
Storage Device Performance Prediction with
Selective Bagging Classification and Regression

Tree

Lei Zhang1, Guiquan Liu1, Xuechen Zhang2,
Song Jiang2 and Enhong Chen1

1 University of Science and Technology of China,
2 Wayne State University

stone@mail.ustc.edu.cn, gqliu@ustc.edu.cn
{xczhang, sjiang}@eng.wayne.edu, cheneh@ustc.edu.cn

Abstract. Storage device performance prediction is a key element of
self-managed storage systems and application planning tasks, such as
data assignment and configuration. Based on bagging ensemble, we pro-
posed an algorithm named selective bagging classification and regression
tree (SBCART) to model storage device performance. In addition, we
consider the caching effect as a feature in workload characterization. Ex-
periments indicate that caching effect added in feature vector can sub-
stantially improve prediction accuracy and SBCART is more precise and
more stable compared to CART.

Keywords: Performance prediction, Storage device modeling, CART,
Ensemble learning, Bagging.

1 Introduction

Today’s high-end storage systems are highly complex and configurable, and the
automation of storage management is a critical research challenge. One key is-
sue in the automation of storage management is the placement of data sets onto
various devices in the storage system, or how to map a workload of specific char-
acteristics onto a appropriate storage device for high service quality and system
utilization. To this end, the system must be able to predict the performance a
device can provide in its service of a particular workload.

Performance prediction for storage systems have long been studied. Among
them are three methods which are particularly useful and efficient. They are
analytic device modeling, simulation and emulation, and black-box modeling.

It is a cumbersome task to build accurate analytic models for disk drives be-
cause of their nonlinear and state dependent behavior. Ruemmler and Wilkes [1]
developed analytic disk models that take into account disk head positioning, plat-
ter rotation, and data caching and read-ahead. The model is further improved
by Worthington et al. [2], resulting in a widely used disk simulator, DiskSim [3],
which represents the state of the art in disk simulation. DiskSim simulates almost

all performance-relevant components of a disk, including device drivers, buses,
controllers, adapters, and caches. Emulators go one step further than simulators.
In addition to modeling performance, they can interoperate with real systems.
For example, MEMS devices can interact with existing system [4]. While disk
arrays are widely used in the high-end storage systems, a lot of research work
focuses on the modeling and simulation of disk arrays [5–7]. Among the work,
the Pantheon storage system simulator [7, 8] was built to support the rapid ex-
ploration of design choices of storage systems in HP AutoRAID advanced disk
array technology [9] and TicherTAIP parallel RAID architecture [10]. Uysal et
al. developed a composite analytic model of mid-range disk array and reported
its accuracy within 15% of actual measurements [6].

Compared with simulations and emulations, analytic models are much faster.
However, they cannot capture as many details as simulators and emulators. Both
methods rely heavily on human expertise on the targeted system and thus are
called white-box approach. Given sufficient time and expertise, the white-box
approach can work well in exploring design space for a particular device. Un-
fortunately, such time and expertise is not always available for high-end storage
systems because the systems are usually complex and opaque. In addition, some
information, such as patented use of algorithms and optimizations, is not dis-
closed. Furthermore, the technical trend towards storage consolidation in large
data centers hints that building an accurate model or simulator using white box
method cannot be a general solution in serving a variety of very different work-
loads. In contrast, the so-called black box approach treats the storage system as
a black box without knowing the internal components or algorithms and can ac-
commodate workloads of different characteristics. In this approach, the training
data sets, which contain quantified description of characteristics of input I/O re-
quests and their corresponding response times from the system, are recorded in
a table [12] and fed into a statistic model [13] , or a machine learning model [14,
15].

Wang et al. [15] proposed to use classification and regression tree (CART)
method as a black-box model for performance prediction as it is easy to fit for
different workloads, has good interpretability, and provides good approximations
to highly nonlinear mappings. However, the CART model has its critical draw-
back – it is not stable, in the sense that a small change of the data set can lead
to a drastic change of the result (more details will be described in section 2.1
). This paper addresses the issue by using ensemble algorithms to improve and
enhance the accuracy and stability of the basic CART model.

