
Energy-Efficient Scheduling of Real-Time Periodic
Tasks in Multicore Systems

Xiaodong Wu1, Yuan Lin1, Jian-Jun Han1, Jean-Luc Gaudiot2

1College of Computer Science and Technology, Huazhong University

of Science and Technology, Wuhan, Hubei province, China
2Department of Electrical Engineering and Computer Science,

University of California, Irvine, U.S.A.
cdxiaodongwu@gmail.com, gamespiay123@163.com,

jasonhan@mail.hust.edu.cn, gaudiot@uci.edu

Abstract. Nowadays, energy savings have become one of the most critical
issues. In this paper, we propose an energy-efficient approach to scheduling
periodic real-time tasks in the multicore context. Within a voltage/frequency
domain (VFD), a simple static voltage/frequency scaling schedule (SimpleVS)
is first introduced to select the utilization of the heaviest-loaded core as the
shared operating frequency of this VFD. Next, the slack reallocation policy is
proposed to further reclaim slack times while satisfying timeliness
requirements. The slack reallocation strives to redistribute the slack times
uniformly to the cores on the same VFD by appropriate job migrations.
Experimental results show that compared with the static frequency schedule,
our proposed policy can achieve energy savings up to 22 percent when the
system is under-utilized.

Keywords: energy-efficient, multicore systems, real-time scheduling

1 Introduction

Nowadays power has become the most critical design constraint. The increasing
on-chip power dissipation and the demand of portability make low power
consumption one of the primary circuit and system design goals. This not only applies
to battery powered devices, but also to desktop computers and high-performance
systems.

Many solutions have been proposed to mitigate the energy pressure. The processor
industry is now shifting towards Chip Multi-Processors (CMP) architectures [1] by
integrating several cores onto a single chip to reduce the power consumption.
Multicore systems usually can deliver a higher throughput at the cost of lower power
consumption than uniprocessor systems. As the demand for energy efficiency grows,
multicore processors have been widely used in real-time systems. It is well known
that the dynamic voltage/ frequency scaling (DVFS) [2- 6] is one of the most
promising solutions to optimizing the energy consumption, which scales the operating
voltage and clock frequency of processors together to meet dynamic performance
demands. Pillai and Shin [2] present a class of real-time DVS (RT-DVS) algorithms,

including the static voltage scaling, cycle-conserving RT-DVS and Look-ahead
RT-DVS, which modify the OS’s real-time scheduler and task management service to
provide energy savings while maintaining real-time deadline guarantees. However, in
the context of multicore systems, all active cores need to work at the same operating
voltage/frequency [7,8]. This characteristic of the multicore system is referred to as
frequency synchronization in this work. This implies that when the operation
frequency is scaled on one core, the performances of the other cores are intuitively
influenced. For instance, if a low speed is selected for a processor core to aggressively
reduce the energy consumption, the jobs running on other cores may miss their
deadlines if there are heavy workloads mapped onto those processor cores.

Recently, Globally Asynchronous, Locally Synchronous (GALS) [9- 12] design is
being widely investigated as an alternative solution to the totally synchronous
voltage/frequency design, because it inherits the advantages of both synchronous and
asynchronous design. The GALS technology makes the clock distribution and timing
closure more manageable. On the other hand, the GALS can be well adapted to the
voltage-frequency island (VFI) technology [12,13]. Multicore systems implemented
with the GALS are partitioned into several voltage/frequency domains (VFD). In such
systems, each core belongs to a specific VFD, while the active cores within the same
VFD must share the same supply voltage and operating frequency. The operating
frequency/voltage of each domain can be adjusted independently of other domains so
as to meet the dynamic performance demands. Moreover, considering the fact that the
processor cores in a VFD-based GALS system can be easily put into power saving
state with the clock gating technique, an idle processor core or even a complete
domain can be placed into the sleep mode to further reduce both the dynamic and the
leakage power [12].

