
Software-Hardware Cooperative DRAM Bank
Partitioning for Chip Multiprocessors

Wei Mi1,2, Xiaobing Feng1, Jingling Xue3, Yaocang Jia1,2,

1 Key Laboratory of Computer System and Architecture. Institution of Computing Technology
2Graduate University of Chinese Academy of Sciences

3School of Computer Science and Engineering. University of New South Wales
1{miwei, fxb, jiayaocang}@ict.ac.cn, 3jingling@cse.unsw.edu.au

Abstract. DRAM row buffer conflicts can increase the memory access latency
significantly for single-threaded applications. In a chip multiprocessor system,
multiple applications competing for DRAM will suffer additional row buffer
conflicts due to interthread interference. This paper presents a new hardware and
software cooperative DRAM bank partitioning method that combines page coloring
and XOR cache mapping to evaluate the benefit potential of reducing interthread
interference. Using SPECfp2000 as our benchmarks, our simulation results show
that our scheme can boost the performance of the most benchmark combinations
tested, with the speedups of up to 13%, 14% and 8.06% observed for two cores
(with 16 banks), two cores (with 32 banks) and four cores (with 32 banks).

Keywords: Row Buffer Locality, Cache Locality, Address Mapping.

1 Introduction

The DRAM memory system is a critical shared resource among multiple cores in a
chip multiprocessor system. In a multi-programmed workload, multiple applications
(i.e., threads) competing for DRAM will impede each other’s progress due to
interthread interference. Accesses from one thread can cause row buffer conflicts,
bank conflicts and data/address bus conflicts to accesses from other threads.
Therefore, uncontrolled interthread interference can significantly degrade overall
system performance.

DRAM row buffer conflicts, i.e. row misses occur when a sequence of DRAM
accesses to different rows go to the same DRAM bank, causing much higher access
latency than row hits. For a single-core system, some bitwise XOR address mapping
schemes [1][2] and memory scheduling policies like FR_FCFS (First Ready First-
Come-First-Serve) [3] can be employed by the memory controller to reduce row
buffer conflicts. In addition, bitwise XOR cache mapping schemes [4][5] can also be
incorporated into the last-level cache to reduce both row buffer conflicts and last-level
cache misses [1].

For a multi-core system, existing techniques for reducing row buffer conflicts
appear to be all hardware-based, focusing mostly on improving memory scheduling

Supported by the National Basic Research 973 Program of China under Grant No.2005CB321602, and the
National Natural Science Foundation of China under Grant No.60736012.

policies [6][7][8][9][10][11][12]. By leveraging the solutions for single cores
[1][2][3], these hardware-based schemes attempt to optimize a multitude of objectives,
including row buffer utilization, memory efficiency, DRAM throughput, fairness and
QoS. But they suffer from a limited scope (when done purely in hardware) and are
constrained by the conflicting nature of multiple objectives. In addition, the row
latency reduction techniques through improving row hit rates become less effective
due to the increased bank contention [6].

In this paper, we address the problem of reducing intrathread and interthread row
buffer conflicts for running multi-programmed workloads on multi-core systems that
keep the last-level cache private to each core (e.g., AMD Athlon). We introduce for
the first time a static software-hardware cooperative DRAM bank partitioning scheme
to reduce both kinds of conflicts, thereby improving overall system performance. By
partitioning the DRAM banks among the applications, interthread interference is
reduced or controlled in a more deterministic manner. This allows potentially existing
techniques [6][7][8][9][10][11][12] to be applied more effectively. We have
evaluated our scheme using the SPECfp2000 benchmarks on two- and four-core
systems by using the cycle-accurate x86 full system CMP simulator FeS2 [13]
(Section 5). Our preliminary results show that our scheme can boost the performance
of the most benchmark combinations experimented with, with the speedups of up to
13%, 14% and 8.06% observed for two cores (with 16 banks), two cores (with 32
banks) and four cores (with 32 banks). respectively.

2 Background and Motivation

An SDRAM system consists of multiple banks that can be accessed in parallel. Each
DRAM bank is a DRAM cell array organized in rows and columns. Each bank
contains a row buffer used to cache the data in the most recently accessed row. The
row buffer size is usually 2/4KB (i.e., one-half page/one page). The latency of a
memory access can vary greatly depending on whether the access is a row (buffer) hit
or miss. Normally, a DRAM access for a bank is realized in three stages, precharge,
row access and column access [14]. There are two modes for DRAM accesses: open-
page and close-page. In the open-page mode, if the next access to the same bank goes
to the same row (a row hit), only column access is necessary. If the next access is a
row miss (row buffer conflict), however, the precharge does not start until after the
request has arrived. The close-page mode allows the precharge to start immediately
after the current access.

