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Abstract. Nowadays, energy savings have become one of the most critical 
issues. In this paper, we propose an energy-efficient approach to scheduling 
periodic real-time tasks in the multicore context. Within a voltage/frequency 
domain (VFD), a simple static voltage/frequency scaling schedule (SimpleVS) 
is first introduced to select the utilization of the heaviest-loaded core as the 
shared operating frequency of this VFD. Next, the slack reallocation policy is 
proposed to further reclaim slack times while satisfying timeliness 
requirements. The slack reallocation strives to redistribute the slack times 
uniformly to the cores on the same VFD by appropriate job migrations. 
Experimental results show that compared with the static frequency schedule, 
our proposed policy can achieve energy savings up to 22 percent when the 
system is under-utilized. 

Keywords: energy-efficient, multicore systems, real-time scheduling 

1  Introduction 

Nowadays power has become the most critical design constraint. The increasing 
on-chip power dissipation and the demand of portability make low power 
consumption one of the primary circuit and system design goals. This not only applies 
to battery powered devices, but also to desktop computers and high-performance 
systems.  

Many solutions have been proposed to mitigate the energy pressure. The processor 
industry is now shifting towards Chip Multi-Processors (CMP) architectures [1] by 
integrating several cores onto a single chip to reduce the power consumption. 
Multicore systems usually can deliver a higher throughput at the cost of lower power 
consumption than uniprocessor systems. As the demand for energy efficiency grows, 
multicore processors have been widely used in real-time systems. It is well known 
that the dynamic voltage/ frequency scaling (DVFS) [2- 6] is one of the most 
promising solutions to optimizing the energy consumption, which scales the operating 
voltage and clock frequency of processors together to meet dynamic performance 
demands. Pillai and Shin [2] present a class of real-time DVS (RT-DVS) algorithms, 



including the static voltage scaling, cycle-conserving RT-DVS and Look-ahead 
RT-DVS, which modify the OS’s real-time scheduler and task management service to 
provide energy savings while maintaining real-time deadline guarantees. However, in 
the context of multicore systems, all active cores need to work at the same operating 
voltage/frequency [7,8]. This characteristic of the multicore system is referred to as 
frequency synchronization in this work. This implies that when the operation 
frequency is scaled on one core, the performances of the other cores are intuitively 
influenced. For instance, if a low speed is selected for a processor core to aggressively 
reduce the energy consumption, the jobs running on other cores may miss their 
deadlines if there are heavy workloads mapped onto those processor cores.  

Recently, Globally Asynchronous, Locally Synchronous (GALS) [9- 12] design is 
being widely investigated as an alternative solution to the totally synchronous 
voltage/frequency design, because it inherits the advantages of both synchronous and 
asynchronous design. The GALS technology makes the clock distribution and timing 
closure more manageable. On the other hand, the GALS can be well adapted to the 
voltage-frequency island (VFI) technology [12,13].  Multicore systems implemented 
with the GALS are partitioned into several voltage/frequency domains (VFD). In such 
systems, each core belongs to a specific VFD, while the active cores within the same 
VFD must share the same supply voltage and operating frequency. The operating 
frequency/voltage of each domain can be adjusted independently of other domains so 
as to meet the dynamic performance demands. Moreover, considering the fact that the 
processor cores in a VFD-based GALS system can be easily put into power saving 
state with the clock gating technique, an idle processor core or even a complete 
domain can be placed into the sleep mode to further reduce both the dynamic and the 
leakage power [12].  