Some energy-aware approaches using DVFS have been presented to schedule
real-time tasks on multicore architectures. Yang et al. [8] proved that the
energy-efficient scheduling of periodic real-time task set in the multicore context is an
NP-hard problem. Seo et al. [14] presented a dynamic repartition algorithm for
periodic tasks to balance the system load as well as to reduce the leakage power at
run-time. Pepijn et al. [15] tried to reduce the leakage current, supply voltage and
clock frequency in an integrated way in order to gain the maximum system energy
savings. Dinna et al. [16] proposed a power-aware real-time scheduler for the
multicore multithreaded processor, which implements dynamic voltage scaling
techniques. But they aimed at the soft real-time applications and supposed that all
cores in the system shared a global frequency. Wan [17] addressed an energy-saving
scheduling scheme of periodic real-time tasks with the DVFS on the lightly loaded
multicore platform. However [17] assumed that the tasks can be divided into multiple
independent subtasks and concurrently executed in parallel on multiple cores. It is
also presumed there are more processing cores than running tasks and each core could
adjust its operating frequency independently.

The previous studies usually concentrated on two power management mechanisms.
They either assumed that each processor core can adjust its operating frequency
independently of the other cores, or presumed the global frequency synchronization,
namely, all active cores in the system share the same operating voltage/frequency.

In this paper, we will address the problem of the energy-efficient scheduling for
periodic real-time tasks in the VFD-based multicore system. The proposed scheduling

algorithm strives to balance the slack times on the cores in VFDs so as to scale down
the operating frequency and reduce energy consumptions, while meeting timing
constraints.

Given a set of periodic real-time tasks, we define the hyperperiod as the least
common multiple (LCM) of the periods of these tasks. Intuitively, each task releases
its invocations at the same relative phases of different hyperperiods. For this reason,
based upon the worst-case execution time of the tasks, we off-line simulate the
dynamic executions of the tasks in the interval of one hyperperiod, then off-line
calculate and record the start times as well as the executing speeds of the invocations
of each task. At run-time, for each invocation of a task, the scheduler only needs to
look up its scheduling information from a pre-determined table. As a result, the
on-line scheduling overhead can be significantly reduced.

For uniprocessor systems, the static voltage scaling mechanism is proposed in [2]
to select the lowest possible operating frequency that will allow the scheduler to meet
all the deadlines for the given task set. This static policy set frequency statically, and
the frequency will not be changed unless the task set is changed. We will extend the
static voltage scaling policy to the multicore platform (called SimpleVS). The
SimpleVS algorithm selects the maximum utilization among all cores in a VFD as the
shared operating frequency, such that the frequency synchronization of the VFD, the
deadline constraints of all tasks and the energy savings can be met simultaneously.

Based on the SimpleVS schedule, we propose a slack reallocation algorithm to
further reclaim the slack times to conserve energy. This policy adjusts the slack times
on each core and divides the schedule into segments. Then, for each segment, it seeks
to balance the slack times on cores within a VFD via appropriate job migrations.
Hence, almost the same amount of slack time will be allocated to each core in a VFD,
thereby a lower operating frequency can be selected for this VFD so as to save
energy.

We evaluated the performance of our proposed algorithm through extensive
simulation experiment under different situations. The results show that compared with
the static voltage scaling schedule (SimpleVS), the proposed slack reallocation policy
can gain the energy savings by about 22% under low-loaded conditions.

The rest of this paper is organized as follows: Section 2 describes the system
models, including the energy consumption and the task set. Section 3 introduces the
static SimpleVS and gives motivational examples to illustrate the target problem. The
proposed energy-efficient scheduling algorithm and the experimental results are
discussed in detail in Section 4 and Section 5, respectively. Section 6 concludes this
paper and offers our future work.

2 Research Model

2.1 System Model

In this research, we consider the multicore system with voltage-scalable processor
elements for our study. There are cn identical cores in the system: }...,,{ 21 cncccC = .

Furthermore, the GALS and VFD are implemented in our target platform. All those
cores are partitioned into VFDs:dn }...,,{ 21 dndddD = . The domain contains

processor cores, and then we have: .

thi id

idcn ∑
=

=
dn

i
idcncn

1

In the target system, each core has two states: sleep and active. If all tasks on a
core finish their executions, this core can be placed into the sleep state for the sake of
energy reduction. Further, a VFD is considered to be put in the sleep mode if all cores
on this VFI are in the sleep state. A VFD can control its supply voltage and operating
frequency independently of other VFDs, while all active cores in the same VFD must
share the same operating frequency at any given time. Here, the maximum operating
frequency of a core is normalized to 1.