Like the prior work on improving row buffer locality, this work can be beneficially
applied when the open-page mode is used. In this case, when an access is a row hit,
the data required is already cached in the row buffer. The data can be directly
operated on in the row buffer without the precharge and row access operations,
reducing the DRAM access time by half or more compared to when an access is a row
miss [8][12][14].

For a single-core system, a conventional address mapping scheme allocates
consecutive data blocks to consecutive memory banks using a modular mapping
function, i.e., memory interleaving. Zhang et al. [1] found that the resulting address
mapping symmetry between the last-level L2 cache and DRAM is a significant source

of row buffer conflicts. Such symmetry refers to the fact that the bank index bits are
usually part of the L2 cache set index bits. As a result, L2 cache conflicts or
writebacks usually lead to row buffer conflicts. They proposed to use an XOR
address mapping scheme implemented in the memory controller to break the address
mapping symmetry. By XORing the bank index bits and a portion of cache set index
bits, as shown in Figure 1(a), the data blocks are permuted (or distributed evenly)
across the memory banks. Without the XOR address mapping, the read RD and the L2
cache writeback WB caused by RD, as shown in Figure 1(b), will result in a row miss
because they have the same L2 cache set index. In addition to address mapping,
memory scheduling policies [3][6][7][8][9][10][11] are also effective in reducing row
buffer conflicts by prioritizing row hit accesses over others. Furthermore, the XOR
cache mapping schemes [4][5] can also reduce simultaneously both row buffer
conflicts and the last-level cache misses [1].

This work is the first to apply page coloring in combination with a bitwise XOR
cache mapping scheme to manage DRAM bank partitioning to reduce both intrathread
and interthread row buffer conflicts while not increasing bank conflicts unduly. Our
software-hardware cooperative scheme can improve row buffer locality effectively for
a multi-programmed workload and may potentially enable existing techniques
[7][8][9][10][11][12] to better optimize other objectives such as fairness and QoS in
future.

Cache tag Cache set index Block offset

Row index Bank index Column index

New Bank index Column index

XOR

Row index

(a) Conventional and XOR address mapping

Convention address
mapping

XOR address
mapping

1 2 3 41 2 3 4

RD WB: L2 cache writeback
caused by RD

DRAM banks

conventional address mapping XOR address mapping
Memory
controller

Row Buffer
Conflict !

Conflict
Removed !

(b) Conventional address mapping (c) XOR address mapping

RD WB

Fig. 1. Memory controller address mapping

3 DRAM Bank Partitioning

Our proposed approach is to use page coloring to map the DRAM accesses from
different applications to different banks (if possible) in order to reduce interthread
row buffer conflicts. Simultaneously, we also apply a bitwise XOR cache mapping
scheme at the last-level, i.e., L2 cache to reduce intrathread row buffer conflicts and
cache misses.

3.1 Page-Coloring-based Bank Partitioning

We use the classic OS page-coloring [15] to partition the DRAM banks for a multi-
programmed workload. In the OS page coloring, all physical pages are divided into
groups with all pages in the same group being labeled a distinct color. When a new
physical page is requested by an application, the OS will allocate a page whose color

is in the set of colors assigned to the application. If an application has no colors in
common with other applications, and in addition, if different colored pages are
mapped to different DRAM banks, then there are no row buffer conflicts among the
accesses from different applications. As a result, all interthread row buffer conflicts
are avoided. For two applications that share some pages and thus some banks, their
interthread row buffer conflicts can be reduced if the number of their shared pages,
i.e., banks can be reduced. Figure 2 illustrates the page-coloring-induced bank
partitioning for a 16-bank DRAM. The number of colors available is determined by
the number of the bank index bits that are not part of the page offset.

B ank indexR o w ind ex C olu m n index

Page o ffse tPage in dex

Page co loring b its

2K B R ow B uffer

Pag e co loring b its

B ank in dexR o w ind ex C olu m n index

Page o ffse tPage in dex

31 -------------------------- 16 15 --------------- 12 11 ---------------------------- 0

31 -------------------------- 16 15 --------------- 12 11 ---------------------------- 0

31 ------------------------------ 15 14 ----------- 12 11 ---------------------------- 0

31 ------------------------------ 15 14 --------------- 11 10 ----------------------- 0

4K B R o w B uffer

(a) 4K B row bu ffer

(b) 2K B row b uffe r

Application 1 occupies pages
of colors 1 and 2

Application 2 occupies pages
of colors 3 and 4

Conventional address
mapping

XOR address
mapping

DRAM banks

(a) valid partitioning (b) invalid partitioning
Fig. 2. Page coloring for partitioning Fig. 3. Conventional and XOR address mapping
a 16-bank memory

