,...,

nf fq q q f =Null ; /*
if

q is a set of values for field fi */

2
lFT ={T1,T2,…Tm}; T1,T2,... Tm=Null; /* see Algorithm 1 in section 4.1*/

3 For each fk ∈Fl do
4

kf
q = FunFieldMutation (fk); /*generate anomalous values, see section 4.1*/

5 If (|Fl|=1) /*single-field robustness testing*/
6

lFT = Q;

7 If (|Fl|≥2) /*multi-field robustness testing*/
8

lFT = pairwise (Fl, Q); /* see Algorithm 1 in section 4.1*/

9
lFTestCase .add(State (s0 to si)Leading Sequence);

10 For each Th ∈ lFT do
11 replace each field of pdu.Fl with values in Th, respectively;
12

lFTestCase .add (Invalid pdu Inputting, State (sj to si) Leading Sequence);

13
lFTestCase .add(State Verification Sequence of si);

14 Return
lFTestCase ;

Compound Anomalous Test Case-1 is similar to test case of conformance testing
and we do not discuss its property. For Compound Anomalous Test Case-2, different
invalid PDU is injected in each loop. We have deduced that the “Fail” probability for
each loop is P1⋅P2 (see section 3.2 and Figure 4).Then the “Fail”probability of
Compound Anomalous Test Case-2 can be deduced:

()failP m =1-
1

m

i=
∏ (1-Pi_1 ⋅Pi_2) (where Pi_1 ⋅Pi_2 is the fail rate for ith invalid injection)

From this equation, we can deduce that the fail rate increases as m increases. An
intuitive reason is that the more invalid data are injected, the more holes may be
discovered.

5 TTCN-3 Extensions and Test System

TTCN-3 [20] is developed by ETSI (European Telecommunications Standards
Institute) and standardized by the ITU-T. Test suite described by TTCN-3 has good
readability, extensibility and maintainability. But TTCN-3 is not flexible: 1) TTCN-3
cannot support mutation operations well, so we should define thousands of invalid test
data using TTCN-3 [17]; 2) Using TTCN-3, it is difficult or even impossible to give
the description of compound anomalous test cases.
 We extend TTCN-3 in syntax for robustness testing as follows: 1) Add a new
keyword “pairwise” which represents the complex algorithm of compound anomalous
test case generation; 2) Add a new keyword “count”, the value behind this keyword

means the number of mutations for one field; 3) In the description statement using
“pairwise”, each field of the message in format of “global template” can be modified
to be invalid so test suite need define only a little data.

If the parameters of “pairwise” statement are only for one field of one message, the
test case belongs to single-field testing. Otherwise, it belongs to multi-field testing
and pairwise combination will be used. Similar to extension using “pairwise”, we can
make extensions to accomplish other mutations rules (e.g. Removal, Overflow)
defined in section 4.1. We omit these due to space limitation. “pairwise” statement
supports describing two types of Compound Anomalous Test Cases. We give a
description of test case belonging to Compound Anomalous Test Case-2:

Most anomalies are generated automatically according to FunFieldMutation() (see

section 4.1). “octetstring n count m” means generating invalid data set which
consists of 4 boundary unsigned values and m-4 partition values (see section 4.1),
each is in the format of n octetstrings. Some anomalies can be defined manually in
“Const Record” (e.g. “record_value” in above statements). When above statements
(other keywords in bold are introduced in [20]) are compiled, invalid data for field
HL1.Mask, HL1.Hint and HL1.Opt are generated (e.g.

Maskfq ={4 boundary values,
(5-4) partition values and values in “record_value”}), further pairwise algorithm
Tpairwise(F(fMask, fHint, fOpt)) is executed to generate invalid messages. “Onebyone_HL1”
is a function using Forced Transition. During test case executing, “Onebyone_HL1”
will be executed continually for many loops until all the invalid test data are injected
to IUT. Finally, Normal_Verification() is executed to make verdict.

testcase Onebyone_HL1_Opt() runs on MyTestComponentAsync
system SystemComponent {
map(mtc:MyPortAsync, system:SystemPort1);
P1();
pairwise HL1(Mask octetstring 4 count 5 record_value;

Hint octetstring 2 count 6;
Opt octetstring 1 count 8) {

Onebyone_HL1();
}
Normal_Verification();

}

Based on TTCN-3 and its extension, we have developed a test system called
PITSv3 which is introduced sufficiently in [23]. We omit this due to space limitation.