Some energy-aware approaches using DVFS have been presented to schedule 
real-time tasks on multicore architectures. Yang et al. [8] proved that the 
energy-efficient scheduling of periodic real-time task set in the multicore context is an 
NP-hard problem. Seo et al. [14] presented a dynamic repartition algorithm for 
periodic tasks to balance the system load as well as to reduce the leakage power at 
run-time. Pepijn et al. [15] tried to reduce the leakage current, supply voltage and 
clock frequency in an integrated way in order to gain the maximum system energy 
savings. Dinna et al. [16] proposed a power-aware real-time scheduler for the 
multicore multithreaded processor, which implements dynamic voltage scaling 
techniques. But they aimed at the soft real-time applications and supposed that all 
cores in the system shared a global frequency. Wan [17] addressed an energy-saving 
scheduling scheme of periodic real-time tasks with the DVFS on the lightly loaded 
multicore platform. However [17] assumed that the tasks can be divided into multiple 
independent subtasks and concurrently executed in parallel on multiple cores. It is 
also presumed there are more processing cores than running tasks and each core could 
adjust its operating frequency independently.  

The previous studies usually concentrated on two power management mechanisms. 
They either assumed that each processor core can adjust its operating frequency 
independently of the other cores, or presumed the global frequency synchronization, 
namely, all active cores in the system share the same operating voltage/frequency.  

In this paper, we will address the problem of the energy-efficient scheduling for 
periodic real-time tasks in the VFD-based multicore system. The proposed scheduling 



algorithm strives to balance the slack times on the cores in VFDs so as to scale down 
the operating frequency and reduce energy consumptions, while meeting timing 
constraints.  

Given a set of periodic real-time tasks, we define the hyperperiod as the least 
common multiple (LCM) of the periods of these tasks. Intuitively, each task releases 
its invocations at the same relative phases of different hyperperiods. For this reason, 
based upon the worst-case execution time of the tasks, we off-line simulate the 
dynamic executions of the tasks in the interval of one hyperperiod, then off-line 
calculate and record the start times as well as the executing speeds of the invocations 
of each task. At run-time, for each invocation of a task, the scheduler only needs to 
look up its scheduling information from a pre-determined table. As a result, the 
on-line scheduling overhead can be significantly reduced. 

For uniprocessor systems, the static voltage scaling mechanism is proposed in [2] 
to select the lowest possible operating frequency that will allow the scheduler to meet 
all the deadlines for the given task set. This static policy set frequency statically, and 
the frequency will not be changed unless the task set is changed. We will extend the 
static voltage scaling policy to the multicore platform (called SimpleVS). The 
SimpleVS algorithm selects the maximum utilization among all cores in a VFD as the 
shared operating frequency, such that the frequency synchronization of the VFD, the 
deadline constraints of all tasks and the energy savings can be met simultaneously. 

Based on the SimpleVS schedule, we propose a slack reallocation algorithm to 
further reclaim the slack times to conserve energy. This policy adjusts the slack times 
on each core and divides the schedule into segments. Then, for each segment, it seeks 
to balance the slack times on cores within a VFD via appropriate job migrations. 
Hence, almost the same amount of slack time will be allocated to each core in a VFD, 
thereby a lower operating frequency can be selected for this VFD so as to save 
energy.  

We evaluated the performance of our proposed algorithm through extensive 
simulation experiment under different situations. The results show that compared with 
the static voltage scaling schedule (SimpleVS), the proposed slack reallocation policy 
can gain the energy savings by about 22% under low-loaded conditions. 

The rest of this paper is organized as follows: Section 2 describes the system 
models, including the energy consumption and the task set. Section 3 introduces the 
static SimpleVS and gives motivational examples to illustrate the target problem. The 
proposed energy-efficient scheduling algorithm and the experimental results are 
discussed in detail in Section 4 and Section 5, respectively. Section 6 concludes this 
paper and offers our future work. 

2  Research Model 

2.1  System Model 

In this research, we consider the multicore system with voltage-scalable processor 
elements for our study. There are cn identical cores in the system: }...,,{ 21 cncccC = . 



Furthermore, the GALS and VFD are implemented in our target platform. All those 
cores are partitioned into VFDs:dn }...,,{ 21 dndddD = . The domain contains 

processor cores, and then we have: . 
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In the target system, each core has two states: sleep and active. If all tasks on a 
core finish their executions, this core can be placed into the sleep state for the sake of 
energy reduction. Further, a VFD is considered to be put in the sleep mode if all cores 
on this VFI are in the sleep state. A VFD can control its supply voltage and operating 
frequency independently of other VFDs, while all active cores in the same VFD must 
share the same operating frequency at any given time. Here, the maximum operating 
frequency of a core is normalized to 1. 

