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Abstract. Some problems about the connectivity of wireless sensor net-
works (WSNs) are always important and difficult topics in research, es-
pecially the trade-off between connectivity and energy control. In this
paper, we present a novel and effective method to calculate nearest neigh-
bor nodes in three-dimensional WSNs using Poisson point field theory,
which enables each node to find the kth nearest neighbor node and ad-
just transmitting range according to local requirement. Moreover, we
derive the probability expression of the k-connected network. Finally, we
give corresponding simulation results and discussions about the practical
value for node energy control and design of WSNs.
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1 Introduction

Wireless Sensor Networks (WSNs) have received significant attention in recent
years due to their numerous potential in military and civil applications. Typ-
ically, a wireless sensor node consists of sensing, computing, communication,
actuation, and power components. Sensor nodes are often air-dropped in hostile
or dangerous region. It is not possible for humans to reach these sensor nodes
and maintain each sensor node, as often the number of sensor nodes is quite
large. Hence, self-organization of sensor nodes to form a connected network is
an essential requirement. Additionally, the unattended nature of WSNs destines
a majority of sensors to have energy sources which may not be replenished.
Though some WSNs have equipped renewable energy such as solar battery, the
energy consumed will limit their application. So energy is a decisive resource in
WSNs. Energy efficiency and network lifetime have occupied a large portion of
research effort in WSNs [1],[2],[3],[4],[5].

In this paper, we investigate the problems of nearest neighbor nodes and
connectivity of WSNs in three dimensions applying Poisson point field theory
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and random geometry graphs theory. We assume n nodes (We denote sensor
node by node later.) are distributed in [0, l]3 according to a three-dimensional
homogeneous Poisson point field with density λ (λ = n/l3). Firstly, we investi-
gate nearest neighbor nodes of a node and make use of conditional probability
to find the probability distribution function F (r) of the kth nearest neighbor
node distance. And then corresponding critical transmitting range of the node
is given. Next, basis of prior obtained results of this paper we discuss the con-
nectivity of WSNs applying the random geometric graphs theorem and derive
the probability expression of the k-connected Network and corresponding criti-
cal transmitting range of all nodes. Moreover, we present simulation results and
discuss the practical value for node power control and design of WSNs. Finally,
we present conclusion and outline the directions for our future work.

2 Related Prior Work

In this section, we recall some related work. Hou and Li [6] presented a model
for analyzing the performance of transmission strategies in a multihop packet
radio network where each station had adjustable transmission radius. One of
the transmission strategies, namely transmitting to the nearest forward neigh-
bor by using adjustable transmission power, had desirable features in a high
terminal density environment. Philips et al. [7] examined a model of a packet
radio network in which transmitters with range R were distributed according
to a two-dimensional Poisson point process with density D. To ensure network
connectivity, the expected number of nearest neighbors of a transmitter must
grow logarithmically with the area of the network. Gupta and Kumar [8] de-
rived the critical power a node in wireless network needed to transmit in order
to ensure that the network was connected with probability one as the number
of nodes in the network tended to infinity. They shown that if n nodes were
distributed in a disc of unit area in and each node transmitted at a power level
so as to cover an area of πr2 = (ln(n + c(n))/n), then the resulting network
was asymptotically connected with probability one if and only if c(n) → +∞.
Bettstetter [9],[10] investigated the minimum node degree and k-connectivity of
wireless multihop network in the one (respectively, two) dimensional space, he
derived an analytical expression of transmitting range of k-connected network.

3 Preliminary

3.1 Poisson Point Field

One-dimensional number distributions of stationary Poisson point field N:

Prob(N(B) = k) =
(λ|B|)k

k!
e−λ|B| (k = 0, 1, ..., N ; |B| < ∞), (1)

where N(B) denotes the number of points of N in a bounded Borel set B, λ is
the density of N, and | · | denotes Lebesgue measure [11],[12],[13],[14].
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3.2 Some Basic Concepts of Graph Theory

Definition 1 (Graph) A graph G is an ordered pair of disjoint sets (V ,E), where
E ⊆ V ×V . Set V is called the vertex(or node, or point),while set E is the edge
(or line) set of graph G.

Definition 2 (Connected Graph) A graph G = (V, E) is connected if for
any two nodes u, v ∈ V there exists a path from u to v in G.

Definition 3 (k−Connected and k-Edge-Connected Graph) A graph G =
(V, E) is k-connected, for some k ≥ 2, if removing any k-1 nodes from the graph
does not disconnect it. Similarly, G is k-edge-connected, for some k ≥ 2, if
removing any k-1 edges from the graph does not disconnect it [15]. (see Fig.1)

Fig. 1. 2-connected Graph.

