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Abstract. Grid computing in general is a special type of parallel computing. It 

intends to deliver high-performance computing over distributed platforms for 

computation and data-intensive applications by making use of a very large 

amount of resources. The GMRES method is used widely to solve the large 

sparse linear systems. In this paper, we present an effective parallel hybrid 

asynchronous method, which combines the typical parallel GMRES method 

with the Least Square method that needs some eigenvalues obtained from a 

parallel Arnoldi process. And we apply it on a Grid Computing platform 

Grid5000. From the numeric results, we will present that this hybrid method has 

some advantage for some real or complex systems compared to the general 

method GMRES.  
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1   Introduction 

Iterative methods are a common choice for solving the large linear sparse system of 

the form Ax=b. A popular class of iterative methods is Krylov subspace methods. The 

generalized minimum residual algorithm (GMRES) [2] is used widely and it is often 

referred to as an “optimal” method because it finds the approximate solution in the 

Krylov subspace that minimaized the 2-norm of the residual. In order to limit both 

computation and memory requirements, a restarted version is often used. It has been 

implemented on parallel systems [1], but this method does not always converge very 

fast. There are some existing modifications to the standard GMRES algorithm. We 

study a hybrid method [9] which calculates in parallel some eigenvalues by the 

Arnoldi method [3], [4]. As soon as they are approximated with a sufficient accuracy, 

the eigenvalues are used to perform some iterations of the Least Squares method [6] 

for getting a new initial vector for the next GMRES restarts. We have applied it on the 

supercomputer to solve some small real linear system [9], [15]. 

We perform our experiments on a Grid system. As known to all, the Grid is well 

established as a research domain and proposes technologies that are mature enough to 

be used for real-life applications. It is dedicated to achieve a high performance of 

large scale computing by using a large amount of unoccupied computing resources. 



The Grid5000 project has been launched to provide the community of Grid 

researchers with an unprecedented large-scale infrastructure to study Grid issues 

under real experimental conditions. Grid’5000 is a large scale computing tool 

composed of many clusters distributed in several computing centers in France. 

In this paper, we present the distributed hybrid method GMRES(m)/LS-Arnoldi 

which is well implemented on the GRID system Grid’5000. And we try to apply it on 

the large linear systems and the complex systems.  

This paper is organized as follows. The numerical methods used in our hybrid 

method will be present in section 2. In section 3, we introduce the implementation on 

Grid’5000. In section 4, we present the results obtained on the platform Grid’5000. At 

the same time we sum up the advantages and characteristic and see the effect on 

complex problem. Finally, in section 5, we present a summary and discuss directions 

for future research. 

2   GMRES(m)/LS-Arnoldi Hybrid Parallel Method 

This method aims to accelerate the convergence with the benefit of Arnoldi and Least 

Square methods. Arnoldi method uses the Gram-Schmidt method to compute the 

orthonormal basis of the Krylov subspace. It is well-known for approximating 

eigenvalues of large sparse matrices. Least Square is a polynomial iteration method 

that can offers us a new initial vector by using the eigenvalues information. 

The idea is that during the GMRES iterations, if we can offer more information 

about the matrix, the efficiency of convergence can be increased. So we use Least 

Square method to obtain the new initial vector for the next GMRES iterations. And 

the Arnoldi process is performed in parallel to calculate some eigenvalues with a 

sufficient accuracy for the Least Square computation.  

2.1   GMRES Method  

GMRES (Generalized Minimum RESidual) method is one of the iterative methods 

based on Krylov subspace. Such methods find an approximate 

solution )r,A(Kxx 0i0i +∈ , where }rA,...,Ar,r{span)r,A(K 0

1i

000i

−≡  denotes an i-

demensional Krylov subspace, 0x  is the initial guess, and 0r  is the initial residual.  

The GMRES method was proposed by Saad and Schultz[2] in 1986. It is used 

widely to solve non-symmetric linear systems. The thm iterate mx of GMRES is the 

solution of the least squares problem: 2)r,A(Kxx ||Axb||minimize
0m0

−+∈ , where 

00 Axbr −= is the residual of the initial solution. The Arnoldi process applied 

to )r,A(K 0m  builds ]v,V[V 1mm1m ++ = , an orthonormal basis of )r,A(K 0m , the m+1 by 

m matrix mH  and
20r=β . These matrices satisfy the relation m1mm HVAV += . The 



iterate mx can be written as mm0m yVxx += , where m

my ℜ∈ is the solution of the least 

squares problem: 
2

m1y
yHeminimize m −

ℜ∈
β .  

In the GMRES algorithm the number of vectors requiring storage increases with m. 