2.2  Energy and Power Model 

As for the CMOS-based processor, the total power consumption consists of dynamic 
power and leakage power . The detailed energy and power model used in 
this paper can be found in [

dynamicP leakageP
14]. For some very large scale integrated systems, 

is also a critical issue because the off-state current increases about five times 
per generation [

leakageP
18]. However, the dynamic power still dominates the overall energy 

consumed by a processor core [19]. Therefore, we only target reducing the dynamic 
energy consumptions in this paper. 

For simplicity, we assume that the overheads of voltage/frequency transition and 
job migration are negligible in this paper. However, these overheads can be easily 
incorporated into the processing time of a task, if necessary.  

2.3  Task Model 

The task set to be scheduled is composed of n periodic tasks: },...,,{ 21 ntttT = . Each 
task is associated with a tuple , where denotes the period of 
task and the worst-case execution time (WCET) of at the maximum processing 
speed. Here, the period of any task is assumed to be the same as the relative 
deadline of this task. Then, the load of task , , is defined as . Each 

invocation of the task is called a job and the invocation of task is denoted by . 
Furthermore, every task starts to release jobs at time 0. If the number of tasks mapped 

onto is , then we can obtain: . 
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We use ( )itℜ to indicate the core onto which task is mapped. It is noteworthy that 
all jobs invoked by any task must execute on core

it

it ( )itℜ  except for job migrations. 

Then, the utilization of core , , can be defined as: . ic icu
( )
∑=

=ℜ ik ct
ki tlcu



Thus, the average utilization of a VFD is:iacu id i
dc
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is the number of cores in the VFD . idcn id
It is assumed that there are no interdependencies among the tasks, that is, no 

common resources are shared by these tasks and they have no precedence 
relationships. The tasks are scheduled by the EDF in a preemptive way on any 
processor core. Due to the repeatable job release of a task, we only need to 
concentrate on the schedule within the interval of a hyperperiod. In addition, the 
schedule is calculated off-line once and for all such that the on-line scheduling cost 
can be reduced. 

Since data transfer across different VFD will result in more energy consumption as 
well as a high overhead, the job migration is only permitted within the same VFD by 
our approach.  

3  Motivational Examples 

In this section we give the motivational examples and introduce the SimpleVS that 
extends the static voltage scaling to the multicore platform.  

For the target multicore system, each VFD can control its supply voltage and 
operating frequency independently of other VFDs. Further, as long as the schedule of 
each VFD is carried out, the global schedule result can be easily obtained. Hence, for 
simplicity, we will focus on the energy-efficient schedule within one VFD. 

Consider scheduling six real-time periodic tasks in a VFD with three cores. The 
parameters of the tasks are listed in Table 1. It is easy to see that the hyperperiod of 
this task set is 12. Since we mainly concern with the schedule during a hyperperiod, 
the tasks are scheduled within the interval [0, 12].  

Table 1. Parameters of the task set 

Task ID WCET Period Utilization
1 5 12 5/12 
2 1  3 1/ 3 
3 1  4 1/ 4 
4 1  6 1/ 6 
5 1  6 1/ 6 
6 1  6 1/ 6 

Table 2. Task-core mapping 

Core ID Task ID Utilization 
1 1, 6 7/12    
2 2, 5 1/ 2 
3 3, 4 5/12 

 
 
 

The task-core mapping listed in Table 2 is determined by the Worst-Fit Decreasing 
(WFD) policy (see Subsection 4.2). As can be seen, the heaviest- loaded core among 
all cores is core 1 and the corresponding utilization of core 1 is 7/12.  



(a) (b) 

Fig. 1. (a) Schedule the tasks by EDF algorithm without the voltage scaling. (b) Schedule the 
tasks with the static SimpleVS algorithm. 

