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Abstract. DRAM row buffer conflicts can increase the memagcess latency
significantly for single-threaded applications. & chip multiprocessor system,
multiple applications competing for DRAM will suffeadditional row buffer
conflicts due to interthread interference. This grapresents a new hardware and
software cooperative DRAM bank partitioning mettthdt combines page coloring
and XOR cache mapping to evaluate the benefit pateoft reducing interthread
interference. Using SPECfp2000 as our benchmarks simulation results show
that our scheme can boost the performance of th& trenchmark combinations
tested, with the speedups of up to 13%, 14% an@98.0bserved for two cores
(with 16 banks), two cores (with 32 banks) and foares (with 32 banks).
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1 Introduction

The DRAM memory system is a critical shared reselamong multiple cores in a
chip multiprocessor system. In a multi-programmeatkioad, multiple applications
(i.e., threads) competing for DRAM will impede eacdtther’'s progress due to
interthread interference. Accesses from one thiesad cause row buffer conflicts,
bank conflicts and data/address bus conflicts toesses from other threads.
Therefore, uncontrolled interthread interferenc@& cignificantly degrade overall
system performance.

DRAM row buffer conflicts, i.e. row misses occur evha sequence of DRAM
accesses to different rows go to the same DRAM pealsing much higher access
latency than row hits. For a single-core systermesditwise XOR address mapping
schemes [1][2] and memory scheduling policies & _FCFS (First Ready First-
Come-First-Serve) [3] can be employed by the menaogtroller to reduce row
buffer conflicts. In addition, bitwise XOR cache pping schemes [4][5] can also be
incorporated into the last-level cache to redudé baw buffer conflicts and last-level
cache misses [1].

For a multi-core system, existing techniques fadumng row buffer conflicts
appear to be all hardware-based, focusing mostlymgmoving memory scheduling
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policies [6][7][8][9][10][11][12]. By leveraging ta solutions for single cores
[1][2][3], these hardware-based schemes attempptimize a multitude of objectives,
including row buffer utilization, memory efficiencipRAM throughput, fairness and
QoS. But they suffer from a limited scope (when@@urely in hardware) and are
constrained by the conflicting nature of multiplbjextives. In addition, the row
latency reduction techniques through improving foitvrates become less effective
due to the increased bank contention [6].

In this paper, we address the problem of reduamigathread and interthread row
buffer conflicts for running multi-programmed wooklds on multi-core systems that
keep the last-level cache private to each core, (gD Athlon). We introduce for
the first time a static software-hardware coopeealRAM bank partitioning scheme
to reduce both kinds of conflicts, thereby imprayimverall system performance. By
partitioning the DRAM banks among the applicatioigerthread interference is
reduced or controlled in a more deterministic manmhis allows potentially existing
techniques [6][7][8][9][10][11][12] to be appliednore effectively. We have
evaluated our scheme using the SPECfp2000 benchnmarktwo- and four-core
systems by using the cycle-accurate x86 full systemMP simulator FeS2 [13]
(Section 5). Our preliminary results show that scineme can boost the performance
of the most benchmark combinations experimented, wiith the speedups of up to
13%, 14% and 8.06% observed for two cores (wittbdbks), two cores (with 32
banks) and four cores (with 32 banks). respectively

2 Background and Motivation

An SDRAM system consists of multiple banks that banaccessed in parallel. Each
DRAM bank is a DRAM cell array organized in rowsdanolumns. Each bank
contains a row buffer used to cache the data inrtbst recently accessed row. The
row buffer size is usually 2/4KB (i.e., one-halfgedone page). The latency of a
memory access can vary greatly depending on whétbeaccess is a row (buffer) hit
or miss. Normally, a DRAM access for a bank isizeal in three stageprecharge,
row access and column accgsd]. There are two modes for DRAM accessg®n-
pageandclose-pageln the open-page mode, if the next access teah®e bank goes
to the same row (eow hit), only column access is necessary. If the nex¢ssds a
row miss(row buffer conflict, however, the precharge does not start untilr afte
request has arrived. The close-page mode allowprdseharge to start immediately
after the current access.