3.2 Bitwise XOR L2 Cache Mapping

Once the banks are partitioned across the applications, interthread row buffer conflicts
are reduced. How do we also reduce intrathread row buffer conflicts? How do we also
improve cache utilization since the last-level cache is also partitioned unexpected by
page coloring? Figure 3 illustrates why conventional and XOR address mapping
schemes implemented in the memory controller are not helpful in reducing intrathread
row buffer conflicts in the presence of page coloring. As shown in Figure 3(a), the
conventional address mapping allocates consecutive data blocks to consecutive
DRAM banks so that different colored pages are mapped to different DRAM banks.
Its main advantage is that the static bank partitioning results obtained by page
coloring are preserved but its main drawback is that the address mapping symmetry
problem discovered in [1] is prevalent. On the other hand, as shown in Figure 3(b),
the XOR address mapping scheme [1] suffers from the opposite problem: it can break
the address mapping symmetry and thus reduce row buffer conflicts significantly, but
it reshuffles colored pages to banks and thus disables the partitioning effect done by
page coloring.

Cache tag Cache set index Block offset

Row index Bank index Column index

XOR

Cache tag New cache set index Block offset
Fig. 4. Bitwise XOR cache mapping

What we want is a solution that breaks the address mapping symmetry while also

preserving the static bank partitioning results achieved by page coloring. When we
partition DRAM via page coloring, the private last-level L2 cache in each core is also
partitioned at the same time. In this paper, we propose to use a bitwise XOR cache
mapping scheme to redistribute the cache accesses from otherwise the restricted part
of the L2 cache to the whole cache so as to remove the cache partitioning effect. As
studied earlier [1], the XOR cache mapping is capable of not only reducing cache
misses but also breaking the address mapping symmetry (as effectively as the XOR
address mapping in the memory controller, in general).

Figure 4 illustrates the XOR cache mapping scheme used together with page
coloring. Some bits of the cache set index and an equal number of lower-order bits in
the cache tag are XORed to produce a new cache set index. In addition, the bits thus
modified in the cache set index correspond exactly to the bits of the DRAM bank
index. In Figure 1, the read RD and the L2 cache writeback WB caused by RD are
necessarily mapped to the same bank without the XOR address mapping in the
memory controller because their bank indexes are part of their L2 cache set indexes,
which happen to be identical. In Figure 4, RD and WB should have the same new
cache set index because WB is caused by RD. Therefore, RD and WB must have
different cache set indexes and thus different bank indexes before the XOR cache
mapping operation is applied. This means that RD and WB are mapped to different
banks, giving rise to no row buffer conflict. Therefore, we can use the XOR cache
mapping at the last-level cache together with the conventional address mapping in the
memory controller to substitute for the XOR address mapping employed in the
memory controller [1]. This solution has no impact on the mapping of colored pages
to the DRAM banks achieved by page coloring.

The XOR cache mapping requires several XOR operations to obtain a new L2
cache index. Since all the XOR operations can be done in parallel, the extra delay
incurred is one XOR gate. Depending on implementations, the XOR gate may or may
not be on the critical path [4][5].

Fig. 5. MRC, SRC and BCC of fma3d for a 32-bank DRAM (with 32 page colors
when its row buffer is one page)

4 Cost Model and Partitioning Algorithm

We give an algorithm that determines statically which colors are allocated to which
application in a multi-programmed workload. An assignment of colors to the

applications in a workload dictates the placement of these applications’ data across
the DRAM banks. To this end, we must first build a cost model. When we give fewer
colors to an application to minimize the number of banks it has in common with other
applications, its interthread row buffer conflicts may decrease but its intrathread row
buffer conflicts may increase. Therefore, we need to minimize both kinds of conflicts
for all applications simultaneously. In addition, we need to make sure that each
application has at least a certain number of banks in order to maintain its bank
parallelism. As a result, our algorithm will strive to minimize both kinds of conflicts
while not increasing bank conflicts, i.e., reducing bank parallelism unnecessarily.

4.1 Cost Model

We use a row buffer miss rate curve (MRC) to estimate the intrathread row buffer
conflicts of an application. The MRC of an application, which is obtained by
profiling, gives its row buffer miss rate as a function of the number of colors assigned
to it. The MRC of an application represents its demand for the DRAM bank space. As
an example, Figure 5(a) plots the miss rate curve of fma3d.