In this paper, we propose the selective bagging CART (SBCART) model, in
which we modify the bagging algorithm for regression ensemble. In the model
built on top of the CART model, we first train N models by bagging and then
select n representative models from N models, where n < N . Compared with the
CART model, SBCART can provide more precise and more stable performance
predictions for modeled storage devices. In addition, an important measure miss-
ing in the feature vector designed by Wang [15] is about caching effect, which

Fig. 1. (a) Regression tree constructed with the Financial I/O trace containing 60
instances; and (b) regression tree of 56 instances, which is produced by removing four
randomly selected instances from the tree in (a). The shaded nodes represent leaf nodes
containing the predicted values. The Nmin is set to 25. More details on the Financial
trace can be found in Section 3.

makes a substantial difference on prediction accuracy. We include the measure
in the vector to make good predictions with the SBCART model.

The remainder of this paper is organized as follows. Section 2 describes the
SBCART model. Section 3 presents our experimental results, and Section 4
concludes the paper.

2 The SBCART Models

2.1 The CART Model

CART [16] is a nonparametric model which uses historical data to construct
so-called decision trees. Trees are built top-down recursively beginning with a
root node. At each step in the recursion, the CART algorithm determines which
predictor variable and its value in the training data best split the current node
into child nodes. The best split should minimize the difference among the in-
stances in the child nodes. In other words, a good split produces child nodes
with instances that contain similar values.

Trees are grown to be excessively large with hundreds of levels if there is no
pruning step. Furthermore, a tree of too large size may cause over-fitting, in the
sense that it may perform poorly in predicting independent data. There are two
pruning algorithms: optimization by minimum number and cross-validation. In
the first pruning algorithm, splitting is stopped when the number of instances
in the node is fewer than predefined required minimum Nmin. This approach is
efficient, easy to apply and can produce consistent results. However, it requires
the calibration of new parameter Nmin. In the second pruning algorithm, the
procedure of cross validation is mainly based on the optimal proportion between

the complexity of the tree and the misprediction error. With the increase of tree
size, the misprediction error is decreasing and reaches 0 when the tree grows into
maximum tree. Unfortunately, it usually generates complex decision trees that
perform poorly on independent data. Therefore, a critical operation is to find
the optimal proportion between the tree complexity and misclassification error.
Cross-validation does not require adjustment of any parameters. However, it is
expensive to apply this pruning algorithm.

Once the tree is built, an instance can travel the pruned tree to make a
prediction. At each tree node, either left branch or right branch is taken according
to the outcome of comparison of the instance with the split variable and its
value of the node. Finally, the instance reaches the leaf node whose value will
be the predicted value. However, CART may produce unstable decision trees.
Insignificant modification of learning instances, such as elimination of a few
instances or changing split variables and values, could lead to radical changes in
decision trees. As Figure 1 shows, the decision tree constructed with 60 instances
in Figure 1(a) is very different from the tree in Figure 1(b), where only four
randomly selected instances are removed.

2.2 Ensemble Learning

The goal of the ensemble learning method is to construct a collection (an en-
semble) of individual models to improve the accuracy and performance of a
single model. Many researchers have demonstrated significant performance im-
provements through ensemble methods [17, 18]. Figure 2(a) shows the basic steps
involved in the training of a series of models with training data and in the using
of voting strategy to predict new data samples.

Two of popular techniques for constructing ensembles are bagging [19] and
the adaboost family of algorithms [20]. Both methods invoke a base learning
algorithm many times with different training sets. In bagging, a training set is
derived by forming a bootstrap replica of the original training set, and each
training record has the same weight. Compared with the bagging, the adaboost
algorithm maintains a set of weights over the original training set and adjusts
these weights after each model is trained with a base learning algorithm. The
adjustments increase the weights of examples which are poorly predicted by the
base learning algorithm and decrease the weights of examples which are well
predicted.

Bagging generates diverse classifiers or models only if the base learning al-
gorithm is unstable, that is, small changes to the training set lead to significant
changes of the learned classifier or model. Bagging can be viewed as an approach
of improving prediction accuracy by exploiting the instability, because the com-
posite model can efficiently reduce the variation of individual models. Adaboost
requires less instability than bagging, because it can make much larger changes
in the training set. As CART is instable, we propose to use the ensemble of
bagging to improve the prediction accuracy of individual CART models.