Like the prior work on improving row buffer localitthis work can be beneficially
applied when the open-page mode is used. In tlsis, s@hen an access is a row hit,
the data required is already cached in the rowebuffhe data can be directly
operated on in the row buffer without the prechaagpel row access operations,
reducing the DRAM access time by half or more campdo when an access is a row
miss [8][12][14].

For a single-core system, a conventional addresppimg scheme allocates
consecutive data blocks to consecutive memory barsksg a modular mapping
function, i.e., memory interleaving. Zhang et dl] found that the resulting address
mapping symmetry between the last-level L2 caclielHRAM is a significant source



of row buffer conflicts. Such symmetry refers te tlact that the bank index bits are
usually part of the L2 cache set index bits. Aseault, L2 cache conflicts or
writebacksusually lead to row buffer conflicts. They propds® use an XOR
address mapping scheme implemented in the memanyotier to break the address
mapping symmetry. By XORing the bank index bits anglortion of cache set index
bits, as shown in Figure 1(a), the data blockspamenuted (or distributed evenly)
across the memory banks. Without the XOR addregpimg, the readRD and the L2
cache writebackVB caused byRD, as shown in Figure 1(b), will result in a row mis
because they have the same L2 cache set indexdditiom to address mapping,
memory scheduling policies [3][6][7][8][9][10][114re also effective in reducing row
buffer conflicts by prioritizing row hit accesseseo others. Furthermore, the XOR
cache mapping schemes [4][5] can also reduce s@mediusly both row buffer
conflicts and the last-level cache misses [1].

This work is the first to apply page coloring inntieination with a bitwise XOR
cache mapping scheme to manage DRAM bank partiiipta reduce both intrathread
and interthread row buffer conflicts while not ieasing bank conflicts unduly. Our
software-hardware cooperative scheme can improwebrdfer locality effectively for
a multi-programmed workload and may potentially ldeaexisting techniques
[71[8][9][10][11][12] to better optimize other obj#ives such as fairness and QoS in

future.
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Fig. 1. Memory controller address mapping

3 DRAM Bank Partitioning

Our proposed approach is to use page coloring tp tha DRAM accesses from
different applications to different banks (if pdsde) in order to reduce interthread
row buffer conflicts. Simultaneously, we also apphbitwise XOR cache mapping
scheme at the last-level, i.e., L2 cache to reduitathread row buffer conflicts and
cache misses.

3.1 Page-Coloring-based Bank Partitioning

We use the classic OS page-coloring [15] to partithe DRAM banks for a multi-

programmed workload. In the OS page coloring, bilsical pages are divided into
groups with all pages in the same group being &bal distinct color. When a new
physical page is requested by an application, tBend allocate a page whose color



is in the set of colors assigned to the applicatlban application has no colors in
common with other applications, and in addition,different colored pages are
mapped to different DRAM banks, then there are ow buffer conflicts among the
accesses from different applications. As a reaslllinterthread row buffer conflicts
are avoided. For two applications that share spages and thus some banks, their
interthread row buffer conflicts can be reduceth#& number of their shared pages,
i.e., banks can be reduced. Figure 2 illustrates ghge-coloring-induced bank
partitioning for a 16-bank DRAM. The number of adavailable is determined by
the number of the bank index bits that are not piitie page offset.
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3.2 Bitwise XOR L2 Cache Mapping

