
JAMILA: A Usable Batch Job Management System to

Coordinate Heterogeneous Clusters and Diverse

Applications over Grid or Cloud Infrastructure

Juan Peng1, Xiaoyi Lu1, Boqun Cheng1, Li Zha1,

1 Institute of Computing Technology, Chinese Academy of Sciences,

100190 Beijing, China

{pengjuan, luxiaoyi, cbq}@software.ict.ac.cn,

{char}@ict.ac.cn

Abstract. Usability is an important feature of Grids or Clouds to end users,

who may not be computer professionals but need to use massive machines to

compute their jobs. For meeting various computing or management

requirements, heterogeneous clusters with diverse Distributed Resource

Management Systems (D-RMS) and applications are needed to supply

computing services in Grids or Clouds. The heterogeneity of clusters and

diversity of applications are easy to cause Grid or Cloud systems hard to use.

This paper presents a usable batch job management system, called JAMILA, to

coordinate heterogeneous clusters and diverse applications over Grid or Cloud

infrastructure. JAMILA aims to implement a uniform job management

mechanism to integrate different kinds of D-RMSes and it is designed to supply

non-professional users from various fields with a professional but usable high

performance computing environment. Some key technologies of JAMILA have

been used in China National Grid and an experimental Cloud-oriented

infrastructure.

Keywords: D-RMS, heterogeneous clusters, diverse applications, HCC, ASEM.

1 Introduction

As computing resources continue to move into Grids and Clouds, they let more and

more users who have a variety of HPC (High Performance Computing) demand

gather around Grids or Clouds. In the Grid environment, every site is managed

autonomously, so different sites may be installed different D-RMSes and deployed

diverse applications. According to our experience in developing Vega GOS [1, 2] for

CNGrid (China National Grid), we draw the Fig. 1 to illustrate the typical scenario of

heterogeneous computing resources in Grids. In the Fig. 1, Beijing site installs LSF,

Shanghai site utilizes Torque, and Hong Kong site uses Condor. As different

interfaces among D-RMSes, it causes the heterogeneities among clusters. If users

directly use these clusters, they need spend a lot of time accepting unnecessary

trainings. Meanwhile, a Grid, as a huge resource pool, should supply HPC services to

users of various fields, who need to compute jobs by diverse applications. In the Fig.

1, most applications in all three sites are different, and even the same application in

different sites may be installed with different versions, paths, or configurations. These

cause the diversity among applications. In CNGrid, 42 kinds of applications are

installed up to October in 2009, and many of them have different versions.

Fig. 1. Scenario of Heterogeneous Clusters and Diverse Applications in the Grid Infrastructure.

Fig. 2. Scenario of Heterogeneous Clusters and Diverse Applications in an Experimental Cloud

Computing Oriented Infrastructure.

Therefore, if we want to design a usable batch job management system for Grids,

we should shield the heterogeneity of clusters. In addition, it also should make users

focus on their job execution logic but the usages of Grid system’s APIs or commands.

The job execution logic is the process that users engage in computing activities: 1)

application selection; 2) parameter configuration of the application; 3) stage-in

and stage-out files configurations; 4) resource quota configuration. It means how

many CPUs, memories and other else resources are required. This requires the batch

job management system can provide a usable way for users to easily access all

applications in the Grid.

For Cloud, in our opinions, we consider it has three major differences with the Grid.

First and foremost, Cloud is more concerned about the management of resources

within a site. There is always an infrastructure management system as the

fundamental component of IaaS to support resource dynamic provisioning and

partitioning. Each partition is likely to be used to support different computing modes

and managed by different software. Besides, virtualization technology emerges as a

new resource provisioning way. The most important feature of this way is multi-

tenanted which means customers can configure their leased resources on demand

within the lease rule. This easily causes the heterogeneous software deployed in

virtual clusters. Last but not the least, new computing mode for large-scale data

processing should be supported in a Cloud platform. Fig. 2 shows a resource view of

our experimental Cloud environment. We anticipate tens of thousands of machines in

a datacenter or a computing center will be divided into four big clusters: a

MapReduce cluster, an HPC cluster, a VM Provisioning cluster for virtual cluster

creation, and a big Storage pool. In this figure, we suppose there are two virtual

clusters with Condor and LSF for users’ mutative computing requirements. Similar

with the Grid scenario, if we want to design a batch job management system for a

Cloud, we also have to confront with the situation of heterogeneous clusters and

diverse applications.