We use a so-called sensitivity rate curve (SRC) to characterize the interthread row
buffer conflicts of an application, which is defined in terms of the politeness and
robustness associated with that application. The politeness of an application shows to
what extent the application affects the row buffer miss rates of other applications. In
general, as the L2 cache miss rate of an application increases, its politeness often
tends to worsen. So we use empirically the L2 cache miss rate of an application as its
politeness. The higher the L2 cache miss rate of an application is, the less its
politeness is. The robustness of an application shows to what extent the row buffer
miss rate of the application is affected by other applications. The robustness of an
application is represented as its row buffer miss rate when run together with its co-
runners. The SRC of an application allows us to find its robustness as a function of
the (average) politeness of its co-runners treated as a whole. For example, let us
compute the SRC for fma3d for a workload consisting of all SPECfp2000
benchmarks. We select five representative applications, vpr, mgrid, equake, fma3d
and swim, as a standard application group. Their politeness values are ranked from
lowest to highest in that order. We run fma3d with each of these applications as a co-
runner, obtain five row buffer miss rate and politeness pairs, and finally, use these
five pairs to fit a quadratic polynomial curve to obtain t he SRC of fma3d, which
is plotted in Figure 5(b), to represent its robustness. Given the MRC and SRC of each
application, we can estimate the overall row buffer miss rate for a multi-programmed
workload. Let there be M colors and N applications. The MRC and SRC of
application i are denoted by MRCi and SRCi, respectively. Suppose application i gets
mi colors with mij common colors with application j in a bank partitioning. The L2
cache miss rate of application i is denoted by cmri. We estimate the Row Buffer Miss
(RBM) rate of application i, denoted RBMi, in this bank partitioning as follows:

(1,),

() ((() ()) /)i i i i j i ij i
j N j i

RBM MRC m SRC cmr MRC M m m
∈ ≠

= + − ∗∑

① ②

(1)

where ① represents the number of intrathread row misses of application i and ②
represents the number of interthread row misses of application i caused when it is run
together with all other applications. In ②, subtracting MRCi(M) (the row buffer miss
rate of application i when it gets all banks) from SRCi(cmrj) (the row buffer miss rate
of application i when it gets mi banks) gives the number of interthread row misses
introduced to application i by application j, after it is scaled proportionally by mij/mi.
Presently, we model only the number of overlapping colors, between two applications
but do not differentiate exactly how their colors, i.e., data banks are laid out in
DRAM).

To minimize bank conflicts for an application, we also use a Bank Conflicting
Curve (BCC) to ensure that the number of colors an application gets does not drop
below a certain threshold. The BCC of an application gives its performance
(measured in terms of its IPC) as a function of the number of colors assigned to it in
the close-page mode. Therefore, the BCC of an application represents the effect of
bank conflicts (without row buffer conflicts) on performance when its color count is
varied. We use the BCC of an application to find a bank conflict turning point, a
threshold that represents the minimum number of colors that should be allocated to
the application to guarantee its bank parallelism. Figure 5(c) plots the BCC of fma3d
with its bank conflict turning point being 6 (assuming 32 colors).

4.2 Bank Partitioning Algorithm

Based on our cost model, we have developed a bank partitioning algorithm for a
multi-programmed workload consisting of N co-running applications by assigning
each application with some colors from a set of M colors available. Since the search
space consisting of all possible color assignments is huge, Figure 6 gives a hill-
climbing searching algorithm, ColorMap, for finding a feasible solution.

Hill-climbing has a shortcoming of getting stuck easily at a local optimum. We
alleviate this problem by populating Candidate_Set with all possible candidates C =
(m1, … , mN) such that its i-th element, mi, represents the number of colors assigned
to application i, which ranges from the bank conflict turning point given by its BCC to
M (line 23). We make use of the following notation to represent the overall row buffer
miss rate for all applications for the current color count assignment specified in an N-
vector C:

1

() k
k N

RBM C RBM
≤ ≤

= ∑
 (2)

Note again that our cost model is simple since it ignores the actual colors assigned to
a particular application.

The while loop in ColorMap processes all candidates in Candidate_Set, one at a
time. Given a candidate, which initially indicates only the number of colors assigned
to each application (lines 2 and 3), Find_Local_Optimum aims to find an assignment
of actual colors to each application. In addition, an application may get more colors
than initially indicated in candidate if doing so will improve overall row buffer
locality. This is achieved by a hill-climbing process. Initially, every application is
initialized with some colors to start with (line 4). Then Find_Local_Optimum chooses
an application, selects a new color and assigns it to the application in each hill

climbing step (lines 6 – 16). Of all possible choices made in each hill climbing step,
the one that minimizes the overall row buffer miss rate of the entire workload is taken
(lines 11 -- 13). So the steepest ascent direction is always preferred. If this is not
possible (lines 14 and 15), we check to see if we have at least allocated the minimum
number of colors to each application as initially indicated in candidate (line 17). If
this is the case, we are done. Otherwise, we assign a new color randomly to each
application whose number of assigned colors is still less than its minimum specified
in candidate (lines 18 and 19). This enables the hill-climbing process to be started
again. Finally, Save_Best_Color_Layout reveals the best solution found.