Once the banks are partitioned across the apgitatinterthread row buffer conflicts
are reduced. How do we also reduce intrathreadbidfer conflicts? How do we also
improve cache utilization since the last-level @achalso partitioned unexpected by
page coloring? Figure 3 illustrates why conventiomad XOR address mapping
schemes implemented in the memory controller atdaipful in reducing intrathread
row buffer conflicts in the presence of page calgriAs shown in Figure 3(a), the
conventional address mapping allocates consecutata blocks to consecutive
DRAM banks so that different colored pages are redpp different DRAM banks.
Its main advantage is that the static bank paniitig results obtained by page
coloring are preserved but its main drawback i$ tha address mapping symmetry
problem discovered in [1] is prevalent. On the othand, as shown in Figure 3(b),
the XOR address mapping scheme [1] suffers fronofiposite problem: it can break
the address mapping symmetry and thus reduce réferlmonflicts significantly, but

it reshuffles colored pages to banks and thus Bisabe partitioning effect done by
page coloring.
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What we want is a solution that breaks the addmeegsping symmetry while also
preserving the static bank partitioning resultsiesdd by page coloring. When we
partition DRAM via page coloring, the private ldstel L2 cache in each core is also
partitioned at the same time. In this paper, wegpse to use a bitwise XOR cache
mapping scheme to redistribute the cache accessmsotherwise the restricted part
of the L2 cache to the whole cache so as to remfewveache partitioning effect. As
studied earlier [1], the XOR cache mapping is céalh not only reducing cache
misses but also breaking the address mapping symifat effectively as the XOR
address mapping in the memory controller, in gdhera

Figure 4 illustrates the XOR cache mapping schemsed uogether with page
coloring. Some bits of the cache set index andcaralenumber of lower-order bits in
the cache tag are XORed to produce a new cachedsst In addition, the bits thus
modified in the cache set index correspond exactlyhe bits of the DRAM bank
index. In Figure 1, the reddD and the L2 cache writebadkB caused byRD are
necessarily mapped to the same bank without the X@&ess mapping in the
memory controller because their bank indexes aregdaheir L2 cache set indexes,
which happen to be identical. In Figure RD and WB should have the same new
cache set index becau¥éB is caused byRD. Therefore,RD and WB musthave
different cache set indexes and thus different badiexes before the XOR cache
mapping operation is applied. This means fRBtand WB are mapped to different
banks, giving rise to no row buffer conflict. Thine, we can use the XOR cache
mapping at the last-level cache together with tireventional address mapping in the
memory controller to substitute for the XOR addresapping employed in the
memory controller [1]. This solution has no impaatthe mapping of colored pages
to the DRAM banks achieved by page coloring.

The XOR cache mapping requires several XOR opemtio obtain a new L2
cache index. Since all the XOR operations can beedo parallel, the extra delay
incurred is one XOR gate. Depending on implememati the XOR gate may or may
not be on the critical path [4][5].
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Fig. 5. MRC, SRCandBCC of fma3d for a 32-bank DRAM (with 32 page colors
when its row buffer is one page)

4 Cost Model and Partitioning Algorithm

We give an algorithm that determines staticallyahhtolors are allocated to which
application in a multi-programmed workload. An agsshent of colors to the



applications in a workload dictates the placeménttbese applications’ data across
the DRAM banks. To this end, we must first buildest model. When we give fewer
colors to an application to minimize the numbebafks it has in common with other
applications, its interthread row buffer conflictey decrease but its intrathread row
buffer conflicts may increase. Therefore, we neethinimize both kinds of conflicts
for all applications simultaneously. In additioneweed to make sure that each
application has at least a certain number of bankerder to maintain its bank
parallelism. As a result, our algorithm will strit® minimize both kinds of conflicts
while not increasing bank conflicts, i.e., reducbank parallelism unnecessarily.

4.1 Cost Model

We use a row buffer miss rate curve (MRC) to edinthe intrathread row buffer
conflicts of an application. The MRC of an applioat which is obtained by
profiling, gives its row buffer miss rate as a ftion of the number of colors assigned
to it. The MRC of an application represents its dathfor the DRAM bank space. As
an example, Figure 5(a) plots the miss rate cuf¥ma3d.