From all of above, we conclude that no matter in a Grid or a Cloud infrastructure,

the heterogeneity of clusters and the diversity of applications are exist, and they are

easy to cause the Grid or Cloud hard to use. This paper presents a usable batch job

management system, called JAMILA, to coordinate heterogeneous clusters and

diverse applications over Grid or Cloud infrastructure. JAMILA aims to implement a

uniform job management mechanism to integrate different kinds of D-RMSes and it is

designed to supply non-professional users a professional but usable HPC environment.

The rest of this paper is organized as follows: Section 2 presents the architecture of

JAMILA. Section 3 shows some key technologies implementation of JAMILA. In the

section 4, the evaluation of JAMILA will be demonstrated. Section 5 concludes the

paper and gives the future work.

2 JAMILA Architecture

2.1 Design Goals and Basic Concepts

In our design, JAMILA should satisfy three major goals: 1) Easy to use. JAMILA

should make end users just concentrate their attention on their jobs’ execution logic

but other things. To administrators, JAMILA should provide tools to help them

integrate different clusters and manage other resources; 2) Effectiveness. It mainly

embodies in two aspects: a) quick response to requests; b) job processing capacity: it

can concurrently handle hundreds of jobs and requests well; 3) Robustness. The

system should work well under heavy load, and the system should have recovery

mechanism when system failure.

Before we introduce the architecture, four basic concepts in JAMILA are: 1) User.

JAMILA has two kinds of users: global user and local user. A global user is managed

by JAMILA while a local user is managed by local OS. User mapping exists between

them; 2) Application. It is a software package providing some HPC functions to users;

3) Cluster. It is a computing resource. It is often installed D-RMS and applications to

provide HPC services. We classify the clusters by the type of D-RMS installed on

them; 4) Job. A job can be considered as a runtime instance of an application on a

cluster by a global user. A job has a life cycle with different statuses.

2.2 Architecture Overview

From the scenarios in Introduction chapter, we find that end users mainly concern

submitting jobs and quickly getting jobs’ results. So, we consider designing a batch

job management system should solve the following three most important problems: 1)

providing a usable interface to make users easily submitting and managing jobs; 2)

submitting and executing jobs on a proper cluster; 3) helping administrators integrate

clusters. Based on these problems, we design JAMILA to three layers: User Interface

Layer, Job Execution Layer, and Cluster Connector Layer, as shown in the Fig. 3.

Fig. 3. Architecture of JAMILA.

1) User Interface Layer: it is to make end users directly face to all kinds

applications and to shield all things that are not directly related with job execution

logic. In this layer, JAMILA provides two web 2.0 technology based portals: one is

Management Portal, and the other is Application Portal. Web-based computing

services can be provided anytime, anywhere to users from various fields.

Administrators can use Management Portal to configure user mapping, to integrate

heterogeneous clusters and to manage diverse applications. End users can use

Application Portal to submit or to manage jobs. When doing submission, users first

select an application, and then define the jobs execution logic on a web page related

to the selected application. Finally, they click the submit button, and wait for jobs’

results. Fig. 4 shows the submission page of Gaussian.

Fig. 4. Job Submission Page of Gaussian.

Fig. 5. The Submission Processing Sequences and Job Stages Conversion in JAMILA.

2) Job Execution Layer: it addresses all requests from end users. It contains three

parts: Job Manager, Scheduler, and Job Execution Pipeline. Job Manager likes a task

dispatcher which pushes submission, rerunning, terminating requests to Scheduler and

handles other simple requests by itself. Scheduler is to find out a target cluster and put

the job to Job Execution Pipeline to be executed (If the request is to terminate a job,

the Scheduler does nothing but directly pushes this request to Job Execution

Pipeline.). Job Execution Pipeline is the real place to manage the execution of a job

on a cluster. In this layer, JAMILA adopts GridSAM’s pipeline technology [3], which

utilizes SEDA (Staged Event Driven Architecture) [4] as the implementation principle,

and builds on Quartz [5] framework to schedule stages and allocate threads. By

pipeline technology, a job’s life cycle is divided into several stages. Each stage does a

specific task. Fig. 5 shows the process of submission operation and job stages. If a job

gets errors at any stages, the job will exit from pipeline directly after changing its

status to fail. Job execution pipeline technology highly improves the system’s

throughput.