Fig. 6. A DRAM bank partitioning algorithm

5 Evaluation Methodology

We evaluate our work using the cycle-accurate x86 full system CMP simulator FeS2
[13], which is based on the Simics virtual machine [16]. The page coloring algorithm
is implemented on Linux 2.6.26. The memory system is modeled using DRAMsim-
v1.2 simulator [17]. Table 1(a) shows the major processor and DRAM parameters. By
default, the row buffer is one page of the size 4KB. We use all 14 SPECfp2000
benchmarks for evaluation. Each benchmark is compiled using gcc-4.1.2 with “-O3”
optimizations and run for 100 million instructions.

6 Experimental Results

We use the three acronyms, CC, CX and XC, to represent three address mapping
schemes listed in Table 1(b). We start by applying page coloring to vary the color
count of an application and evaluate their row buffer miss rates and L2 cache miss
rates with a single core to see which scheme combines the best with page-coloring-
based DRAM bank partitioning. (Scheme “XX” cancels out each other’s partitioning
effect and is thus omitted.) Then we evaluate our bank partitioning mechanism
“XC+Page Coloring” and our partitioning algorithm with a large number of
benchmark combinations running on two- and four-core systems.

Table 1. Experiment parameters

6.1 CC, CX or XC + Page Coloring on Single Cores

We evaluate CC, CX and XC when each combined with page coloring for a 16-bank
DRAM for running a benchmark on one core. Since the row buffer is one 4KB page
(Table 1(a)), there are 16 colors. Figure 7 and Figure 8 compare their row buffer and
L2 cache miss rates as the number of colors that a benchmark gets changes. In Figure
7, we see that CX exhibits lower row buffer miss rates than XC in most of the
benchmarks. But the gaps between the two become smaller as the number of colors
assigned to a benchmark increases. This is because CX disables the bank partitioning
effect of page coloring but XC keeps it. When given the same number of colors, CX
can use more banks than XC does by reshuffling (evenly or randomly) the colored
pages allocated to a benchmark to all the banks. In addition, we can also see that XC
has lower row buffer miss rates than CC for most of the benchmarks, because XC can
break the address mapping symmetry but CC cannot. As can be observed in Figure 8,
CX exhibits significantly higher L2 cache misses than XC for several benchmarks,
such as art, ammp, galgel and mgrid. This is because XC can eliminate the cache
partitioning effect of page coloring but CX cannot, implying that XC can ultilize more
cache space than CX. When an application gets all 16 colors, .i.e., all the banks, CX

and XC have nearly the same row buffer miss rate and L2 cache miss rate, a result
also confirmed earlier in [1]. So XC and page coloring represent a good combination
for DRAM bank partitioning.

Fig. 7. Row buffer miss rates of CX and XC Fig. 8. L2 cache miss rates of CX and XC

6.2 XC + Page Coloring on Multiple Cores

6.2.1 Two Cores

We evaluate the effectiveness of our software-hardware cooperative bank partitioning
mechanism and our partitioning algorithm in improving the overall row buffer locality,
L2 cache hit rate and overall system performance when running a pair of applications
on a two-core system. Recall that the row buffer is a 4KB page, resulting in a total of
16 colors in total. One color controls the placement of one page in a DRAM bank. We
first consider a 16-bank DRAM and then move to a 32-bank DRAM.

We consider all 105 pair-wise benchmark combinations and present our results in
Figure 9. For all these pairs, the speedups, regardless whether they are positive or
negative, correlate well to their row buffer miss rates, indicating the significance of
row buffer locality optimization techniques on boosting overall program performance.
The speedup values for a total of 105*2=210 benchmark executions are divided into
the following six intervals:

Looking at the number of benchmarks falling into (-∞, <-5%) and (>5%, +∞), we

find that the benchmarks with the largest speedups significantly outnumber those with
the worst slowdowns. Some small performance degradations are observed in some
benchmarks because their row buffer and/or L2 cache miss rates are made slightly
worse by “XC+Page Coloring”. Our cost model can be crude when estimating the row
buffer conflicts for an application when it is run together with its co-runners. For
example, when the SRC of an application over-approximates its interthread conflicts
with other applications, our partitioning algorithm will usually not allocate enough
banks to the application, causing its intrathread conflicts to increase. The L2 cache
miss rates for some applications are often difficult to estimate statically. In Figure 9,
the benchmarks with decreased and increased L2 cache misses are nearly equally
divided (with a ratio 117:92). In addition, the benchmark executions with
performance slowdowns of <-1% when their L2 cache miss rates are increased to >
1% total only 7 among all 210 benchmark executions. This seems to suggest that the
impact of L2 cache misses on performance is less pronounced than that of row buffer
misses.