We use a so-callesensitivity rate curvéSRC) to characterize the interthread row
buffer conflicts of an application, which is defithén terms of thepolitenessand
robustnessassociated with that application. The politenesaro&pplication shows to
what extent the application affects the row buffass rates of other applications. In
general, as the L2 cache miss rate of an applitatioreases, its politeness often
tends to worsen. So we use empirically the L2 cawlss rate of an application as its
politeness. The higher the L2 cache miss rate ofajpplication is, the less its
politeness is. The robustness of an applicatiowshio what extent the row buffer
miss rate of the application is affected by othgplizations. The robustness of an
application is represented as its row buffer mae when run together with its co-
runners. The SRC of an application allows us td fiis robustness as a function of
the (average) politeness of its co-runners treaeda whole. For example, let us
compute the SRC for fma3d for a workload consistiofy all SPECfp2000
benchmarks. We select five representative apicst vpr, mgrid, equake, fma3d
and swim, as a standard application group. Thelitepess values are ranked from
lowest to highest in that order. We run fma3d veitith of these applications as a co-
runner, obtain five row buffer miss rate and paoléss pairs, and finally, use these
five pairs to fit a quadratic polynomial curve t@btain t he SRC of fma3d, which
is plotted in Figure 5(b), to represent its robast Given the MRC and SRC of each
application, we can estimate the overall row bufféss rate for a multi-programmed
workload. Let there beM colors andN applications. The MRC and SRC of
applicationi are denoted by MR@nd SR respectively. Suppose applicatiogets
m colors withm; common colors with applicationin a bank partitioning. The L2
cache miss rate of applicatioms denoted bymr. We estimate th&®ow Buffer Miss
(RBM) rateof applicationi, denotedRBM, in this bank partitioning as follows:

RBM, = MRG(m)+ > (( SRG cyy- MRC MO jm ¥ 1)
JjO@N), j#i
® @)

(L




where @ represents the number of intrathread row misseapepficationi and @
represents the number of interthread row missepplicationi caused when it is run
together with all other applications. @, subtractingURG(M) (the row buffer miss
rate of application when it gets all banks) fro@RGcmr) (the row buffer miss rate

of applicationi when it getsm banks) gives the number of interthread row misses
introduced to applicationby applicatiorj, after it is scaled proportionally b;/m.
Presently, we model only the number of overlapmolgrs, between two applications
but do not differentiate exactly how their coloi®., data banks are laid out in
DRAM).

To minimize bank conflicts for an application, wisa use aBank Conflicting
Curve (BCC) to ensure that the number of colors an apptin gets does not drop
below a certain threshold. The BCC of an applicatigives its performance
(measured in terms of its IPC) as a function ofrthenber of colors assigned to it in
the close-page mode. Therefore, the BCC of an eaatpin represents the effect of
bank conflicts (without row buffer conflicts) on nfermance when its color count is
varied. We use the BCC of an application to fintbamk conflict turning point, a
threshold that represents the minimum number adrsaihat should be allocated to
the application to guarantee its bank parallelisigure 5(c) plots the BCC of fma3d
with its bank conflict turning point being 6 (assam32 colors).

4.2 Bank Partitioning Algorithm

Based on our cost model, we have developed a barikigning algorithm for a
multi-programmed workload consisting &f co-running applications by assigning
each application with some colors from a seMofolors available. Since the search
space consisting of all possible color assignménteuge, Figure 6 gives a hill-
climbing searching algorithm, ColorMap, for findiagieasible solution.

Hill-climbing has a shortcoming of getting stucksiy at a local optimum. We
alleviate this problem by populatin@andidate_Setvith all possible candidates =
(my, ..., M) such that it$-th elementm, represents the number of colors assigned
to application, which ranges from the bank conflict turning paiinten by itsBCCto
M (line 23). We make use of the following notatiorrépresent the overall row buffer
miss rate for all applications for the current eatount assignment specified in B
vectorC:

RBM(C)= >* RBM 2
1<ksN
Note again that our cost model is simple sincgribres the actual colors assigned to
a particular application.