In order to limit both computation and memory requirements, a restarted version is 

often used.  

In the algorithm, 0x  denotes an initial guess of the solution, m denotes the size of 

Krylov subspaces, and ε denotes the tolerance. 

Algorithm restarted GMRES(m): 

1. Initialization 

2. 00 Axbr −=  

3. Apply Arnoldi process to )r,A(K 0m  

4. 2m1

y

m ||yHe||minargy
m

−=
ℜ∈

β  

   mmmm0m Axbr   ,yVxx −=+=  

5. if ε≤2m ||r||  then stop 

   else  

 m0m0 rr  ,xx ==  

 goto step3 

   end if 

2.2   The hybrid Algorithm GMRES(m)/LS(k,l)  

The whole process is that we calculate in parallel some eigenvalues by the Arnoldi 

method [5]. As they will be approximated with a sufficient accuracy, eigenvalues are 

used to perform some iterations of the Least Squares method [6] in order to obtain a 

new initial vector for the next GMRES iterations.   

The hybrid algorithm GMRES(m)/LS(k,l) can be given as follows. There are some 

important parameters, m′denotes the size of Krylov subspace for Arnoldi method, k 

denotes the degree of the least squares polynomial, and l denotes the number of the 

successive applications of the Least Squares method. 

Algorithm: GMRES(m)/LS( l,k ) 

1. Initialization  

2. Compute mx , the 
thm  iterate of GMRES starting with 0x  

   if ε<− 2m ||Axb||  then Stop  

   else  

 0x  = mx , 00 Axbr −=  

   end if 

2’. Perform m′ iterations of the Arnoldi process 

starting with 0r , to )v,A(Km′ , and compute the eigenvalues 

of mH ′  



2’’. Compute the least squares polynomial kP  on the 

boundary of H, the hull convex enclosing all computed 

eigenvalues. 

3. Do l,,1j L=  

  0k0 r)A(Pxx~ +=  

 x~x0 = , 00 Axbr −=  

   end do 

4. if ε<20 ||r||  then Stop 

   else goto step 2 

   end if 

In the algorithm, step 2’ and 2’’ means that these two steps are performed 

independently of the GMRES iterations, and the step 2’’ is performed following the 

step 2’.  

Step 2’ is the Arnoldi process. At first we apply Arnoldi process to the krylov 

subspaces of Arnldi )v,A(Km . Then we calculate the eigenvalues( di1  ,i ≤≤λ ) and 

the associate eigenvectors ( di1  ,yi ≤≤ ) of mH . After that we compute the Ritz 

vectors imi yVu = , for i=1, ∙∙∙, d. Set ∑ == d

1i i )uRe(v , and repeat the process above 

until ερ <
=

i

d

1i
max , where 

2iiii Auu −= λρ , di1 ≤≤ . 

Step 2’’ is the sequential part of Least Square method. For the Least Square 

method, it can be written as follows: 0k0 r)A(Pxx~ +=  where 0x an initial 

approximation, 0r its residual, and kP is a polynomial of degree k-1. Let 1

kΡ be the set 

of the real polynomials p of degree k, such that p(0)=1, and define the polynomial 
1

kk PR ∈ by )z(zP1)z(R kk −= . Then the residual of the iterate x~ is 0k r)A(Rr~ = . 

In general, we do not have the whole spectrum of A, but only some eigenvalue 

estimates contained in a convex hull H because all eigenvalue calculation will spend a 

very long time. H is constructed such as it does not contain the origin. Smolarski and 

Saylor [11] proposed to find kR minimizing a weighted L2-norm on the space of real 

polynomials, with a suitable weight function w, defined on the boundary of H. We 

obtain the following least squares problem
wk

PR

Rmin
1
kk∈

. 

The obtained polynomial ∑
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=
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basis of polynomials on the ellipse )a,d,c(ε of smallest area enclosing H (see [10] 

and [5] for an algorithm computing this optimal ellipse). For more details, see [6]. 



2.3   The hybrid Method for Complex Problem  

In fact, we realize the solution by the prior treatment for the complex matrix. The 

complex problem bi)(br    )XiXr()AiAr( +=+×+  can be split into real part and 

image part: 

br    XiAiXrAr =×−×  

bi     XrAi  XiAr =×+×  

So we extend the complex matrix (size N*N) into a real counterpart (size 2N*2N) 

[7].  

Ar -Ai Xr br 

Ai Ar 

×  

Xi 

= 

bi 

A’  X’  b’ 

We apply the hybrid method to this new system 'b'X'A =× . 