We have also evaluated the same 105 pairwise workloads for a 32-bank DRAM
and plot the results similarly in Figure 10, which displays similar trends as Figure 9
for the same performance metrics evaluated. In Figure 10, the 210 benchmark
executions again fall into the following six intervals according to their speedups:

In comparison with the table for 16 banks, there are more benchmarks falling into
(1%~5%) ∪ (-5%~-1%) but fewer into (0%~1%) ∪ (-1~0%). When there are
many colors (32 rather than 16 banks), our partitioning algorithm has produced fewer
pairs that share equally the 32 banks. There is another reason for the existence of
more benchmarks in (-5%~-1%) with 32 banks. The SRC functions of some
applications may happen to be less accurate when more banks are available. The two
benchmarks with the largest performance slowdowns were caused by this reason.
Better performance results are expected when more accurate cost modes and
partitioning algorithms are used.

Fig. 9. Results for 105 pairs of benchmarks Fig. 10. Results for 105 pairs of benchmarks
(16 banks) (32 banks)

As for L2 cache misses, their increases or decreases can now impact more on
program performance when the corresponding row buffer miss rates do not change
much, as shown in Figure 10. As in the 16-bank case, the benchmarks with increased
and decreased L2 cache misses are nearly evenly divided (with a ratio of 98:112). The
number of benchmark executions with negative speedups of <-1% when their L2
cache miss rates are > 1% is 17 for all 210 benchmark executions. Overall, although
some more benchmarks have suffered performance slowdowns, but their negative
speedups are small, particularly when compared with the positive speedup cases.

6.2.2 Four Cores

A total of 10 benchmark combinations are simulated with and without DRAM bank
partitioning. Their partitioning strategies are listed in Table 2. The performance
results are plotted in Figure 11. The negative effects of increased L2 cache miss rates
on performance in some benchmarks are offset by the benefits obtained from
significant row buffer miss rate reductions. For the 10 groups used, the speedups of
up to 8.22% are observed and the average speedup across these groups is 2.89%.

Table 2. benchmark combinations on four cores

 Benchmark Groups Color mask bits
Mix1 lucas, applu, facerec, mgrid 0xdffff83f: 0xcf89001c: 0x20000100: 0x1070fee3
Mix2 lucas, art, ammp, facerec 0xefff877f: 0x4007ff00: 0xffffffff: 0x10000080
Mix3 ammp, galgel, equake, swim 0xffffffff: 0xef811ff0: 0xb1fee00f: 0xffffffff
Mix4 applu, facerec, mgrid, wupwise 0x8e800f4f: 0x40001000: 0x317fe0b0: 0xbfff2fff
Mix5 applu, fma3d, galgel, equake 0xa1fe0000: 0x4e006f3c: 0xb1ff90c3: 0x5801f3ff
Mix6 applu, facerec, fma3d, sixtrack 0xa9c06780: 0x40000040: 0xbe7ff83f: 0x11be1fbf
Mix7 facerec, galgel, equake, sixtrack 0x80000040: 0x6f907f07: 0x786f80bf: 0x17f87fb8
Mix8 lucas, ammp, facerec, mesa 0xcff9fe7f: 0xffffffff: 0x20020000: 0x10040180
Mix9 facerec, equake, mgrid, sixtrack 0x80000400: 0x5ff8007f: 0x20078380: 0x3e0ffbf0
Mix10 applu, mgrid, mesa, sixtrack 0x8e30030f: 0x51cfec30: 0x200010c0: 0x31f01fff

Fig. 11. Results of 10 selected workloads on 4 cores (32 banks)

6.2.3 One-Half Page Row Buffer

We have repeated all our two- and four-core simulations for a 32-bank DRAM
when the row buffer size is one-half page. In this case, one color determines the place
of one physical page across two consecutive DRAM banks.