3) Cluster Connector Layer: it aims to address how to connect heterogeneous

clusters in a uniform way. The main component of this layer is HCC (Heterogeneous

Cluster Controller), which contains three parts: Task Dispatcher, User Switcher, and

Driver. Task Dispatcher delivers jobs to their target clusters to run. Then the User

Switcher on the target cluster receives these jobs, maps every global user to a local

user on the cluster, and redirects the task on behalf of the local user to the Driver.

Finally, the Driver invokes D-RMS on the target cluster to do this task and returns D-

RMS’s response to Job Execution Pipeline.

3 Key Technologies Implementation in JAMILA

As mentioned in Introduction, two difficulties of implementing a batch job

management system over a Grid or Cloud are how to make users easily access all

kinds of applications, and how to coordinate heterogeneous clusters. JAMILA invents

two technologies to solve these two problems, one is ASEM (Application Software

Encapsulation Mechanism) and the other is HCC (Heterogeneous Cluster Controller).

In addition, an optimization technology is also shared.

3.1 Application Software Encapsulation Mechanism (ASEM)

ASEM, which is similar with the Rappture [6, 7] technology in nanoHUB.org [7],

provides a uniform solution of how to encapsulate diverse applications with good

sharability and usability. In order to better understand the implementation detail of

ASEM, we first introduce the concept of ST.

ST is a method for encapsulating an application software usage and it contains a

vocabulary, variables, functions, and normative XML Schema that facilitate the

expression of application software usage.

Definition 3.1 ST = < JobSubmitTemplate, JobManageTemplate>
JobSubmitTemplate = < SubAppearance, SubOperation>: defining job submission logic.

JobManageTemplate = <ManAppearance, ManOperation>: defining job management logic.

Definition 3.2 SubAppearance|ManAppearance = < HTMLContet, {Image}>
HTMLContet: containing an HTML string to define the application’s web page.

Image = < CodingType、ImageFilePath、ImageCode>: storing the images of web pages.

Definition 3.3 SubOperation = {Name, SoftwareName, SoftwareVersion,

JobProject, Description, Executable, Argument, Output, Error, Input, {StageIn}, 

{StageOut}, Resource, {GenerateFile}, JobWorkDirectory}: it is to store information of
job execution.
Definition 3.4 ManOperation = < Invoker, OperationSequence >

Invoker: component of invoking the management operation

OperationSequence = < {GenerateFile},{UploadFile} >: defining management operation.

Definition 3.5 StageIn | StageOut | UploadFile = < Source, Target >
Source: file address referenced to the client host.

Target: file address referenced to the server host

Image element is to store coding data of the picture with the coding type indicated

in CodingType element. ASEM loader and Interpreter has coding and decoding

functions. So, when an administrator creates an ST, he or she configures other text

parts of the ST and uploads pictures, then the ASEM loader and Interpreter codes the

pictures and adds several Image elements to the ST. Next time, when he or she exports

this ST, pictures’ code is in it and it works well in other environments. This makes

STs easy and convenient to be shared.

All STs in JAMILA are a kind of resource. ASEM Loader finds out this resource

and shows them in Application Portal in the form of a list. When the end user chooses

an application from the list, the ASEM Interpreter paints the web page according to

the HTMLContent element of the selected application’s ST, like the page shown in Fig.

4. So, by ST and ASEM Loader and Interpreter, end users can submit jobs on a web

page instead of developing a complicate JSDL [8] file or using D-RMS commands

directly. As users are quite clear about their job execution logic, filling such a web

page form is not difficult.

Since applications installed on different clusters may have different versions, paths,

and other properties which are closely dependent on specific environments. To better

share the developed STs across Grids or Clouds, we must remove application’s

variability from ST. So we introduce STI, which is used to store the applications’

variable information such as version, command paths, and so on. This design makes

STs be independent with environment, so STs can be used to other environment

besides the developed environment. And the Management Portal contains exporting

ST function.

The last component is ASEM Translator which is to transfer end users’ inputs, ST,

and relative STI together to a JSDL. Then it pushes the generated JSDL to Job

Execution Layer. For most batch job management systems supporting JSDL, so in

order to be easy to interoperate with other systems, Job Execution Layer uses the

JSDL as its input.