2.2 Energy and Power Model

As for the CMOS-based processor, the total power consumption consists of dynamic
power and leakage power . The detailed energy and power model used in
this paper can be found in [

dynamicP leakageP
14]. For some very large scale integrated systems,

is also a critical issue because the off-state current increases about five times
per generation [

leakageP
18]. However, the dynamic power still dominates the overall energy

consumed by a processor core [19]. Therefore, we only target reducing the dynamic
energy consumptions in this paper.

For simplicity, we assume that the overheads of voltage/frequency transition and
job migration are negligible in this paper. However, these overheads can be easily
incorporated into the processing time of a task, if necessary.

2.3 Task Model

The task set to be scheduled is composed of n periodic tasks: },...,,{ 21 ntttT = . Each
task is associated with a tuple , where denotes the period of
task and the worst-case execution time (WCET) of at the maximum processing
speed. Here, the period of any task is assumed to be the same as the relative
deadline of this task. Then, the load of task , , is defined as . Each

invocation of the task is called a job and the invocation of task is denoted by .
Furthermore, every task starts to release jobs at time 0. If the number of tasks mapped

onto is , then we can obtain: .

it },{ ii wp ip

it iw it

it

it itl ii pw /
thk it ikj

ic ictn ∑=
=

cn

i
ictnn

1

We use ()itℜ to indicate the core onto which task is mapped. It is noteworthy that
all jobs invoked by any task must execute on core

it

it ()itℜ except for job migrations.

Then, the utilization of core , , can be defined as: . ic icu
()
∑=

=ℜ ik ct
ki tlcu

Thus, the average utilization of a VFD is:iacu id i
dc

ki dcncuacu
ik

∑=
∈

, where

is the number of cores in the VFD . idcn id
It is assumed that there are no interdependencies among the tasks, that is, no

common resources are shared by these tasks and they have no precedence
relationships. The tasks are scheduled by the EDF in a preemptive way on any
processor core. Due to the repeatable job release of a task, we only need to
concentrate on the schedule within the interval of a hyperperiod. In addition, the
schedule is calculated off-line once and for all such that the on-line scheduling cost
can be reduced.

Since data transfer across different VFD will result in more energy consumption as
well as a high overhead, the job migration is only permitted within the same VFD by
our approach.

3 Motivational Examples

In this section we give the motivational examples and introduce the SimpleVS that
extends the static voltage scaling to the multicore platform.

For the target multicore system, each VFD can control its supply voltage and
operating frequency independently of other VFDs. Further, as long as the schedule of
each VFD is carried out, the global schedule result can be easily obtained. Hence, for
simplicity, we will focus on the energy-efficient schedule within one VFD.

Consider scheduling six real-time periodic tasks in a VFD with three cores. The
parameters of the tasks are listed in Table 1. It is easy to see that the hyperperiod of
this task set is 12. Since we mainly concern with the schedule during a hyperperiod,
the tasks are scheduled within the interval [0, 12].

Table 1. Parameters of the task set

Task ID WCET Period Utilization
1 5 12 5/12
2 1 3 1/ 3
3 1 4 1/ 4
4 1 6 1/ 6
5 1 6 1/ 6
6 1 6 1/ 6

Table 2. Task-core mapping

Core ID Task ID Utilization
1 1, 6 7/12
2 2, 5 1/ 2
3 3, 4 5/12

The task-core mapping listed in Table 2 is determined by the Worst-Fit Decreasing
(WFD) policy (see Subsection 4.2). As can be seen, the heaviest- loaded core among
all cores is core 1 and the corresponding utilization of core 1 is 7/12.

(a) (b)

Fig. 1. (a) Schedule the tasks by EDF algorithm without the voltage scaling. (b) Schedule the
tasks with the static SimpleVS algorithm.

In Fig. 1, each job is denoted by a block labeled with the job ID and its absolute
deadline. For instance, the block with label “ ” denotes the job with its
absolute deadline 12. Fig. 1 (a) shows the EDF schedule of the task set without
energy-saving policy, where all cores work at the maximum operating frequency. In
contrast, as shown in Fig. 1 (b), SimpleVS algorithm chooses the maximum
utilization among all cores as the shared operating frequency of this VFD so as to
conserve energy, while ensuring the schedulability of the task set. Consequently, due
to the frequency synchronization, the operating frequencies of all cores in the VFD
are scaled down to 7/12. Then, the slack on core 1 is fully utilized. In Fig. 1 (b),
73.6% dynamic energy can be saved by the SimpleVS scheduling versus the NonVS
scheduling as shown in Fig. 1 (a).