Fig. 2. (a) Using ensemble learning to improve the accuracy of individual basic CART
models; and (b) using selective ensemble learning to improve the accuracy of a basic
model. In (a), bagging or adaboost can construct a series of models M1,M2, ...,Mk and
then predict the unknown samples by using voting strategy; In (b), we first construct k
models by bagging or adaboost, then select some representative models from k models,
and use voting strategy to predict new samples.

2.3 The SBCART Method

Bagging is one of the widely used ensemble learning algorithms. Each training
set is constructed by forming a bootstrap replica of the original training set.
Thus, some samples in the original training set may appear many times in boot-
strap data set while other samples may not appear. Prior research indicates that
bagging can substantially improve the effectiveness of the unstable basic learning
models [19].

However, as the number of ensemble models increases, the space and time
cost will increase linearly. Many methods have been proposed to address the
issue by using different classification methods [21–23]. Zhou et al. proposed a
method to select a portion of a whole model tree and use genetic algorithms to
prune the scale [21]. Bakker et al. proposed to cluster all models and then select
representative models in each class to prune whole models [22]. Martinez-munoz
et al. proposed a method to prune trees in the ordered bagging ensembles [23].
However, those pruning methods are pretty complicated. In contrast, our SB-
CART algorithm is proposed to solve the problem on regression and the pruning
method is simple. We adopt CART as the basic model. First, we create k models
by bagging. Second, we sort the k models by median relative error on the train-
ing set. Finally, we select the first 20%-50% of whole models to prune the scale.
Figure 2(b) shows the basic steps involved in the training of a series of models on
the training data, the selection of a part of whole models, and the using of voting
strategy to predict new data samples based on the pruned models. Compared
with figure 2(a), figure 2(b) adds a selective (pruning) function to prune the k
models. The SBCART algorithm is described as follows using pseudo code.

Input:
D: the dataset containing d samples;
M: CART(the basic model);
k: the number of models;
s: the number of pruned models
Output:
Pruned models M∗;

Training Phase:
(1)for i=1 to k do //Bagging
(2) Sampling with replacement, yield Di (remove duplicated instances);
(3) Create the model Mi based on Di;

(4) Compute error(Mi) (error(Mi) = 1
d

∑d
j=1

|Mi(Xj)−yj |
yj

); //median relative
error
(5)end for

Pruning Phase:
(1)Order k models by error(Mi) in ascending order;
(2)Get the first 20%-50% of the ordered models

Prediction Phase:
Using the pruned models to predict testing data X
(1)for i=1 to s do

(2) Wi = log((1−error(Mi))
error(Mi)

+ 1); //assign weight for each model

(3) Vi = Mi(X); //predicted values
(4)end for
(5)Normalize the Wi;
(6)return

∑n
i=1 Wi ∗ Vi

In the algorithm, we remove duplicated instances in Di while sampling with
replacement in training phase, because the duplicated instances in the training
set can have a negative effect on choosing the best split variable and lead to
significant changes of the structure of the tree. In our experiments, the size of
the data set is reduced by half (5000 instances to 2500 instances) and the time
of tree construction is reduced from 7 seconds to 1.25 seconds after deleting du-
plicated instances in Di. In the algorithm, the weight function in the prediction

phase is set to log((1−error(Mi))
error(Mi)

+ 1), this can guarantee the weight to be posi-

tive. Furthermore, in order to get enough representative models, we choose small
pruning proportion (20% for example) if the k is large, and choose large pro-
portion (50% for example) if the k is small. Compared with unpruned bagging
ensembles of CART model, the SBCART has big advantages in both space cost
and computation time because the scale of models is reduced to about 20%-50%
of the whole model.

Fig. 3. (a) Training a SBCART model based on observed response times; and (b) using
the model to predict response times.