3.3 Elements of Random Geometric Graphs Theory

Definition 4 (Random Geometric Graphs) In the random geometric graphs
G(n,r), n nodes are placed at random with uniform distribution in a square
area of unit size (more generally, a m-dimensional cube). There is an edge (u,v)
between any pair of nodes u and v, if the Euclidean distance between them is
less than r [16].

4 Network Model

4.1 Network Topology Model

Consider a WSN. Given n ∈ N+(N+ = {1, 2, ..., N),we use V to denote the set
of n nodes, i.e. V = Vi :∈ [n]}. Given l ∈ N+, we use L to denote the set of l
communication links between the nodes in V, i.e. L = {Li : i ∈ [l]}.

Definition 5 (Network Topology Graph) The network topology graph NTG
=< V,L > is a graph with vertex set V representing the set of nodes, and edge
set L representing the set of communication links.

An arbitrary WSN consists of a set of nodes randomly placed in a space. Each
node can communicate with another node within distance r through one-hop
communication, where r is given as the transmitting range of node (see Fig.2).
Throughout the paper, we consider an independent and identically distributed
(i.i.d.) network topology model.
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Isolated nodes

r

Fig. 2. The topology of WSNs.

4.2 Spatial Node Distribution Model

Assume n nodes are distributed in [0, l]3 according to a three-dimensional ho-
mogeneous Poisson point field with density λ(λ = n/l3).

5 Nearest Neighbor Nodes

For a Poisson point field, we can specify how the inter-node distances are dis-
tributed. By the stationarity of the Poisson point field and Slivnyak’s theorem
[11],[12], the distance between the origin and its the kth nearest neighbor is the
same as the distance between an arbitrary point and its the kth nearest neighbor.

5.1 The kth Nearest Neighbor Node

In this section, we give the probability distribution function F (r) of the kth

nearest neighbor node distance, denoted by Fk(r). According to the homogeneity
of Poisson point field, we can calculate it for a point close to the origin o. The
conditional probability

Fk(r) = 1− Prob(((N(B(o, r)−B(o, ε)) = 0) ∪ (N(B(o, r)−B(o, ε)) = 1)...
∪(N(B(o, r)−B(o, ε)) = k − 1))|N(B(o, ε)) = 1) (2)

is the probability that the kth neighbor node of a node in a small sphere B(o, ε)(ε >
0) locates at distance not greater than r from the origin o (see Fig.3), where
r À ε. As ε tends 0, we can derive the probability distribution function Fk(r)
of the kth nearest neighbor node distance.

According to the definition of conditional probability, we have

Fk(r) = 1− Prob(((N(B(o, r)−B(o, ε)) = 0) ∪ (N(B(o, r)
−B(o, ε)) = 1) ∪ ... ∪ (N(B(o, r)−B(o, ε)) = k − 1)),

N(B(o, ε)) = 1)
/
Prob(N(B(o, ε)) = 1). (3)

Because B(o, r)−B(o, ε) and B(o, ε) are disjoint Borel sets, by the fundamental
properties of homogeneous Poisson point field, we get

Fk(r) = 1− Prob((N(B(o, r)−B(o, ε)) = 0) ∪ (N(B(o, r)−B(o, ε)) = 1)...
∪(N(B(o, r)−B(o, ε)) = k − 1)). (4)
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Fig. 3. Nearest neighbor nodes in three dimensions.

Make use of (1), we can derive

Fk(r) = 1− Exp(−λ|B(o, r)−B(o, ε)|)(1 + λ|B(o, r)−B(o, ε)|+ ...

+(λ|B(o, r)−B(o, ε)|)k−1/(k − 1)!) (5)

Fk(r) = 1− Exp(−4
3
λπ(r3 − ε3)) · (1 +

4
3
λπ(r3 − ε3) + ...

+
( 4
3λπ(r3 − ε3))k−1

(k − 1)!
). (6)

Here we let ε tend 0, then

Fk(r) = 1− e−
4
3 λπr3

(1 +
4
3
λπr3 + ... +

( 4
3λπr3)k−1

(k − 1)!
)

= 1− e−
4
3 λπr3

k−1∑

i=1

( 4
3λπr3)i

i!
. (7)

The corresponding probability density function is

fk(r) =
3( 4

3λπr3)k

r(k − 1)!
e−

4
3 λπr3

. (8)

We denote critical transmitting range of the node by Rk−th when its the kth

nearest neighbor node got. We can deduce the probability

Prob(r ≤ Rk−th)=
∫ Rk−th

0

fk(r)dr
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=
∫ Rk−th

0

3( 4
3λπr3)k

r(k − 1)!
e−

4
3 λπr3

dr

=1− e−
4
3 λπR3

k−th

k−1∑

i=1

( 4
3λπR3

k−th)i

i!
. (9)