The while loop inColorMap processes all candidates @andidate_Setone at a
time. Given acandidate which initially indicatesonly the number of colors assigned
to each application (lines 2 and Bjnd_Local_Optimumaims to find an assignment
of actual colors to each application. In additian, application may get more colors
than initially indicated incandidateif doing so will improve overall row buffer
locality. This is achieved by a hill-climbing prese Initially, every application is
initialized with some colorto start with (line 4) ThenFind_Local_Optimunthooses
an application, selects a new color and assigrie ithe application in each hill



climbing step (lines 6 — 16). Of all possible clegianade in each hill climbing step,
the one that minimizes the overall row buffer mite of the entire workload is taken
(lines 11 -- 13). So the steepest ascent diredgsoalways preferred. If this is not
possible (lines 14 and 15), we check to see if axelat least allocated the minimum
number of colors to each application as initiatydicated incandidate(line 17). If
this is the case, we are done. Otherwise, we assigaw color randomly to each
application whose number of assigned colors isletlk than its minimum specified
in candidate(lines 18 and 19). This enables the hill-climbjpigcess to be started
again. FinallySave Best Color_Layotgveals the best solution found.

| Find Local Optimum (candidate)

2 Let ColorCount = candidate = (my, ==+ , m.);

3 LetColorSet=({}. " . {});

4 Initially, assign some colors to all applications such that (1) [ColorSet] < my
and (2) ColorSet; and ColorSet; are mutually disjoint:

5 while (there exists an application, i, such that ColorSet] <m;) do

6 while (true)

for (every pair of application i and color j such that !(j € ColorSet;) ) do

8 ColorSet(i.j) = ColorSet; Add j to ColorSet(i,j);
9 ColorCount(i,j) = ColorCount; ColorCount(i,j)++;
10 endfor

1 Let ColorCount({x,y) such that RBM(ColorCount(x.y) is the smallest;
12 if (RBM(ColorCount(x,y)) < RMB(ColorCount))

13 ColorSet = ColorSet(x.y); ColorCount = ColorCount{x.y):
14 else
15 break;

16 endwhile
17 for (every application i such that [ColorSet] <m;) do

18 Assign a new color ¢ randomly to ColorSet; ;
19 ColorCount++;
20 endfor

21 endwhile

22 ColorMap () {

23 Candidate Set=4{ (m,,**, m,) | BCC_MIN;, =m=M }

24 while (there 1s an unprocessed candidate m Candidate_Set) do
25 Find Local Optimum(candidate)

26 Save_Best Color_Layout ()

27 endwhile

Fig. 6. A DRAM bank partitioning algorithm

5 Evaluation Methodology

We evaluate our work using the cycle-accurate x86sf/stem CMP simulator FeS2
[13], which is based on the Simics virtual macHib&]. The page coloring algorithm
is implemented on Linux 2.6.26. The memory systermbdeled using DRAMsim-
v1.2 simulator [17]. Table 1(a) shows the majorcessor and DRAM parameters. By
default, the row buffer is one page of the size 4KBe use all 14 SPECfp2000
benchmarks for evaluation. Each benchmark is cadpilsing gcc-4.1.2 with “-0O3”
optimizations and run for 100 million instructions.



6 Experimental Results

We use the three acronyn8C, CXand XC, to represent three address mapping
schemes listed in Table 1(b). We start by applyiage coloring to vary the color
count of an application and evaluate their row dufhiss rates and L2 cache miss
rates with a single core to see which scheme caesbiine best with page-coloring-
based DRAM bank partitioning. (Schem¥X” cancels out each other’s partitioning
effect and is thus omitted.) Then we evaluate oamnkbpartitioning mechanism
“XC+Page Coloring” and our partitioning algorithmitiv a large number of
benchmark combinations running on two- and foue@ystems.