3.2 Heterogeneous Cluster Controllers (HCC)

HCCs are bridges between JAMILA and clusters. It contains three parts: Task

Dispatcher, User Switcher, and Driver. All these three parts are implemented by

Linux Shell Scripts. The Driver provides six standard interfaces for all kinds of D-

RMSes as shown in the Table 1. Operations related with jobs in JAMILA are

implemented by these six basic interfaces. All kinds of Drivers for specific D-RMSes

need to be implemented these six standard interfaces. Therefore, the above layer can

use a uniform way to invoke HCCs.

HCC separates implementation from logic of the system which makes upper layer

not require caring about the underlying resources and makes JAMILA easily integrate

different kinds of clusters. Furthermore, by using HCC, heterogeneous clusters can

dynamically join to or leave from JAMILA.

Table 1. Interfaces of Driver.

Parameter Format Function

-b Submit a job to a cluster’s D-RMS

-s Get a job’s latest status

-d Get a job’s execution detail, including execution queue, consumed CPU
time and so on

-c Cancel a specific job

-r Rerunning a specific job

-p Doing pre-process or post-process of a specific job.

3.3 Job Submission Rate Controlling

In the Job Execution Layer of JAMILA, we design a simple but efficient mechanism

to improve the system’s capacity. In this layer, job execution pipeline uses Quartz to

schedule jobs stages. When lots of jobs are submitted into the pipeline, it very easily

causes congestion in Quartz, which makes many jobs hard to be scheduled. If more

and more jobs continually rush into the system, it will make all threads in the system

look like locked. Therefore, we design and implement a simple job submission rate

controlling mechanism to make the job’s arrival rate to be nearly stable. If jobs cannot

be served at current, they will be saved into database. Through our experiments in the

next section, we can see the processing capacity and throughput of JAMILA are

highly improved by it.

4 Evaluations

4.1 Evaluations of Design Goals

Easy to use: For an administrator, he or she can integrate new clusters or old clusters

with new configurations to JAMILA by HCC. He or she just needs to do three simple

steps: copy User Switcher and a fit Driver to the cluster, change the commands path

of D-RMS in the Driver, and configure sudo & SSH of the cluster to enable JAMILA

server executing the Driver with any local users’ identities without password. Now,

JAMILA has Drivers for most popular D-RMSes including PBS, Torque, Condor,

LSF, SGE and Hadoop. What is more, developing a new Driver is not difficult by our

Driver Template.

JAMILA aims to supply non-professional users a professional but friendly HPC

environment. In JAMILA, users do not need to learn extra computer knowledge.

What they need to do when submitting a job is to define their jobs execution logic

mentioned in Introduction chapter, and then push the jobs to JAMILA. In a word,

JAMILA makes job submission and management operations like surfing internet,

which can be finished just by a few mouse clicks and filling a web page form.

Effectiveness: We do some experiments to evaluate JAMILA’s performance

mainly on its max processing capacity and response time. All experiments are done

on the server with following configuration: x86_64, two Intel(R) Xeon(R) with each

four cores, 2.0GHz, 8GB memory, Gigabytes Ethernet, CentOS 5.3 (kernel 2.6.18),

MySQL 5.0.45, JDK 1.6.0, Apache Tomcat 5.0.28, Torque 2.1.9.

Firstly, we evaluate the response time for job submission operation from 10

jobs/min to 400 jobs/min. As shown in the Fig. 6, the response time keeps stable

nearly before 100 jobs/min, and the average response time is 316ms from 10 jobs/min

to 400 jobs/min. Then, we evaluate the average turnaround time evaluated by the

number of finished jobs per minute, and the result is shown in the Fig. 7. From this

result, we can see that when the job submission rate reaches 300 jobs/min, if no

submission rate controlling mechanism, the finished job number per minute will

reduce dramatically; if we adopt job submission rate controlling, the finished job

number keep stable basically.

Robustness: From the Fig. 7, we can see that Job Submission Rate Controlling

makes JAMILA work well on a big submission rate. Moreover, as JAMILA having

functions like job information persistence and recovery mechanism by Quartz, when

the system fails, those unprocessed or unfinished jobs can continue to run.

4.2 Evaluations of Key Technologies

JAMILA’s two major technologies ASEM and HCC are widely used in CNGrid for

about two years. Up to October in 2009, there are 42 kinds of applications

encapsulated by ST in CNGrid. These applications cover many fields, such as Biology,

Meteorology, Chemistry, and so on. Closely analyzing these STs, we find that 62.07%

STs can be developed from a simple ST, like Gaussian ST shown in Fig. 4. According

to our training experience of developing STs, a simple ST like above can be developed

in 10 minutes. Even the most complicated STs in CNGrid can be developed less than

2 hours. What’s more, STs can be shared by different clusters since it is independent

with environments. So, developing a ST is not a difficult thing.