5.2 The Isolated Node

Specially, when a node has no neighbor node, i.e. it is a isolated node, the
probability is

Prob(isolated node) = Prob(N(B(o, r)−B(o, ε)) = 0)
= Exp(−λ|B(o, r)−B(o, ε)|)
= Exp(−4

3
λπ(r3 − ε3))

= e−
4
3 λπr3

(ε → 0), (10)

and critical transmitting range Riso of the node is

Riso = 3

√
−3 ln Prob(isolated node)

4λπ
. (11)

6 Connectivity

In this section, we investigate the k-connected network. In [17], Penrose has
proved

Prob(G is k − connected) = Prob(DEGmin(G) ≥ k) (12)

, where DEGmin(G) denotes the minimum node degree of random geometric
graph G, i.e. a network is said to be k-connected if each node has at least the
kth nearest neighbor node.

So the probability for the k-connected network is

Prob(k − Connected) ≈ (1− e−
4
3 λπR3

kConn

k−1∑

i=1

( 4
3λπR3

kConn)i

i!
)n, (13)

where RkConn denotes critical transmitting range of all nodes of k-connected
network.

7 Simulation and Discussion

In this section, we present simulation and discussion. In our simulation environ-
ment, the space of nodes distribution V = [0, 125]3 (a unit of measurement: m3),
the number of nodes n ∈ [0, 100], so node density λ = n/V .
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Firstly, Fig.4 shows simulation results of the probability that a node has
no neighbor node. For WSNs to function properly in the first place it must be
connected, or mostly connected. Otherwise the network would consist of scat-
tered isolated islands of information and could not support properly networking
applications.

(a) (b)

Fig. 4. (a) The probability that a node has no neighbor node, (b) Relation between the
number of nodes and transmission range when probability that a node has no neighbor
node is 99%.

Next, Fig.5 shows the simulation results of the probability distribution that
a node has the 3rd nearest neighbor node. A main constraint in WSNs is energy.
It would contribute to the survival of overall network if each node is capable
of finding nearest neighbor node and adjusting transmitting range according to
local requirement.

Then, Fig.6 shows simulation results of the probability distribution for 3-
connected network. The connectivity is a vital attribute of WSNs. Through
simulations, we notice that connectivity of network becomes multiple with aug-
mentation of transmitting range rapidly.

Finally, the critical transmitting range values reported in Table 1 can be in-
terpreted as transmitting range in different operation state of WSNs, where Riso

denotes critical transmitting range of isolated node, R1st (respectively, R2nd and
R3rd) denotes critical transmitting range of the node having the 1st (respectively,
2nd and 3rd) nearest neighbor node, R1Conn (respectively, R2Conn and R3Conn)
denotes critical transmitting range of all nodes of 1-connected (respectively, 2-
connected and 3-connected) network. We observe that the critical transmitting
range values have significant differences between the kth nearest neighbor node
and k-connected network. Due to sensor transmitting power in direct proportion
to transmitting range, above results can provide a idea for designers of WSNs.
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(a) (b)

Fig. 5. (a) The probability distribution that a node has the 3rd nearest neighbor node,
(b) Relation between the number of nodes and transmitting range when probability
that a node has the 3rd nearest neighbor node is 99%.

(a) (b)

Fig. 6. (a) The probability distribution of 3-connected network, (b) Relation between
the number of nodes and transmitting range when probability of the 3-connected net-
work is 99%.
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Under the conditions of a large connected component, local nodes or few isolated
nodes can adjust transmitting range independent of any other node, which can
maximally prolong lifetime of network.

Table 1. Critical transmitting range (a unit of measurement: m) yielding 99% of
different operation state of WSNs varying with network capacity.

n Riso R1st R2nd R3rd R1Conn R2Conn R3Conn

10 7.77 59.88 67.64 73.18 68.53 75.50 80.59
25 5.72 44.12 49.84 53.92 52.64 57.59 61.23
50 4.54 35.02 39.56 42.80 42.98 46.81 49.64
75 3.97 30.59 34.56 37.39 38.13 41.43 43.88
100 3.61 27.79 31.40 33.97 35.01 37.98 40.19

8 Conclusion and Future Work

In this paper, we propose a novel method to investigate the problems of nearest
neighbor nodes and connectivity of WSNs in three dimensions. We firstly pro-
vided probability distribution function of the kth nearest neighbor node distance
and analytical expression of critical transmitting range of corresponding node.
And then we derive probability expression of k-connected network and critical
transmitting range of all nodes. Simulation results and discussions demonstrate
that the method is accurate and effective which can provide some theoretical
basis for furthering research energy efficiency and topology control of WSNs.
Our future work will be focus on inhomogeneous WSNs and their stochastic
properties.
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