Table 1. Experiment parameters

Processor Pipeline | 3GHz, 80 entries instruction window, 4 issues
32K per core, 8 ways, 648 block,

L1 Caches write through, lcycle latency
Private L2 Caches,1M per core, 8 ways,
L2 Caches 648 block, write back, 8/9 cycle latency
Page and Mem 4K B page size, 4G memory
Size

FR-FCFS scheduler, 32 entries request buffer,
DRAM Controller | open-page mode
Micron DDR2-667MHz [22], 16/32 banks,
4K B row buffer per bank,

DRAM Row access to column access (15 ns),
Configuration Column access( 15ns), precharge (15ns), burst (10 ns)
Row buffer hit time (40 ns), row buffer closed (60 ns)
Row buffer conflict (80 ns)
(a) Processor and memory parameters

CC — Conventional cache mapping + Conventional address mapping
CX — Conventional cache mapping + XOR address mapping
XC — XOR cache mapping + Conventional address mapping

(b) Three address mapping schemes

6.1 CC,CX or XC + Page Coloring on Single Cores

We evaluateCC, CX and XC when each combined with page coloring for a 16kban
DRAM for running a benchmark on one core. Sincerthwe buffer is one 4KB page
(Table 1(a)), there are 16 colors. Figure 7 andifeéi® compare their row buffer and
L2 cache miss rates as the number of colors thenahmark gets changes. In Figure
7, we see thaCX exhibits lower row buffer miss rates thaC in most of the
benchmarks. But the gaps between the two becombesraa the number of colors
assigned to a benchmark increases. This is be€Xisksables the bank partitioning
effect of page coloring buXC keeps it. When given the same number of colois,
can use more banks th&C does by reshuffling (evenly or randomly) the cetbr
pages allocated to a benchmark to all the bankadtlition, we can also see thé&t
has lower row buffer miss rates th@@ for most of the benchmarks, becasgcan
break the address mapping symmetry®Gtcannot. As can be observed in Figure 8,
CX exhibits significantly higher L2 cache misses thé@ for several benchmarks,
such as art, ammp, galgel and mgrid. This is becX@ can eliminate the cache
partitioning effect of page coloring bGX cannot, implying thaXC can ultilize more
cache space thadX. When an application gets all 16 colors, .i.d. @ banksCX



and XC have nearly the same row buffer miss rate and d¢he miss rate, a result
also confirmed earlier in [1]. S¥C and page coloring represent a good combination
for DRAM bank partitioning.
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6.2 XC + Page Coloring on Multiple Cores

6.2.1 Two Cores

We evaluate the effectiveness of our software-hardwooperative bank partitioning
mechanism and our partitioning algorithm in impraythe overall row buffer locality,
L2 cache hit rate and overall system performancenwiinning a pair of applications
on a two-core system. Recall that the row buffex #KB page, resulting in a total of
16 colors in total. One color controls the placehwrone page in a DRAM bank. We
first consider a 16-bank DRAM and then move to @88k DRAM.

We consider all 105 pair-wise benchmark combinatiand present our results in
Figure 9. For all these pairs, the speedups, réggrdvhether they are positive or
negative, correlate well to their row buffer misdes, indicating the significance of
row buffer locality optimization techniques on bting overall program performance.
The speedup values for a total of 105*2=210 benckragecutions are divided into
the following six intervals:

Speedup | 5% | 1%~5% | 0%~1% | -1%~0% | -5%~—1% | <-5%
Total 30 58 61 46 15 0
Looking at the number of benchmarks falling int®,(<-5%) and (>5%, =), we
find that the benchmarks with the largest speedigrsficantly outnumber those with
the worst slowdowns. Some small performance detjmadaare observed in some
benchmarks because their row buffer and/or L2 canlss rates are made slightly
worse by “XC+Page Coloring”. Our cost model carchele when estimating the row
buffer conflicts for an application when it is rdogether with its co-runners. For

example, when th&RCof an application over-approximates its intertdreanflicts
with other applications, our partitioning algorithwill usually not allocate enough
banks to the application, causing its intrathreadflcts to increase. The L2 cache
miss rates for some applications are often diffitlestimate statically. In Figure 9,
the benchmarks with decreased and increased L2 cani$ses are nearly equally
divided (with a ratio 117:92). In addition, the lbmark executions with
performance slowdowns of <-1% when their L2 cachgsmates are increased to >
1% total only 7 among all 210 benchmark executidiiss seems to suggest that the
impact of L2 cache misses on performance is lessqunced than that of row buffer
misses.