For the two-core case, the speedup distributions can be observed from the
following table:

These statistics are similar to those produced for a 32-bank DRAM when the row
buffer is one page. For the four-core case, we have simulated the same 10 mixes listed
in Table 2. The speedups of up to 9.7% are observed and the average speedup across

all the benchmarks is 2.4%. These results demonstrate that the proposed bank
partitioning scheme appears to work well for different row buffer sizes (relative to a
fixed page size in a system).

7 Related Work

None of prior work about DRAM access optimizations consider to reduce row
buffer conflicts for Chip Multiprocessor via software. To our knowledge, this paper is
the first to propose a software-hardware cooperative DRAM bank partitioning
mechanism for reducing interthread and intrathread row buffer conflicts.

Rixner et al. [3] examine various DRAM access scheduling policies and propose
the FR-FCFS policies. Hur and Lin [18] introduce adaptive history-based scheduling
policies to minimize the average DRAM access delay and to balance the ratio
between reads and writes from the processor. Shao and Brian [19] describe a burst
access scheduling mechanism to maximize the data bus utilization by read preemption
and write piggybacking. Lee et al. [20] suggest to use a prefetching-aware DRAM
controller to adaptively prioritize between conventional demand and prefetching
operations. Zhang et al. [1] expose an important source of row buffer conflicts in
single cores and propose a bitwise XOR address mapping scheme to reduce these
conflict significantly. These research efforts focus on the problems for single cores
but some of the principles proposed such as FR-FCFS scheduling policies and XOR
address mapping are also useful for multi- cores.
 For a multi-core system, DRAM becomes a major shared resource. The memory
controller needs to optimize memory performance by considering a variety of factors
simultaneously such as row buffer competition, data bus competition, memory
efficiency, the fairness and QoS, but its only means is to control the priorities of the
accesses from each thread. So the memory controller needs to weight these factors.
Nesbit et al. [9] use a network-fairing-queue based scheduler to provide thread
fairness and QoS and a First-Ready Virtual Finish Time First policy (FR-VFTF) to
balance row buffer utilization and fairness. Rafique et al. [10] use virtual start time
fair queuing instead of virtual finish time and improve fairness based on Nesbit’s
work. Mutlu and Moscibroda [11] show the stall time of a thread is a more direct
indicator of fairness and propose a stall time fair scheduler. These research efforts are
mainly concerned with balancing row buffer competition and thread fairness. Zheng
et al. [7] considers a scheduler that combines two factors about memory efficiency
and the pending request number of each request to improve system throughput. Mutlu
and Moscibroda [8] introduce parallelism-aware batch scheduling to provide a
substrate for bank parallelism, row buffer utilization, fairness and QoS, and their work
cleverly adjust the degree of inclining to any factor via controlling the size of a batch.
Due to the complexity of considering so many performance factors, ipek et al. [12]
suggest to add a reinforcement learning mechanism to a DRAM access scheduler. In
comparison with the prior work, our work is the first to reduce interthread row buffer
conflicts via DRAM partitioning through software-hardware cooperation. It represents
an orthogonal means to improving row buffer locality for multi-programmed
workloads. As a result, our mechanism may enhance existing techniques by enabling
them to focus on optimizing other factors.

8 Conclusion

In order to reduce DRAM row buffer conflicts for multi-core systems, we present a
software-hardware cooperative scheme to realize a static DRAM bank partitioning.
We apply page coloring to map different applications to different partitioned physical
spaces and propose to use a bitwise XOR cache mapping scheme together with page
coloring to reduce both intrathread row buffer conflicts and last-level cache misses. In
order to determine a DRAM bank partitioning strategy, we discuss how to build a cost
model and develop a heuristics-based algorithm for partitioning the DRAM banks
among the applications in a multi-programmed workload. Our simulations
demonstrate that DRAM bank partitioning can significantly reduce DRAM row buffer
miss rates and achieve speedups for two- and four-core systems. In the future, we plan
to study how to tackle the DRAM bank partitioning and shared cache partitioning
simultaneously.

References

1 Zhang, Z, Zhu, Z, Zhang, X. 2001: Breaking Address Mapping Symmetry at Multi-levels of

Memory Heirarchy to Reduce DRAM Row-buffer Conflicts. The Journal of Instruction-
Level Parallelism, vol. 3, (October, 2001)

2 Lin, W. 2001. Reducing DRAM Latencies with an Integrated Memory Hierarchy Design. In
Proceedings of the 7th international Symposium on High-Performance Computer
Architecture (January 20 - 24, 2001). HPCA. IEEE Computer Society, Washington, DC,
301.

3 Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and Owens, J. D. 2000. Memory access
scheduling. In Proceedings of the 27th Annual international Symposium on Computer
Architecture (Vancouver, British Columbia, Canada). ISCA '00. ACM, New York, NY,
128-138.