2.4 Predicting Performance with SBCART

Our goal is to build a model for a given storage device to predict device per-
formance as a function of I/O workload. We use the UMass traces [24] which
define a workload as a sequence of I/O requests. Each request Ri is character-
ized with five attributes: application specific unit (ASU), logical block address
(LBA), size (SIZE), opcode (OPCODE), and timestamp (TIMESTAMP). The
ASU is a positive integer representing the application specific unit; The LBA
field is a positive integer that describes the ASU block offset of the requested
data; The SIZE field is a positive integer that describes the number of requested
bytes, where the size of a block is contained in the description of the trace file;
The OPCODE field is a single, case insensitive character that defines the direc-
tion of the transfer, R or r indicates a read operation, W or w indicates a write
operation; The TIMESTAMP field is a positive real number representing the
offset in seconds for this I/O request from the beginning of the trace.

Our approach uses SBCART to approximate the function. We assume that
the model construction algorithm can take any workloads on a device for model
training. Figure 3 shows the basic steps involved in the training of a model based
on the observed response times and using the model to predict system response,
which is per-request response time in this study. Model construction does not
require any information about the internals of the modeled device. Therefore,
the methodology is generally enough to model any device.

We compared our SBCART model with CART model in Table 1. Various
aspects are listed, including prediction error, stability, interpretability, robust-
ness to outliers, ability to handle irrelevant input, model construction time, and
prediction time. We list these aspects in the order of their importance to the
storage performance prediction. Good stability indicates that a small change
of the training data set cannot lead to significant change of the prediction re-
sults. Interpretability describes a model’s ability to infer the importance of input

Table 1. Comparison between SBCART and CART models when they are used to
predict per-request response time.

variables. Robustness describes a model’s ability to respond to noisy data sets.
Irrelevant input refers to features that have little predictive value. We only com-
pare SBCART with CART, and the comparison of other regression methods can
be found in [15]. The two models are constructed using the first 5000 instances
of Financial user4 trace and run on another 5000 instances of the same trace for
testing (More details on the trace can be found in Section 3). The parameter k
in SBCART is set to 20 and Nmin in CART is set to 10.

As shown in Table 1, the prediction error (median relative error) of SBCART
is lower and the stability is better compared to CART, as the composite models
can reduce variance of individual models. The construction of SBCART model
takes a longer time period and the space overhead of this model is higher, because
SBCART needs to build k different models. However, the higher costs are well af-
fordable in the systems for storage device performance prediction. Furthermore,
the model construction time for SBCART can be reduced with parallel execution
as each bootstrap modeling is independent. Overall, the SBCART method pro-
posed for storage device performance prediction is more stable and more precise
than CART.

3 Experiments

3.1 Request Feature Vector

Our request Feature Vector (FV) for Ri contains the following variables: Re-
quest Vector Ri = [TimeDiffi(1), ..., T imeDiffi(k), LBNi, LBNDiffi(1), ...,
LBNDiffi(m), Sizei, RWi, Seq(i), Hit(i)] where TimeDiffi(l) = TimeStampi-
TimeStampi−l (l = 1, 2, ..., k), LBNDiffi(k)=LBNi-LBNi−k (k = 1, 2, ...,m);
The first k variables measure the temporal burstiness of the workload when Ri
arrives. The next m + 1 variables measure the spatial locality in terms of the
distance of two continuous requests. Seq(i) indicates whether the request is a
sequential access; Sizei and RWi is related to the data transfer time. Hit(i)
indicates whether a request is hit in the cache.

3.2 Devices and Traces

We use DiskSim [3] to simulate a disk (Seagate ST32171W) of 7200RPM. We
replay all the traces on the device to obtain the training data set. We use the
UMass traces [24] consisting of Financial traces and WebSearch traces. The
Financial traces are from OLTP applications at two large financial institutions
(relatively more sequential) and the WebSearch traces are from a popular search
engine (relatively more random).

There are several fields in the record for a request in UMass trace file. The first
field is the ASU, which is related to application. In our experiments, we assume
that one user runs one application on the server. Therefore, ASU number can be
considered as a user ID. We randomly chose two ASU numbers and filtered out
all the requests for each of these ASUs, respectively. Accordingly, we obtained
WebSearch-user1 and WebSearch-user2 traces from WebSearch1.spc, Financial-
user2 and Financial-user4 traces from Financial1.spc. We built our models based
on those traces.