12|11j 11j

However, we can observe from Fig. 1(b) that, there are still some slack times
unused on the cores with light utilizations (e.g., core 2 and 3) because of the
frequency synchronization. As a matter of fact, these slack times can be utilized to
further reduce the energy consumption. To this end, we propose the slack reclamation
approach.

4 Hyperperiod-Based Multicore Voltage Scaling Schedule

This section describes in detail our proposed hyperperiod-based multicore
energy-efficient voltage scaling scheduling algorithm (called as HMVS). We first
present the high-level description of our approach.

4.1 The High Level Description

The proposed approach is based upon an EDF schedule. Then, the slack times are
reclaimed and utilized by two strategies, i.e., SimpleVS and slack reallocation, to
conserve energy.

The high level description of the proposed HMVS is shown in Algorithm 1. First,
all tasks are mapped onto the cores by the heuristic of WFD in line 1 (see Subsection

4.2). Then, we use two policies to reclaim the slack times for the energy savings on a
per-VFD basis. Finally, the execution speed is calculated and assigned to each job.

In line 3, the tasks are scheduled by the NonVS (the EDF without DVFS) algorithm
on each core. Next, the SimpleVS policy tries to utilize the slack times by selecting
the maximum utilization among all cores as the shared operating frequency of this
VFD. However, the majority of the slack times are usually generated closely to the
end of a hyperperiod, which prevents the slack reallocation from effectively exploring
these slack times. For this reason, line 5 tries to move the slack times forward. At the
same time, the start times of some jobs are postponed. Fig. 2 (a) (see Subsection 4.4)
shows the scenario after the slack shifts have been applied. Then, the slack
reallocation in line 6 strives to redistribute the slack times that are not reclaimed by
the SimpleVS uniformly to the cores by appropriate job migrations.

4.2 Task-Core Mapping Heuristic

Many heuristics have been introduced to map the tasks onto processors, such as
Best-Fit Decreasing (BFD), First-Fit Decreasing (FFD), Next-Fit Decreasing (NFD),
Worst-Fit Decreasing (WFD), etc. Aydin and Yang [20] pointed out that balancing
the utilizations of the processing elements facilitates maximizing the energy savings.
They further claimed that the WFD enables to generate a better balanced partition
than other well-known heuristics. Therefore, we choose the WFD as the policy of
task-core assignment for our study.

Before the tasks are assigned to the processor cores, they are sorted in a
non-increasing order of their loads (i.e.,). Next, these ordered tasks are partitioned
into subsets by the WFD. Then, we allocate these subsets of tasks to
the processor cores respectively. Consequently, a quasi-balanced task-core
mapping can be obtained.

tl
cn

cn

4.3 Moving Slack Times Forward

Observe that the slack times are usually distributed closely to the end of the
hyperperiod, which prevents efficient slack utilizing. Hence, we adjust the slack times
in the original schedule, while maintaining the schedulability of these tasks.

As mentioned before, we off-line simulate the dynamic executions of the tasks, and
record the necessary information of jobs on each core. Assume that the schedule

determined by the SimpleVS on a core is represented by continuous time
slices, . These time slices are sorted in an increasing order
of their start times. The time interval of a slice is denoted
by . Since the preemptive scheduling is applied, a job may
execute in several time slices because of the job preemptions. A time slice has a
predecessor and a successor except that it is the first or the last time
slice of the schedule. Then we have:

ic][itsn
=Schedci . },...,,{][21 itsntststs

ts
].,.[endtimetsstarttimets

ts
previousts. nextts.

=starttimets. ,.. endtimepreviousts =endtimets.
. starttimenextts ..

Each time slice has two states: or idle . If there exists one job executing
during the time slice ts , then we say this time slice is active:

active
activestatets =. . Further,

this job and its absolute deadline are represented by and ,
respectively. Otherwise, this time slice is in the idle status in the sense that it is a
slack:

jobts. deadlinejobts ..

idlestatets =. . Algorithm 2 describes how our proposed slack-shifting policy
adjusts the schedule on a core.