In Fig. 1, each job is denoted by a block labeled with the job ID and its absolute 
deadline. For instance, the block with label “ ” denotes the job with its 
absolute deadline 12. Fig. 1 (a) shows the EDF schedule of the task set without 
energy-saving policy, where all cores work at the maximum operating frequency. In 
contrast, as shown in Fig. 1 (b), SimpleVS algorithm chooses the maximum 
utilization among all cores as the shared operating frequency of this VFD so as to 
conserve energy, while ensuring the schedulability of the task set. Consequently, due 
to the frequency synchronization, the operating frequencies of all cores in the VFD 
are scaled down to 7/12. Then, the slack on core 1 is fully utilized. In Fig. 1 (b), 
73.6% dynamic energy can be saved by the SimpleVS scheduling versus the NonVS 
scheduling as shown in Fig. 1 (a). 

12|11j 11j

However, we can observe from Fig. 1(b) that, there are still some slack times 
unused on the cores with light utilizations (e.g., core 2 and 3) because of the 
frequency synchronization. As a matter of fact, these slack times can be utilized to 
further reduce the energy consumption. To this end, we propose the slack reclamation 
approach. 

4  Hyperperiod-Based Multicore Voltage Scaling Schedule 

This section describes in detail our proposed hyperperiod-based multicore 
energy-efficient voltage scaling scheduling algorithm (called as HMVS). We first 
present the high-level description of our approach. 

4.1  The High Level Description 

The proposed approach is based upon an EDF schedule. Then, the slack times are 
reclaimed and utilized by two strategies, i.e., SimpleVS and slack reallocation, to 
conserve energy. 

The high level description of the proposed HMVS is shown in Algorithm 1. First, 
all tasks are mapped onto the cores by the heuristic of WFD in line 1 (see Subsection 



4.2). Then, we use two policies to reclaim the slack times for the energy savings on a 
per-VFD basis. Finally, the execution speed is calculated and assigned to each job. 

 

In line 3, the tasks are scheduled by the NonVS (the EDF without DVFS) algorithm 
on each core. Next, the SimpleVS policy tries to utilize the slack times by selecting 
the maximum utilization among all cores as the shared operating frequency of this 
VFD. However, the majority of the slack times are usually generated closely to the 
end of a hyperperiod, which prevents the slack reallocation from effectively exploring 
these slack times. For this reason, line 5 tries to move the slack times forward. At the 
same time, the start times of some jobs are postponed. Fig. 2 (a) (see Subsection 4.4) 
shows the scenario after the slack shifts have been applied. Then, the slack 
reallocation in line 6 strives to redistribute the slack times that are not reclaimed by 
the SimpleVS uniformly to the cores by appropriate job migrations.  

4.2  Task-Core Mapping Heuristic 

Many heuristics have been introduced to map the tasks onto processors, such as 
Best-Fit Decreasing (BFD), First-Fit Decreasing (FFD), Next-Fit Decreasing (NFD), 
Worst-Fit Decreasing (WFD), etc. Aydin and Yang [20] pointed out that balancing 
the utilizations of the processing elements facilitates maximizing the energy savings. 
They further claimed that the WFD enables to generate a better balanced partition 
than other well-known heuristics. Therefore, we choose the WFD as the policy of 
task-core assignment for our study.  

Before the tasks are assigned to the processor cores, they are sorted in a 
non-increasing order of their loads (i.e., ). Next, these ordered tasks are partitioned 
into subsets by the WFD. Then, we allocate these subsets of tasks to 
the processor cores respectively. Consequently, a quasi-balanced task-core 
mapping can be obtained. 
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4.3  Moving Slack Times Forward 

Observe that the slack times are usually distributed closely to the end of the 
hyperperiod, which prevents efficient slack utilizing. Hence, we adjust the slack times 
in the original schedule, while maintaining the schedulability of these tasks.  