HCC technology is used to shield the heterogeneities of clusters in Grid or Cloud

infrastructures. Developers of GridSAM also introduced this technology into

GridSAM by our collaboration. Firstly, we give a simple statistic result of drivers’

code lines in HCC as shown in Table 2. From this table, we can see all six Drivers of

HCC are not very complex and the average code of all Drivers is 323 lines. Here,

JAMILA can also easily integrate Hadoop cluster for large scale data processing in

our experimental cloud environment through ASEM and HCC technologies.

Besides, we do experiments to show the cost of driver execution in the job

submission operation and the cost of driver invocation by VFork. Both of two costs

have little change as the number of continually submitted jobs increasing and the

average driver invocation cost is only 6.7% to that of driver execution. We adopt JNI

to invoke more light-weighted VFork mechanism to fast create a child process,

instead of Fork. We find VFork can dramatically reduce the memory usage.

Fig. 6 Average Response Time under Different Job Submission Rate.

Fig. 7 Average Finished Jobs/Min under Different Job Submission Rate.

Table 2. Statistic Results of Drivers’ Code Lines in HCC.

Driver Type Code Lines of Driver

PBS 405

LSF 323

Condor 378

Fork 138

SGE 412

Hadoop 341

5 Conclusion and Future Work

This paper presents a batch job management system JAMILA, to coordinate diverse

applications and heterogeneous clusters over Grids or Clouds. In JAMILA, ASEM is

to encapsulate applications with good sharability and usability. With it, users just

need to concern jobs execution logic. ASEM has been used in CNGrid practically for

two years over 12 sites across China and up to October in 2009, 42 kinds of

applications are encapsulated by ST. HCC is used to integrate heterogeneous clusters

in a uniform way. In order to integrate a new kind of cluster, administrators just need

to develop a fit Driver for the new cluster. Now, JAMILA has Drivers for Fork, PBS,

LSF, Condor, SGE, and Hadoop.

Besides these two important technologies, we do some work on improving

JAMILA’s effectiveness and robustness, such as job submission rate controlling,

memory leak checking and so on. These efforts largely improve the system’s

processing capacity and reliability. JAMILA with 1GB memory usage configuration

can handle about 230 million jobs’ whole life cycle running at the same time.

There is a lot of future work to do. The most important is JAMILA needs a good

scheduling algorithm to balance loads among clusters. Currently, scheduler

component in JAMILA uses random scheduling algorithm to get a target cluster.

Acknowledgment

This research is supported in part by the National Basic Research (973) Program of

China (Grant No. 2005CB321807) and the Hi-Tech Research and Development (863)

Program of China (Grant No. 2006AA01A106, 2006AA01Z121, and

2009AA01A130).

References

1. Xu, Z., Li, W., Zha, L., Yu, H., Liu, D.: Vega: A Computer Systems Approach to Grid

Computing. Journal of Grid Computing. 2(2): 109--120 (2004)

2. Zha, L., Li, W., Yu, H., Xie, X., Xiao, N., Xu, Z.: System Software for China National Grid.

In: Jin, H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 14--21. Springer,

Heidelberg (2005)

3. Lee, W., McGough, A.S., Darlington, J.: Performance Evaluation of the GridSAM Job

Submission and Monitoring System. UK eScience Program All Hands Meeting (2005)

4. Welsh, M., Culler, D., Brewer, E.: SEDA: An Architecture for Well-Conditioned, Scalable

Internet Services. In: Proceedings of the 18th ACM Symposium on Operating System

Principles, pp. 230--243. ACM Press, Banff, Alberta, Canada (2001)

5. Cavaness, C.: Quartz Job Scheduling Framework: Building Open Source Enterprise

Applications. Prentice Hall PTR, Upper Saddle River, NJ, USA (2006)

6. Rappture: https://nanohub.org/infrastructure/rappture/

7. Klimeck, G., McLennan, M., Brophy, S.P., Adams III, G.B., Lundstrom, M.S.:

nanoHUB.org: Advancing Education and Research in Nanotechnology. Computing in

Science and Engineering. 10, 17--23 (2008)

8. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pulsipher, D.,

Savva, A.: Job Submission Description Language (JSDL) Specification V1.0. Open Grid

Forum, GFD.136 (2008)