The slack adjustment algorithm tries to postpone the start times of job executions
during the active time slices, while the idle time slices (i.e., slack times) are moved
“forward” at the same time. The shifting operation is performed from the last time
slice to the first one on each core. From line 4 to line 8, the algorithm shifts the
current time slice backward when the following three conditions are satisfied
simultaneously: 1) the current time slice is active, 2) the next one is idle, and 3) the
absolute deadline of the current-running job is greater than the completion time of the
current time slice. The algorithm delays the active time slice while ensuring that it
will complete execution before (line 5). Thus, it can be inferred that
this adjustment does not violate the schedulability of any task. Fig. 2 (a) illustrates the
scenario after the slack adjustment has been applied.

ts

ts
deadlinejobts ..

4.4 Slack Reallocation

The slack reallocation is adopted after the slack adjustment. First, the whole
hyperperiod is divided into segments for each VFD prior to the slack reallocation.
Then the slack reallocation is performed on a per-segment basis. This policy attempts

to redistribute the available slack times to the cores by job migrations so that a lower
operating frequency of a VFD can be obtained.

We divide the hyperperiod into sn consecutive and non-overlapped segments in a
VFD: . The segment starts from and ends at

. Suppose that is determined by
},...,{ 21 snsgsgsgSG = isg starttimesgi .

endtimesgi . SG 1+sn boundary points:
. The start and end time of the segment are denoted by and

(), respectively. The boundary points are defined as following:
},...,,{ 10 snbbbB = isg 1−ib

ib sni ≤≤1

,,00 dhyperperiobb sn == (1)

,0},...|.min{ 1
1

sniidlestaetsbstarttimetsSchedctsstarttimetsb i

dcn

i
ii <<=∧>∧∈= −

=
U

(2)

where is the number of cores contained in the VFD, and is defined in
Section 4.3. Thus, can be determined by (1) and (2).

dcn Schedci .
SG

The reason the segments are defined in such a way is that when a job executes,
only the available slack prior to its execution is allowed to be used by this job to
lower its executing speed. Therefore, the schedulability of the task set can be
guaranteed.

(a) (b)

Fig. 2. (a) Adjust the slack times by shifting them forward. (b) Reallocate the slack times and
scale down the operation frequency in [0, 4].

After the segments have been determined, some time slices may be separated by
these segments as well (e.g., on core 2). We re-partition these time slices such that
each time slice only belongs to one segment. As shown in Fig. 2 (b), the interval of
the hyperperiod [0, 12] is divided into 4 segments by the dashed lines.

51j

In multicore systems, all cores usually share the last-level cache and main memory.
This implies the cost of context switching caused by the migration of a job from a
core to another is relative low. However, we constrain frequent job migrations to
reduce the on-line overhead. Hence, the degree of un- balancedness for a
segment

ub
sg in a VFD is introduced to help improve the trade-off between the

overhead and the energy-saving for each segment:

%,100
}1|max{

}1|min{}1|max{
×

≤≤
≤≤−≤≤

=
dcnislack

dcnislackdcnislack
ub

i

ii (3)

where is the available amount of slack times on duringislack ic sg , and is the
number of cores contained in the VFD. The job migration is applied only when the
degree of unbalancedness is greater than a given threshold value. Further, the number
of migrations for each job is constrained by an upper bound during its execution in
order to reduce the overhead caused by the job migrations. Hence, the trade-off
between the energy-saving and the overhead can be flexibly controlled.

dcn

mb

 In this work, the threshold of the degree of unbalancedness and the upper bound
of migrations for a job are set to 10% and 3, respectively.

ub
mb

Algorithm 3 illustrates the slack reallocation within a VFD . The slack
reallocation is performed on a per-segment basis (line 1). The amount of slack on
each core in VFD and the ub within the current segment

id

id sg are calculated in line 2
and line 3, respectively. Then, the total amount of slack times in VFD is summed
and the amount of slack that can be ideally distributed to each core is calculated in
line 4. From line 5 to line 11, the algorithm strives to balance the slack times on the
cores in within the current segment

id

id sg until ub is less than the given threshold
10%. If the current core has more slack than the ideal slack, then line 7 selects the
core with the minimum slack. Next, line 8 tries to perform the job migrations
from to so as to reduce the slack on to the ideal slack. Thus, the slack times
distributed on all cores can be more evenly.

jc

minc

minc jc jc

It is noteworthy that the job migrations are on the basis of maintaining the
schedulability. Further, unlike [17], we assume that one job is disallowed to execute
on different cores at the same time (i.e., serial-run-rule). As a result, after the slack
reallocation is processed, the slack times are not necessarily distributed absolutely
uniformly on the cores in the system.