As mentioned before, we off-line simulate the dynamic executions of the tasks, and 
record the necessary information of jobs on each core. Assume that the schedule 



determined by the SimpleVS on a core is represented by  continuous time 
slices, . These time slices are sorted in an increasing order 
of their start times. The time interval of a slice is denoted 
by . Since the preemptive scheduling is applied, a job may 
execute in several time slices because of the job preemptions. A time slice has a 
predecessor and a successor except that it is the first or the last time 
slice of the schedule. Then we have:

ic ][itsn
=Schedci . },...,,{ ][21 itsntststs

ts
].,.[ endtimetsstarttimets

ts
previousts. nextts.

=starttimets. ,.. endtimepreviousts =endtimets.  
. starttimenextts ..

Each time slice has two states: or idle . If there exists one job executing 
during the time slice ts , then we say this time slice is active:

active
activestatets =. . Further, 

this job and its absolute deadline are represented by and , 
respectively. Otherwise, this time slice is in the idle status in the sense that it is a 
slack:

jobts. deadlinejobts ..

idlestatets =. . Algorithm 2 describes how our proposed slack-shifting policy 
adjusts the schedule on a core.  

The slack adjustment algorithm tries to postpone the start times of job executions 
during the active time slices, while the idle time slices (i.e., slack times) are moved 
“forward” at the same time. The shifting operation is performed from the last time 
slice to the first one on each core. From line 4 to line 8, the algorithm shifts the 
current time slice backward when the following three conditions are satisfied 
simultaneously: 1) the current time slice is active, 2) the next one is idle, and 3) the 
absolute deadline of the current-running job is greater than the completion time of the 
current time slice. The algorithm delays the active time slice while ensuring that it 
will complete execution before (line 5). Thus, it can be inferred that 
this adjustment does not violate the schedulability of any task. Fig. 2 (a) illustrates the 
scenario after the slack adjustment has been applied. 

ts
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deadlinejobts ..

 

4.4  Slack Reallocation 

The slack reallocation is adopted after the slack adjustment. First, the whole 
hyperperiod is divided into segments for each VFD prior to the slack reallocation. 
Then the slack reallocation is performed on a per-segment basis. This policy attempts 



to redistribute the available slack times to the cores by job migrations so that a lower 
operating frequency of a VFD can be obtained.  

We divide the hyperperiod into sn consecutive and non-overlapped segments in a 
VFD: . The segment starts from and ends at 

. Suppose that is determined by
},...,{ 21 snsgsgsgSG = isg starttimesgi .

endtimesgi . SG 1+sn  boundary points: 
. The start and end time of the segment are denoted by and 

( ), respectively. The boundary points are defined as following:  
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where is the number of cores contained in the VFD, and is defined in 
Section 4.3. Thus, can be determined by (1) and (2). 

dcn Schedci .
SG

The reason the segments are defined in such a way is that when a job executes, 
only the available slack prior to its execution is allowed to be used by this job to 
lower its executing speed. Therefore, the schedulability of the task set can be 
guaranteed. 

(a) (b) 

Fig. 2. (a) Adjust the slack times by shifting them forward. (b) Reallocate the slack times and 
scale down the operation frequency in [0, 4]. 

After the segments have been determined, some time slices may be separated by 
these segments as well (e.g., on core 2). We re-partition these time slices such that 
each time slice only belongs to one segment. As shown in Fig. 2 (b), the interval of 
the hyperperiod [0, 12] is divided into 4 segments by the dashed lines. 
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In multicore systems, all cores usually share the last-level cache and main memory. 
This implies the cost of context switching caused by the migration of a job from a 
core to another is relative low. However, we constrain frequent job migrations to 
reduce the on-line overhead. Hence, the degree of un- balancedness for a 
segment

ub
sg in a VFD is introduced to help improve the trade-off between the 

overhead and the energy-saving for each segment: 

%,100
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where is the available amount of slack times on duringislack ic sg , and is the 
number of cores contained in the VFD. The job migration is applied only when the 
degree of unbalancedness is greater than a given threshold value. Further, the number 
of migrations for each job is constrained by an upper bound during its execution in 
order to reduce the overhead caused by the job migrations. Hence, the trade-off 
between the energy-saving and the overhead can be flexibly controlled. 