We have also evaluated the same 105 pairwise wamtkldor a 32-bank DRAM
and plot the results similarly in Figure 10, whidisplays similar trends as Figure 9
for the same performance metrics evaluated.Figure 10, the 210 benchmark
executions again fall into the following six intats according to their speedups:
Speedup | >3% | 1%~5% | 0%~1% | -1%~0% | -5%~1% | <-5%

Total 31 |65 55 27 30 2
In comparison with the table for 16 banks, there mmore benchmarks falling into
(1%~5%) U (-5%~-1%) but fewer into (0%~1%)) (-1~0%). When there are
many colors (32 rather than 16 banks), our paniitig algorithm has produced fewer
pairs that share equally the 32 banks. There ishenaeason for the existence of
more benchmarks in (-5%~-1%) with 32 banks. The SRf@ctions of some
applications may happen to be less accurate whea banks are available. The two
benchmarks with the largest performance slowdowesewcaused by this reason.
Better performance results are expected when meorirate cost modes and
partitioning algorithms are used.
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As for L2 cache misses, their increases or decseaaa now impact more on
program performance when the corresponding rowebuffiss rates do not change
much, as shown in Figure 10. As in the 16-bank,cleebenchmarks with increased
and decreased L2 cache misses are nearly evendiedigwith a ratio of 98:112). The
number of benchmark executions with negative speedi <-1% when their L2
cache miss rates are > 1% is 17 for all 210 bendhmmeecutions. Overall, although
some more benchmarks have suffered performancedsleoms, but their negative
speedups are small, particularly when compared thvittpositive speedup cases.



6.2.2 Four Cores

A total of 10 benchmark combinations are simulatéith and without DRAM bank
partitioning. Their partitioning strategies aretdid in Table 2. The performance
results are plotted in Figure 11. The negativeatsfef increased L2 cache miss rates
on performance in some benchmarks are offset by bimeefits obtained from
significant row buffer miss rate reductions. Foe ttD groups used, the speedups of
up to 8.22% are observed and the average speethgsdbese groups is 2.89%.

Table 2. benchmark combinations on four cores

Benchmark Groups Color mask bits
Mix1 lucas, applu, facerec, mgrid Oxdffff83f: Ox&@01c: 0x20000100: 0x1070fee3
Mix2 lucas, art, ammp, facerec 0xefff877f: 0x4007ff00: Oxffffffff. 0x10000080
Mix3 ammp, galgel, equake, swim Oxffffffff: Oxef811ff0: Oxb1fee0Of: Oxffffffff
Mix4 applu, facerec, mgrid, wupwise 0x8e800f4f: 0R01000: 0x317fe0b0: Oxbfff2fff
Mix5 applu, fma3d, galgel, equake 0xalfe0000: 006£Bc: 0xb1ffo0c3: 0x5801f3ff
Mix6 applu, facerec, fma3d, sixtrack 0xa9c06780t@00040: 0xbe7ff83f; 0x11belfbf
Mix7 facerec, galgel, equake, sixtrac 0x80000@B907f07: 0x786f80bf: O0x17f87fb8
Mix8 lucas, ammp, facerec, mesa 0Oxcffofe7f: Oxfffff0x20020000: 0x10040180
Mix9 facerec, equake, mgrid, sixtracK 0x8000040GffBO07f: 0x20078380: 0x3e0ffbf0
Mix10 applu, mgrid, mesa, sixtrack 0x8e30030f: fet30: 0x200010c0: 0x31f01fff
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Fig. 11. Results of 10 selected workloads on 4 cores (32d)ank

6.2.3 One-Half Page Row Buffer

We have repeated all our two- and four-core sinuat for a 32-bank DRAM
when the row buffer size is one-half page. In tdse, one color determines the place
of one physical page across two consecutive DRANkba

For the two-core case, the speedup distributions loa observed from the
following table:

Speedup | >5% | 19%~5% | 0%~1% | -1%~0% | -5%~1% | <-5%
Total 36 69 36 38 26 4
These statistics are similar to those producedaf@2-bank DRAM when the row
buffer is one page. For the four-core case, we bawalated the same 10 mixes listed
in Table 2. The speedups of up to 9.7% are obsaxddhe average speedup across




all the benchmarks is 2.4%. These results demdestteat the proposed bank
partitioning scheme appears to work well for diéier row buffer sizes (relative to a
fixed page size in a system).