5 Experimental Results

In this section, the simulation experiments are used to evaluate the performance of the
proposed scheduling approach with respect to energy consumption. In this
experiment, the simulator scheduled the randomly generated tasks and recorded the
energy consumptions within a hyperperiod under different scheduling policies, i.e.,
NonVS, SimpleVS, and the proposed scheduling with slack reallocation (HMVS).
Usually, the current CMOS- based systems provide discrete operating
voltage/frequency. However, we still evaluate the performance of our algorithm under
continuous voltage/ frequency levels as well as discrete voltage/frequency levels in
this experiment. The parameters and are set to 10% and 3, respectively.
Namely, the slack reallocation and job migrations are performed only when the
degree of unbalancedness (defined in Subsection 4.4) is greater than 10% and one job
cannot be migrated more than 3 times. Recall that the maximum frequency of any
processor core is normalized to 1. In the case of discrete frequency levels, seven
different frequency levels were assumed to be supported by the target system:

.

ub mb

,73.0,64.0,55.0,36.0{ }0.1,91.0,82.0
In Fig. 3(a), the normalized energy consumed by the SimpleVS and the NonVS are

compared. It can be seen that the SimpleVS achieved significant energy savings
against the NonVS. Furthermore, more energy-saving was achieved by the scheduling
with the continuous operating frequency selection, while the performance
improvement decreases with increasing the average core utilization . In the case
of the continuous frequency scaling, more than 99% dynamic energy was saved by
the SimpleVS when is between 0 and 0.1. Whereas only less than 7% energy
could be saved when was in the range of 0.9-1.0. In contrast, the energy
consumptions saved by the SimpleVS with the discrete frequency scaling are 88%
and 0, respectively.

acu

acu
acu

0

0.2

0.4

0.6

0.8

1

1.2

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Average Core Utilization

No
r
ma
li
z
ed
 E
ne

rg
y

NonVS SimpleVS (Continuous Fre) SimpleVS (Discrete Fre)

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 16

Core Number Per Domain

N
o
rm
a
l
i
ze
d

En
e
r
g
y

HMVS(Continuous Fre) HMVS(Discrete Fre)

(a) (b)

Fig. 3. (a) Normalized energy consumption of NonVS and SimpleVS schedule. (b) Normalized
energy consumption of HMVS with continuous and discrete frequency selection, .)4.0,2.0(∈acu

Fig. 3(b) shows the energy consumption of the proposed scheduling algorithm with
the continuous and the discrete frequency selection. The average utilization acu was
in the range , and the energy consumptions of their corresponding SimpleVS]4.0,2.0[

schedules are normalized to 1. In contrast to the discrete frequency selection, the
HMVS algorithm gains about 5% to 11% more energy saving with the continuous
frequency selection. This is because that the later is more flexible in selecting the
operating frequency and can utilize the slack times more efficiently to save energy.

As most of the state-of-the-art realistic multicore systems can adjust their operating
voltages and executing speeds discretely, we will focus on the experiment based on
the discrete frequency selection hereafter. In this case, when our algorithm assigns an
operating frequency to a processor core, the nearest discrete frequency no less than
the operating frequency which is calculated under the continuous voltage/frequency
levels is selected.

The impact of various VFD granularities on the energy consumption is depicted in
Fig. 4. In general, the performance improvement brought by the HMVS versus the
SimpleVS begins to decrease with a coarser granularity of a VFD. The reason is that,
it is usually easier for HMVS to reallocate the slack times evenly to the cores in a
fine-grained VFD than in a coarse-grained VFD. Hence, multicore systems with
fine-grained VFDs can help improve the effectiveness of the slack utilization and can
lead to more energy savings. We can find from Fig. 4 (a) that, when acu falls into the
range of , 22% energy was saved by HMVS in a system with 4 cores in a
VFD, while only 1% energy could be saved when a VFD contains 16 cores in the
target system.