dcn

mb

  In this work, the threshold of the degree of unbalancedness and the upper bound 
of migrations for a job are set to 10% and 3, respectively. 

ub
mb

Algorithm 3 illustrates the slack reallocation within a VFD . The slack 
reallocation is performed on a per-segment basis (line 1). The amount of slack on 
each core in VFD and the ub within the current segment

id

id sg are calculated in line 2 
and line 3, respectively. Then, the total amount of slack times in VFD is summed 
and the amount of slack that can be ideally distributed to each core is calculated in 
line 4. From line 5 to line 11, the algorithm strives to balance the slack times on the 
cores in within the current segment

id

id sg  until ub is less than the given threshold 
10%. If the current core has more slack than the ideal slack, then line 7 selects the 
core with the minimum slack. Next, line 8 tries to perform the job migrations 
from to so as to reduce the slack on to the ideal slack. Thus, the slack times 
distributed on all cores can be more evenly.  

jc

minc

minc jc jc

 

It is noteworthy that the job migrations are on the basis of maintaining the 
schedulability. Further, unlike [17], we assume that one job is disallowed to execute 
on different cores at the same time (i.e., serial-run-rule). As a result, after the slack 
reallocation is processed, the slack times are not necessarily distributed absolutely 
uniformly on the cores in the system.  



5  Experimental Results 

In this section, the simulation experiments are used to evaluate the performance of the 
proposed scheduling approach with respect to energy consumption. In this 
experiment, the simulator scheduled the randomly generated tasks and recorded the 
energy consumptions within a hyperperiod under different scheduling policies, i.e., 
NonVS, SimpleVS, and the proposed scheduling with slack reallocation (HMVS). 
Usually, the current CMOS- based systems provide discrete operating 
voltage/frequency. However, we still evaluate the performance of our algorithm under 
continuous voltage/ frequency levels as well as discrete voltage/frequency levels in 
this experiment. The parameters and are set to 10% and 3, respectively. 
Namely, the slack reallocation and job migrations are performed only when the 
degree of unbalancedness (defined in Subsection 4.4) is greater than 10% and one job 
cannot be migrated more than 3 times. Recall that the maximum frequency of any 
processor core is normalized to 1. In the case of discrete frequency levels, seven 
different frequency levels were assumed to be supported by the target system: 

.  

ub mb
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In Fig. 3(a), the normalized energy consumed by the SimpleVS and the NonVS are 

compared. It can be seen that the SimpleVS achieved significant energy savings 
against the NonVS. Furthermore, more energy-saving was achieved by the scheduling 
with the continuous operating frequency selection, while the performance 
improvement decreases with increasing the average core utilization . In the case 
of the continuous frequency scaling, more than 99% dynamic energy was saved by 
the SimpleVS when is between 0 and 0.1. Whereas only less than 7% energy 
could be saved when was in the range of 0.9-1.0. In contrast, the energy 
consumptions saved by the SimpleVS with the discrete frequency scaling are 88% 
and 0, respectively. 
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(a) (b) 

Fig. 3. (a) Normalized energy consumption of NonVS and SimpleVS schedule. (b) Normalized 
energy consumption of HMVS with continuous and discrete frequency selection, . )4.0,2.0(∈acu

Fig. 3(b) shows the energy consumption of the proposed scheduling algorithm with 
the continuous and the discrete frequency selection. The average utilization acu was 
in the range , and the energy consumptions of their corresponding SimpleVS ]4.0,2.0[



schedules are normalized to 1. In contrast to the discrete frequency selection, the 
HMVS algorithm gains about 5% to 11% more energy saving with the continuous 
frequency selection. This is because that the later is more flexible in selecting the 
operating frequency and can utilize the slack times more efficiently to save energy. 