6 Case Study: OSPFv2

OSPFv2 [21] defines five kinds of messages including: Hello, Database Description
(DDP), Link State Request (LSR), Link State Update (LSU) and Link State
Acknowledgment (Ack). It also defines five kinds of Link State Advertisements
(LSAs). We design test suites for single-field and multi-field robustness testing
respectively. We use Forced Transitions (e.g. “1-Way”, “SeqNumberMismatch” and
“BadLSReq” [21]) to construct Normal-Verification Sequence.
 Table 2 lists test suite. Invalid messages are injected on corresponding state. In test
practice, we use PITSv3 to connect with IUT through a link. We choose Zebra-0.94
[22] installed in Linux as IUT.

Table 2. Test suite of compound anomalous test cases for OSPFv2

Test Content Number Test Group (State / Invalid PDU received) Single-field Multi-field
OSPF Head Init / Hello 14 8
Hello 2-way / Hello 16 6
DDP0 Exstart / DDP0(without LSA Header) 8 4
DDP1 Exchange / DDP1(include one LSA Header) 22 12
LSR Exchange / LSR 6 2
Ack Exchange / Ack 16 6
LSA_HEAD Exchange / LSU(include Router_LSA) 14 10
LSU_RLSA Exchange / LSU(include Router_LSA) 16 10
LSU_NLSA Full / LSU (include Network _LSA) 4 5
LSU_S3LSA Full / LSU (include Type3 Summary _LSA) 4 1
LSU_S4LSA Full / LSU (include Type4 Summary _LSA) 4 1
LSU_AsLSA Full / LSU (include As External_LSA) 6 2

Total 130 67
For single-field testing, we set m with

different values using “count” keyword
in TTCN-3 (see section 4.2 and 5).
During test, we choose m=5~30. Thus,
about 650~3900 invalid messages are
injected in total 130 test cases. Test
results are shown in Figure 7 (Fail Rate
I). Test verdicts of Fail Rate I base on
robustness requirement (see section 3.2).
Fail rate is 5.38% when m=5~20 and it

Relation of Fail Rate with m

0
2
4
6
8

10

5 10 15 20 25 30

 m

Fa
il

 R
at

e
(%

)

Fail Rate I
Fail Rate II

Fig.7. Test results for single-field robustness
testing of Zebra-0.9

increases to 6.92% when m=25, 30. These results indicate that the more invalid data
are injected, the more holes may be discovered (see section 4.2). During test, we also
sum up test cases (Fail Rate II) returning “fail” due to critical vulnerabilities which
cause IUT to crash or be quiescent (IUT may not crash, but can not reply to inputs).
Fail Rate II shows that there are always 4 test cases (fail rate: 3.08%) returning “Fail”
due to critical vulnerabilities as m increases from 5 to 30.

In multi-field testing, we assign m=5 (each field has 5 invalid values). Each test
case can inject about 25~40 messages generated by pairwise algorithm. So invalid
messages injected are about 1675~2680 in total 67 test cases. Test verdicts are based
on robustness requirement (see section 3.2) and the fail rate is 8/67=11.9%.

Based on test results, critical vulnerabilities of Zebra-0.94 are analyzed: 1) Zebra
cannot parse invalid messages with mutated “length” field in OSPF header robustly
and the OSPF routine crashes. Analyzing the source code, we find that the checksum
routine (in_cksum in checksum.c) does not compare the “length” field in OSPF
header with the “length” field in the IP header so that the routine reads past the end of
the heap into unauthorized memory space. 2)LSA header also exists the same
vulnerability. The LSA checksum routine (ospf_lsa_checksum in ospf_lsa.c) does not
verify the validity of the length field in the LSA header. This occurs only for LSA
Header in LSU packets.

7 Conclusions and Future Work
It is desirable to test the robustness, reliability of network devices. The work and
contribution of this paper are given as follows: we build a novel NPEFSM to

effectively guide robustness testing; Normal-Verification Sequence is proposed to
enhance verdict mechanism; we apply pairwise strategy to systematically import
anomalies to mutate messages and further generate compound test cases which can
simplify test sequences; TTCN-3 is extended to describe compound anomalous test
cases. While our approach and test system are generic enough to be applied to all
protocols, we will focus on application layer protocols (e.g. HTTP, SMTP) in future
work as they typically handle human user level inputs that may have more faults. We
will also apply our method to test real-time distributed systems.

Acknowledgment: This work is supported by the National Natural Science Foundation
of China under Grant No. 60572082.

References
1. National Vulnerability Database. Available: http://nvd.nist.gov/
2. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990, Page 64. 1990.
3. Venkat Pothamsetty,Bora Akyol. A Vulnerability Taxonomy for Network Protocols: Corresponding Engineering

Best Practice Countermeasures. IASTED Internet and Communications conference, US Virgin Islands, November
2004.

4. Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. A Model-Based Approach for Robustness Testing. The
17th IFIP International Conference on Testing of Communicating Systems (TestCom2005), Concordia, Canada,
May 30-Jun. 2 2005.

5. Fares Saad-Khorchef, Antoine Rollet, Richard Castanet. A framework and a tool for robustness testing of
communicating software. ACM Symposium on Applied Computing (SAC’07): 1461-1466

6. Oulu University Secure Programming Group. PROTOS. Available:
http://www.ee.oulu.fi/research/ouspg/protos/index.html. 2002.

7. Shu Xiao, Sheng Li, Xiangrong Wang, Lijun Deng,ARF, Cisco Systems, Inc. Fault-oriented Software Robustness
Assessment for Multicast Protocols. Proceedings of the Second IEEE International Symposium on Network
Computing and Applications (NCA’03)

8. Shu Xiao, Lijun Deng, Sheng Li, Xiangrong Wang, ARF, Cisco Systems, Inc. Integrated TCP/IP Protocol Software
Testing for Vulnerability Detection. Proceedings of the 2003 International Conference on Computer Networks and
Mobile Computing (ICCNMC’03).

9. Turcotte, Y., Tal, O., Knight S., “Security Vulnerabilities Assessment of the X.509 Protocol by Syntax-Based
Testing”, Military Communications Conference 2004 (MILCOM 2004), Monterey CA, October 2004, Vol 3 pp.
1572- 1578.

10. Tal, O., Knight, S., Dean, T., “Syntax-based Vulnerability Testing of Frame-based Network Protocols”, Proc. 2nd
Annual Conference on Privacy, Security and Trust, Fredericton, Canada, October 2004, pp 155-160.

11. G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer and G. Vigna, "SNOOZE: toward a Stateful
NetwOrk prOtocol fuzZEr", Information Security Conference (ISC), Samos Island, GREECE, September 2006.

12. N. F. Neves and J. Antunes and M. Correia and P. Veríssimo and R. Neves. "Using Attack Injection to Discover
New Vulnerabilities". In Proceedings of the International Conference on Dependable Systems and Networks
(DSN’06), pages 457-466, June 2006.

13. FuzzingTools. Available: http://www.scadasec.net/secwiki/FuzzingTools
14. Vasan, A.M. Memon, “ASPIRE: Automated Systematic Protocol Implementation Robustness Evaluation”,

Proceedings of the 2004 Australian Software Engineering Conference (ASWEC'04), April 2004, pp. 241.
15. Y. Lei and K. C. Tai. In-parameter-order: a test generation strategy for pairwise testing . Proceedings Third IEEE

Intl. High-Assurance Systems Engineering Symp., 1998, pp. 254-261
16. Tai K C, Lei Y. A test generation strategy for pairwise testing. IEEE Trans on Software Engineering, 2002, 28(1):

109-111.
17. Chuanming Jing, Zhiliang Wang, Xingang Shi, Xia Yin, Jianping Wu. Mutation Testing of Protocol Messages

Based on Extended TTCN-3. Proceedings of the IEEE 22nd International Conference on Advanced Information
Networking and Applications (AINA 2008), Japan, 2008, pp. 667-674.

18. D. Lee and M. Yannakakis. Principles and Methods of Testing Finite-State Machines-A Survey. Proceedings of
IEEE. 1996, 84(8): 1089-1123.

19. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and probabilistic machines. In:
Symposium on Theory of Computer Science, 1995, ACM. (1995) 363–372

20. ETSI: ETSI Standard ES 201 873-1 V3.2.1(2007-03): The Testing and Test Control Notation version 3; Part 1:
TTCN-3 Core Language. European Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France.
2007.

21. Moy, J., "OSPF Version 2", RFC 2328, April 1998.
22. Zebra-0.94. Available: http://www.zebra.org/.
23. Xia Yin, Zhiliang Wang, Jianping Wu, Chuanming Jing and Xingang Shi. Researches on a TTCN-3-based protocol

testing system and its extension. Accepted by Science in China Series F: Information Sciences. 2008.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Saad=Khorchef:Fares.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Castanet:Richard.html
http://www.informatik.uni-trier.de/~ley/db/conf/sac/sac2007.html#Saad-KhorchefRC07
http://www.ee.oulu.fi/research/ouspg/protos/index.html
http://imj.ucsb.edu/papers/ISC-06.pdf.gz
http://imj.ucsb.edu/papers/ISC-06.pdf.gz
http://www.scadasec.net/secwiki/FuzzingTools
http://www-cse.uta.edu/%7Eylei/paper/hase.pdf
http://www.zebra.org/