7 Reated Work

None of prior work about DRAM access optimizatiaeensider to reduce row
buffer conflicts for Chip Multiprocessor via softmea To our knowledge, this paper is
the first to propose a software-hardware cooperal®RAM bank partitioning
mechanism for reducing interthread and intrathreadbuffer conflicts.

Rixner et al. [3] examine various DRAM access diiag policies and propose
the FR-FCFS policies. Hur and Lin [18] introduceaptive history-based scheduling
policies to minimize the average DRAM access dalag to balance the ratio
between reads and writes from the processor. Shddaan [19] describe a burst
access scheduling mechanism to maximize the datatilization by read preemption
and write piggybacking. Lee et al. [20] suggesuse a prefetching-aware DRAM
controller to adaptively prioritize between conventl demand and prefetching
operations. Zhang et al. [1] expose an importantce of row buffer conflicts in
single cores and propose a bitwise XOR address imgmtheme to reduce these
conflict significantly. These research efforts fecan the problems for single cores
but some of the principles proposed such as FR-F&R8duling policies and XOR
address mapping are also useful for multi- cores.

For a multi-core system, DRAM becomes a majoreghaesource. The memory
controller needs to optimize memory performancedysidering a variety of factors
simultaneously such as row buffer competition, dates competition, memory
efficiency, the fairness and QoS, but its only nse&nto control the priorities of the
accesses from each thread. So the memory contr@kds to weight these factors.
Nesbit et al. [9] use a network-fairing-queue basetieduler to provide thread
fairness and QoS and a First-Ready Virtual FinigheTFirst policy (FR-VFTF) to
balance row buffer utilization and fairness. Raéicet al. [10] use virtual start time
fair queuing instead of virtual finish time and irope fairness based on Nesbit's
work. Mutlu and Moscibroda [11] show the stall tirmé a thread is a more direct
indicator of fairness and propose a stall time $alieduler. These research efforts are
mainly concerned with balancing row buffer competitand thread fairness. Zheng
et al. [7] considers a scheduler that combines fwetors about memory efficiency
and the pending request number of each requestpmve system throughput. Mutlu
and Moscibroda [8] introduce parallelism-aware batcheduling to provide a
substrate for bank parallelism, row buffer utilipat fairness and QoS, and their work
cleverly adjust the degree of inclining to any faoctia controlling the size of a batch.
Due to the complexity of considering so many pemfance factors, ipek et al. [12]
suggest to add a reinforcement learning mecharsssn@RAM access scheduler. In
comparison with the prior work, our work is thesfito reduce interthread row buffer
conflicts via DRAM partitioning through software+idavare cooperation. It represents
an orthogonal means to improving row buffer logalfior multi-programmed
workloads. As a result, our mechanism may enharistirgg techniques by enabling
them to focus on optimizing other factors.



8 Conclusion

In order to reduce DRAM row buffer conflicts for ttitcore systems, we present a
software-hardware cooperative scheme to realizeatic DRAM bank partitioning.
We apply page coloring to map different applicagiom different partitioned physical
spaces and propose to use a bitwise XOR cache ntappheme together with page
coloring to reduce both intrathread row buffer diotg and last-level cache misses. In
order to determine a DRAM bank partitioning strgtege discuss how to build a cost
model and develop a heuristics-based algorithmp#otitioning the DRAM banks
among the applications in a multi-programmed waakllo Our simulations
demonstrate that DRAM bank partitioning can siguifitly reduce DRAM row buffer
miss rates and achieve speedups for two- and fanersystems. In the future, we plan
to study how to tackle the DRAM bank partitioningdashared cache partitioning
simultaneously.
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