As most of the state-of-the-art realistic multicore systems can adjust their operating 
voltages and executing speeds discretely, we will focus on the experiment based on 
the discrete frequency selection hereafter. In this case, when our algorithm assigns an 
operating frequency to a processor core, the nearest discrete frequency no less than 
the operating frequency which is calculated under the continuous voltage/frequency 
levels is selected. 

The impact of various VFD granularities on the energy consumption is depicted in 
Fig. 4. In general, the performance improvement brought by the HMVS versus the 
SimpleVS begins to decrease with a coarser granularity of a VFD. The reason is that, 
it is usually easier for HMVS to reallocate the slack times evenly to the cores in a 
fine-grained VFD than in a coarse-grained VFD. Hence, multicore systems with 
fine-grained VFDs can help improve the effectiveness of the slack utilization and can 
lead to more energy savings. We can find from Fig. 4 (a) that, when acu falls into the 
range of , 22% energy was saved by HMVS in a system with 4 cores in a 
VFD, while only 1% energy could be saved when a VFD contains 16 cores in the 
target system. 
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Fig. 4. Normalized energy consumption under different VFD granularity (a) The average core 
utilization ]4.0,3.0[∈acu . (b) The average core utilization ]7.0,6.0[∈acu . 

Moreover, by the comparison between Fig. 4(a) and (b) we can observe the 
influence of upon the energy saving. In principle, the energy consumption 
increases with an increasing . This is because that there are more available slack 
times on the core with a lower utilization than those on the core with higher 
utilization, which can be used to reduce the energy consumption. As far as the system 
in which each VFD contains 4 cores is concerned, the HMVS saved 22% energy 
compared with the SimpleVS when the acu is between 0.3 and 0.4. On the contrary, 
only 4.7% energy could be saved when the falls into the range . 

acu
acu
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Fig. 5 presents the energy consumption of the proposed algorithm with various 

. Note that the energy consumption of the two scheduling policies are the same 
when is smaller than 0.35. The reason is that the minimum discrete executing 
acu

acu



frequency of the active core is 0.36 in the experiment. The operating frequency could 
not be decreased any more even if the utilizations of all cores are quite low (i.e., less 
than 0.36). Therefore, the discrete frequency levels will affect the energy saving 
efficiency to a certain extent. As Fig. 5 (a) shows, our algorithm achieved better 
energy conservations when is between 0.3 and 0.4. acu

It can also been observed by comparing Fig. 5(a) and (b) that the system with finer 
grained VFDs can achieve more energy saving. When the falls into the 
range , compared with NonVS schedule, the HMVS algorithm can save 
energy by 22% and 1% if each VFD contains 4 and 16 cores, respectively. 
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Fig. 5. Normalized energy consumption under different core utilizations.  (a) Each voltage/ 
frequency domain contains 4 cores. (b) Each voltage-frequency domain contains 16 cores. 

6  Conclusions and Future Work 

In this paper, the problem of energy-efficient scheduling for real-time periodic tasks 
on multicore systems is studied. The static voltage/frequency scaling of the multicore 
system (SimpleVS) is firstly introduced. SimpleVS selects the utilization of the 
heaviest-loaded core in a VFD as the operating frequency of each core in this VFD. 
Next, based upon the SimpleVS, the slack reallocation is proposed to take use of slack 
times under the constraint of the frequency synchronization and real-time 
schedulability. The slack reallocation tries to uniformly redistribute the slack times to 
the cores on the same VFD so that the synchronous executing frequency can be 
lowered. Consequently, energy savings and timeliness requirements can be satisfied 
concurrently.  

The experimental results show that, as far as multicore systems with discrete 
frequency selection is concerned, the proposed policy can reduce the dynamic energy 
by up to 22% versus the static policy when the system is under-utilized. 

It should be noted that as the proposed scheduling algorithm is based on the worst 
case executing time (WCET) of tasks and the reclamation of static slack times. 
However, there are usually dynamic slack times at run-time caused by the difference 
between the WCET and the actual executing time (AET). We will target studying the 
on-line schedule dealing with the dynamic slack reclamation. 
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