4 Seznec, A. 1993. A case for two-way skewed-associative caches. In Proceedings of the 20th
Annual international Symposium on Computer Architecture (San Diego, California, United
States, May 16 - 19, 1993). ISCA '93. ACM, New York, NY, 169-178.

5 González, A., Valero, M., Topham, N., and Parcerisa, J. M. 1997. Eliminating cache
conflict misses through XOR-based placement functions. In Proceedings of the 11th
international Conference on Supercomputing (Vienna, Austria, July 07 - 11, 1997). ICS '97.
ACM, New York, NY, 76-83.

6 Zhu, Z. and Zhang, Z. 2005. A Performance Comparison of DRAM Memory System
Optimizations for SMT Processors. In Proceedings of the 11th international Symposium on
High-Performance Computer Architecture (February 12 - 16, 2005). HPCA. IEEE
Computer Society, Washington, DC, 213-224.

7 Zheng, H., Lin, J., Zhang, Z., and Zhu, Z. 2008. Memory Access Scheduling Schemes for
Systems with Multi-Core Processors. In Proceedings of the 2008 37th international
Conference on Parallel Processing (September 09 - 11, 2008). ICPP. IEEE Computer
Society, Washington, DC, 406-413.

8 Mutlu, O. and Moscibroda, T. 2008. Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems. In Proceedings of the 35th Annual
international Symposium on Computer Architecture (June 21 - 25, 2008). International
Symposium on Computer Architecture. IEEE Computer Society, Washington, DC, 63-74.

9 Nesbit, K. J., Aggarwal, N., Laudon, J., and Smith, J. E. 2006. Fair Queuing Memory

Systems. In Proceedings of the 39th Annual IEEE/ACM international Symposium on
Microarchitecture (December 09 - 13, 2006). International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 208-222.

10 Rafique, N., Lim, W., and Thottethodi, M. 2007. Effective Management of DRAM
Bandwidth in Multicore Processors. In Proceedings of the 16th international Conference on
Parallel Architecture and Compilation Techniques (September 15 - 19, 2007). PACT. IEEE
Computer Society, Washington, DC, 245-258.

11 Mutlu, O. and Moscibroda, T. 2007. Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors. In Proceedings of the 40th Annual IEEE/ACM international Symposium on
Microarchitecture (December 01 - 05, 2007). International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 146-160.

12 Ipek, E., Mutlu, O., Martínez, J. F., and Caruana, R. 2008. Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach. In Proceedings of the 35th Annual
international Symposium on Computer Architecture (June 21 - 25, 2008). International
Symposium on Computer Architecture. IEEE Computer Society, Washington, DC, 39-50.

13 Naveen Neelakantam, Colin Blundell, Joe Devietti, Milo M. K. Martin and Craig Zilles:
FeS2: A Full-system Execution-driven Simulator for x86, In Proceedings of the 13th
international Conference on Architectural Support For Programming Languages and
Operating Systems (Seattle, WA, USA, March 01 - 05, 2008). ASPLOS XIII. Poster session.

14 Jacob, B., Ng, S., and Wang, D. 2007 Memory Systems: Cache, Dram, Disk. Morgan
Kaufmann Publishers Inc.

15 Kessler, R. E. and Hill, M. D. 1992. Page placement algorithms for large real-indexed
caches. ACM Trans. Comput. Syst. 10, 4 (Nov. 1992), 338-359.

16 https://www.simics.net/
17 Wang, D., Ganesh, B., Tuaycharoen, N., Baynes, K., Jaleel, A., and Jacob, B. 2005.

DRAMsim: a memory system simulator. SIGARCH Comput. Archit. News 33, 4 (Nov.
2005), 100-107.

18 Hur, I. and Lin, C. 2004. Adaptive History-Based Memory Schedulers. In Proceedings of
the 37th Annual IEEE/ACM international Symposium on Microarchitecture (Portland,
Oregon, December 04 - 08, 2004). International Symposium on Microarchitecture. IEEE
Computer Society, Washington, DC, 343-354.

19 Shao, J. and Davis, B. T. 2007. A Burst Scheduling Access Reordering Mechanism. In
Proceedings of the 2007 IEEE 13th international Symposium on High Performance
Computer Architecture (February 10 - 14, 2007). HPCA. IEEE Computer Society,
Washington, DC, 285-294.

20 Lee, C. J., Mutlu, O., Narasiman, V., and Patt, Y. N. 2008. Prefetch-Aware DRAM
Controllers. In Proceedings of the 41st Annual IEEE/ACM international Symposium on
Microarchitecture (November 08 - 12, 2008). International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 200-209.