3   Implementation on GRID System 

Grid’5000 is a Nation Wide Grid environment that is composed of many clusters 

distributed in 9 computing centers in France. A fast dedicated network interconnects 

those clusters. It is a highly configurable, controllable and monitorable instrument that 

can be configured to work as a real Grid. We implement our experiments on Grid5000 

because it isolates the perturbations from outside, par example the communication 

over the Internet and the load of the computing devices. We can devote ourselves to 

research the algorithm itself and it would help us improve our analysis of more tests 

on the worldwide platforms in future. 

The Grid5000 usage is based on a reservation policy and a deployment mechanism 

allowing people configuring their own environment. Details can be found on the 

Grid5000 website [16]. We distribute our application on one or several sites of 

Grid5000 with the environment MPI. 

We reserve most processors to run the algorithm GMRES(m) by the way of the 

SPMD model, where one act as an administrative process and the other p identical 

calculation processes play the role of workers. The calculation processors read 

directly their own data and execute the method GMRES(m), communicating with 

their brother processes. 

The processors dedicated to the parallel package “PARPACK” are in charge of the 

residuals reception, the Arnoldi projection and the eigenvalues calculation, 

performing independently of the processes GMRES. 

Only one processor is in charge of the sequential part because of the small set of 

data for calculation. The parameters “Least Square” obtained are then sent to the 

processors executing the parallel part of LS method and algorithm GMRES(m) . 

The whole process and the relationship of the communication between the three 

parts are presented in Fig. 1. 



 

 

Fig.1. General scheme of asynchronous hybrid GMRES/LS-Arnoldi process 

There are two threads for the whole calculation. The first is the GMRES iteration 

or Least Square iteration. After each iteration, the GMRES(m) process always checks 

if the LS parameters arrive. In this case, the GMRES algorithm is then suspend, and 

the processes perform the parallel part of the LS hybridizations. Then GMRES(m) 

restart with the obtained initial vector.  

Another thread is the eigenvalues calculation by Arnoldi method and the 

coefficients computation by sequential part of Least Square method. These two 

processes are performed in serial.  

All the processors are interconnected inter-cluster or intra-cluster. Intra-cluster 

means that the algorithm is performed in one cluster. In other word, the GMRES 

iteration, the Arnoldi process and LS method are distributed in the nodes of the same 

cluster. Inter-cluster means that these three components are distributed in different 
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clusters, and each component can be assigned completely in one cluster or be 

distributed in different clusters. 

4   Numeric Results and Analysis 

Table 1 shows the excellent network configuration of our experimental platform. The 

detailed information can be referred to the web site of Grid’5000 [16]. 

Table 1.  Bandwidth and average latency between the clusters of the sites.  

 Bandwidth Latency 

Inter-Cluster 

Orsay 48.4MB/s 0.11ms 

nancy 42.8MB/s 0.09ms 

Bordeaux 53.7MB/s 0.086ms 

 

Intra-Cluster 

Orsay – nancy 9.7MB/s 5.7ms 

Orsay – Bordeaux 8.1MB/s 7.9ms 

Nancy – Bordeaux 4.0MB/s 17ms 

 

All the sparse matrices are stocked in the compressed format CSR (Compress 

Sparse Row) for saving the memory and reducing the communication on the network. 

Moreover, in order to be able to verify the results accuracy, we have chosen in all 

examples the right-hand side so that the solution of the system is x = (1,1,...,1)
T

.  The 

iteration starts with x0 = (0,0,...,0)
T

. 

First example (af23560): We experiment some industrial matrices from the site 

MatrixMarket. In this paper, we present the results obtained with the matrix af23560 

(size 23560*23560, 484256 nonzero elements) 

Second example: are created by a generator and are block diagonal matrices. (size 

17000*17000, 426260 nonzero elements) 

Third example: symmetric complex matrix young1c (size 841*841, 4089 nonzero 

elements). It is from the site MatrixMarket. 

Forth example: symmetric complex matrix dwg961b (size 961*961, 10591 nonzero 

elements). 

4.1   Advantages of the Hybrid Method  

We can see the first advantage from Fig 2: the high degree of parallelism. 

GMRES method is a compute-intensive and data parallelism application. During the 

parallel GMRES processes, there are intensive communication and multiple 

synchronizations. So the parallelism degree is limited. It can’t be increased easily. 