]4.0,3.0[

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 16

Core Number Per Domain

N
o
r
m
a
l
i
z
e
d

E
n
e
r
g
y

SimpleVS HMVS

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 16

Core Number Per Domain

N
o
r
m
a
l
i
z
e
d

E
n
e
r
g
y

SimpleVS HMVS

(a) (b)

Fig. 4. Normalized energy consumption under different VFD granularity (a) The average core
utilization]4.0,3.0[∈acu . (b) The average core utilization]7.0,6.0[∈acu .

Moreover, by the comparison between Fig. 4(a) and (b) we can observe the
influence of upon the energy saving. In principle, the energy consumption
increases with an increasing . This is because that there are more available slack
times on the core with a lower utilization than those on the core with higher
utilization, which can be used to reduce the energy consumption. As far as the system
in which each VFD contains 4 cores is concerned, the HMVS saved 22% energy
compared with the SimpleVS when the acu is between 0.3 and 0.4. On the contrary,
only 4.7% energy could be saved when the falls into the range .

acu
acu

acu]7.0,6.0[
Fig. 5 presents the energy consumption of the proposed algorithm with various

. Note that the energy consumption of the two scheduling policies are the same
when is smaller than 0.35. The reason is that the minimum discrete executing
acu

acu

frequency of the active core is 0.36 in the experiment. The operating frequency could
not be decreased any more even if the utilizations of all cores are quite low (i.e., less
than 0.36). Therefore, the discrete frequency levels will affect the energy saving
efficiency to a certain extent. As Fig. 5 (a) shows, our algorithm achieved better
energy conservations when is between 0.3 and 0.4. acu

It can also been observed by comparing Fig. 5(a) and (b) that the system with finer
grained VFDs can achieve more energy saving. When the falls into the
range , compared with NonVS schedule, the HMVS algorithm can save
energy by 22% and 1% if each VFD contains 4 and 16 cores, respectively.

acu
]4.0,3.0[

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0-0.3 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Average Core Load

No
r
ma
l
iz
e
d

En
e
rg
y

SimpleVS HMVS

0.75

0.8

0.85

0.9

0.95

1

1.05

0-0.3 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Average Core Load

No
r
ma
l
iz
e
d

En
e
rg
y

SimpleVS HMVS

(a) (b)

Fig. 5. Normalized energy consumption under different core utilizations. (a) Each voltage/
frequency domain contains 4 cores. (b) Each voltage-frequency domain contains 16 cores.

6 Conclusions and Future Work

In this paper, the problem of energy-efficient scheduling for real-time periodic tasks
on multicore systems is studied. The static voltage/frequency scaling of the multicore
system (SimpleVS) is firstly introduced. SimpleVS selects the utilization of the
heaviest-loaded core in a VFD as the operating frequency of each core in this VFD.
Next, based upon the SimpleVS, the slack reallocation is proposed to take use of slack
times under the constraint of the frequency synchronization and real-time
schedulability. The slack reallocation tries to uniformly redistribute the slack times to
the cores on the same VFD so that the synchronous executing frequency can be
lowered. Consequently, energy savings and timeliness requirements can be satisfied
concurrently.

The experimental results show that, as far as multicore systems with discrete
frequency selection is concerned, the proposed policy can reduce the dynamic energy
by up to 22% versus the static policy when the system is under-utilized.

It should be noted that as the proposed scheduling algorithm is based on the worst
case executing time (WCET) of tasks and the reclamation of static slack times.
However, there are usually dynamic slack times at run-time caused by the difference
between the WCET and the actual executing time (AET). We will target studying the
on-line schedule dealing with the dynamic slack reclamation.

Acknowledgments

This work is supported in part by the NSF of China under grants No.60503048, by
China Post-Doc Foundation (20070410280), by State Key Lab for Novel Software
Technology, Nanjing University (kfkt2009b13), and by the US National Science
Foundation under grant number CCF-0541403.