The more processors involve, the more communication spend and the slower the 

convergence is. In the hybrid method, we add the task parallelism by the participation 

of Arnoldi process and Least Square method. We use more processors and we 

accelerate the convergence. In this example, the classic gmres method has an optimal 



number of processors, 26, and the optimal number for the hybrid method is 34. And 

we can also remark that the hybrid method spent less time. 
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Fig. 2. The comparison of hybrid method and GMRES itself of the matrix (N=17000) with the 

number of processors 

The second advantage is the obvious speed up of convergence. The convergence 

with the hybrid method can be faster, even when it is difficult by using the classic 

GMRES method (Fig. 3). In this example, we choose a relatively small size of krylov 

subspace. We can notice a stagnation of convergence for the classic restarted GMRES 

method. However, for the hybrid method, despite the appearance of many peaks, it 

converges.  
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Fig. 3. The comparison of hybrid method and GMRES itself of the matrix (N=23560) in 

condition of the difficult convergence 



The third advantage accompanies the second advantage: low requirement of 

memory. The use of the restarted GMRES version is because it can limit both 

computation and memory requirements. The bigger the size of Krylov subspace is, the 

better the convergence is. However, the bigger size means the more memory 

requirement. Using the hybrid method, we can realize the convergence by the smaller 

size of Krylov subspace. 

4.2   Characteristics of the Hybrid Method  

As the mention in section 4.1, we can obverse some peaks during the convergence of 

hybrid method (Fig. 3). These peaks appear when the process of hybridization occurs. 

The residual increases sharply temporary, however a sharper deduce follows. Overall, 

the convergence is achieved. Thereby, too many peaks will damage the efficiency, as 

each hybridization influences many GMRES iterations. When the peaks are high and 

nearby, divergence may even occur. 

Additional, we combine the Arnoldi and Least Square method with the restarted 

GMRES in order to accelerate the convergence. Although the computation and 

communication increases, in fact there is almost no influence for the whole 

performance because these two methods are performed in parallel and the 

communication between different components is relatively little. Most of their 

computation time and their communication time can be overlapped. Table 2 illustrates 

this characteristic. 

The symbols ⑴, ⑵, ⑶ correspond to the condition 1, 2, 3. 

Condition1: GMRES on Nancy, Anoldi on Nancy, and Least Square on Bordeaux. 

Condition2: GMRES on Nancy, Arnoldi on Orsay, and Least Square on Bordeaux 

Condition3: GMRES on Nancy and Orsay, Arnoldi on Nancy and Orsay, and Least 

Square on Bordeaux 

The term com1 denotes the communication for GMRES computing like exchange 

the data with their brother processors. The term com2 denotes the communication 

between the components, like eigenvalues, LS parameters. 

Table 2.  Bandwidth and average latency between the clusters of the sites.  

Inter-cluster (Nancy+Orsay) 

Distribution Inter-

component 

Distribution Intra-

component 
Time(s) 

Intra-cluster 

(Nancy) 

⑴ ⑵ ⑶ 

Total time 70.73 71.57 72.69 120.8 

Computing 58 58.224 58.358 65.54 

Com1 12.42 13.319 14.132 54.42 

Com2 0.009 0.024 0.055 0.084 

Iteration 10 10 10 10 

 

⑵ represents the condition that three different components of the algorithm are 

distributed respectively in three different clusters. It is obviously that this distribution 

strategy can’t bring much more burden for the communication. 



4.3   Complex Problems 

Due to the incompatible of the part of hybridization algorithm for the complex 

elements, the hybrid method is always used to solve the real linear systems. Now we 

apply the hybrid method on the prior transformed system.  
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Fig. 4. The comparison of hybrid method and GMRES itself for the complex matrix (N=841) 
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Fig. 5. The comparison of hybrid method and GMRES itself for the complex matrix (N=961) 

From the experimental results (Fig.4, Fig.5), we can notice that the hybrid method 

also shows its advantages and characteristic for the solution of complex problem.  



5   Conclusion 

We implemented our algorithm for the hybrid method GMRES(m)/LS-Arnoldi on 

Grid computing platforms: Grid’5000 with the environment MPI, and applied it to the 

real problems and the complex problems.  

From the experimental results, we sum up the advantages and characteristics of the 

hybrid method. We obtain very important convergence accelerations, and increase the 

degree of parallelism.  

In future, we will try more complex problems, and extend our method to the 

scientific problems of larger size. 

Moreover, the hybrid method can be improved in many places. We think that it’s 

better to change the parameters dynamically during the solution of the problem. For 

example, we can decide whether or not to proceed the hybridization of LS according 

to the speed of the convergence. And we can change the size of Krylov subspaces of 

Arnoldi after each LS hybridization to obtain the more important eigenvalues for the 

next hybridization. 

In addition, we will do some tests on the other supercomputers or cluster (i.e. 

Tsubame in Japon, IBM cell in France) to see the performances. And we will analyze 

the energy consumption of every component to optimize the implementation in the 

grid environment.  
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