References

1. Multi-Core Processors—The Next Evolution in Computing, white paper,
Advanced Micro Devices, Inc., http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/IDC_Multi-Core_64-bit_White_Paper.pdf

2. Pillai, P., Shin, K.G.: Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems. In: Proc. 18th ACM Symp. Operating Systems
(SOSP ’01), pp. 89-102, (2001)

3. Lee, J., Kim, N.: Optimizing total power of many-core processors considering
voltage scaling limit and process variations. In: Proceedings of the 14th
ACM/IEEE Int’l Symp. Lower-Power Electronics and Design. (2009)

4. Yang, C.Y., Chen, J.J., Kuo, T.W.: Energy-efficiency for multiframe real-time
tasks on a dynamic voltage scaling processor. In: Int’l Conf. on Hardware
Software Codesign. (2009)

5. Han, J.J., Li, Q.H.: Dynamic Power-Aware Scheduling Algorithms for Real-Time
Task Sets with Fault-Tolerance in Parallel and Distributed Computing
Environment. In: 19th IEEE International Parallel and Distributed Processing
Symposium, (2005)

6. Zhuo J., Chakrabarti, C.: Energy-efficient Dynamic Task Scheduling Algorithms
for DVS Systems. In: ACM Trans. Embedded Computing Systems. 2008, 7(2).
(2008)

7. Magklis, G., Semeraro, G., Albonesi, D.H., Dropsho, S.G. et al.: Dynamic
Frequency and Voltage/frequency scaling for a Multiple-Clock- Domain
Microprocessor. In: IEEE Micro, 2003, 23(6): 62-68. (2006)

8. Yang, C., Chen, J., Luo, T.: An Approximation Algorithm for Energy-Efficient
Scheduling on a Chip Multiprocessor. In: Proc. Design, Automation and Test in
Europe Conf. and Exhibition (DATE 2005), pp. 468–473. (2005)

9. Iyer, A., Marculescu, D.: Power and Performance Evaluation of Globally
Asynchronous Locally Synchronous Processors. In: ISCA, 2002, pp. 652-661.
(2002)

10. Semeraro, G., Magklis, G., Balasubramonian, R., et al.: Energy-Efficient
Processor Design Using Multiple Clock Domains with Dynamic Voltage and
Frequency Scaling. In: Proceedings of the 8th International Symposium on
High-Performance Computer Architecture (ISHPC), 2002, pp. 29-40. (2002)

11. Semeraro, G. P., Albonesi, D.H., Magklis, G. et al.: Hiding Synchronization
Delays in GALS Processor Microarchitecture. In: ASYNC, 2004, pp. 159-169.
(2004)

12. Niyogi, K., Marculescu, D.: Speed and voltage selection for GALS systems based
on voltage/frequency islands. In: Proc. ASP-Des. Autom. Conf., Jan. 2005, pp.
292–297. (2005)

13. Marculescu, D., Talpes, E.: Variability and energy awareness: A micro-
architecture-level perspective. In: Proc. Des. Autom. Conf., Jun. 2005, pp. 11–16.
(2005)

14. Seo, E., Jeong, J., Park, S., Lee, J.: Energy efficient Scheduling of Real-Time
Tasks on Multicore Processors. In: IEEE Trans. Parallel and Distributed Systems,
2008, 19(11):1540 –1552. (2008)

15. Langen, P.D., Juurlink, B.: Leakage-Aware Multiprocessor Scheduling for Low
Power. In: Proc. 19th IEEE International Parallel and Distributed Processing
Symposium (2006)

16. Bautista, D., Sahuquillo, J., Hassan, H. et al.: A simple power-aware scheduling
for multicore systems when running real-time applications: In: Proc. IEEE
International Parallel and Distributed Processing Symposium (2008)

17. Lee, W.Y.: Energy-Saving DVFS Scheduling of Multiple Periodic Real-Time
Tasks on Multi-core Processors. In: Proc. IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, 2009, pp. 216-223. (2009)

18. Borkar, S.: Design challenges of technology scaling. In: IEEE Micro, vol. 19, no.
4 1999. pp. 23-29. (1999)

19. Sengupta, D., Saleh, R.A.: Application-Driven Voltage-Island Partitioning for
Low-Power System-on-Chip. In: IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 28, no. 3, pp. 316–326. (2009)

20. Aydin, H., Yang, Q.: Energy-Aware Partitioning for Multiprocessor Real-Time
Systems. In: Proc. Int’l Parallel and Distributed Processing Symp. (2003)