3.3 Evaluation Methods

For evaluation, we use the trained device models to predict response time for

a single request. We define the relative prediction error as |Ŷ−Y |Y to show the
accuracy of different modeling algorithms. We also show the average, 90th, 80th,
and 70th percentile relative errors of response time for different data sets.

Based on the above four users’ traces, we trained four models: ModelFin2,
ModelFin4, ModelWeb1, ModelWeb2 respectively. One hundred thousand requests
are obtained for each user from the original trace and half of the requests are
used for training while half of them are used for testing. In our experiments, k in
TimeDiffi(k) is set to 3 and m in LBNDiffi(m) is set to 5. The k in SBCART
is set to 20, the pruning proportion is set to 50% and the Nmin of CART is set
to 10.

3.4 Experiment Results

Figure 4 compares the median relative errors of the two models (SBCART and
CART) in modeling the Seagate ST32171W disk on Financial (ModelFin2 ,
ModelFin4) and WebSearch (Modelweb1,Modelweb2) traces, respectively. Over-
all, the SBCART-based device models provide better prediction accuracy in pre-
dicting the average, 90th, 80th and 70th percentile response times than CART.
We can make several observations from the experiment results.

First, feature vector must be designed to include all relevant measures. An
important measure missing in the feature vector designed by Wang et al. [15]
is about caching effect, which makes a substantial difference on prediction accu-
racy. As hitting in the buffer cache is basically determined by temporal locality
of accessed blocks [25], we propose to maintain an approximate LRU stack to
efficiently track recency of requested blocks and use it as a measure in the vector.
As shown in Figure 4(a), CART-cache can reduce the error from 25.12%, 25.04%,

Fig. 4. Comparison of SBCART and CART on four traces: ModelFin2, ModelFin4,
ModelWeb1, ModelWeb2. CART-nocache shows that cache information (Hit) is not
considered in feature vector and CART-cache shows that the cache information is used
as a measure in feature vector.

91.64%, 23.18% to 15.01%, 14.15%, 15.99%, 13.48% on ModelWeb1, ModelWeb2,
ModelFin2, ModelFin4, respectively. We can see that the median relative error
is reduced by about 10% on ModelWeb1, ModelWeb2, ModelFin4, and by about
75% on ModelFin2. We also observed that the traces of ModelWeb1, ModelWeb2,
and ModelFin4 are relatively more random and the trace of ModelFin2 is rela-
tively more sequential, Therefore, sequential workloads like Financial-user2 are
more sensitive to the caching effect, and addition of the cache information can
greatly reduce the prediction error.

Second, SBCART can improve the accuracy and stability of CART. As shown
in Figure 4(a), the SBCART-nocache can improve prediction accuracy by about
5% compared to CART-nocache, and the SBCART-cache can improve the ac-
curacy by about 3% compared to CART-cache. We can see that by using the
measure of Hit in the feature vector and the ensemble method, the prediction
accuracy can be increased by about 13% for the relatively random workloads
and about 70% for the relatively sequential workloads. As shown in Figure 5,
the SBCRAT is more stable than CART when the training data set changes,
because selective ensemble models can reduce the variance of individual models.

Finally, it is more difficult to predict response times at high percentiles. As
shown in Figures 4(b), (c) and (d), the median relative errors are reduced by

Fig. 5. Comparison of stability between CART and SBCART. X-axis shows the number
of training records missing from the first 5000 instances of WebSearch-user1 trace and
its testing data from another 5000 instances from the same trace.

about 5%, 8% and 11%, respectively, compared to Figure 4(a). We can observe
that SBCART can consistently produce more precise predictions than CART.

In summary, the SBCART model as well as the workload characterization
(feature vector) used in the modeling can produce more accurate predictions and
is more stable than the CART model.

4 Conclusions

Storage device performance modeling is an important component in self-managed
storage systems, especially in high-end storage systems. Our SBCART model
takes a workload as input and predicts its performance on the modeled de-
vice efficiently and accurately compared to the CART model. Based on bagging
algorithms, we proposed a selective bagging classification and regression tree
(SBCART) model using the basic model CART model. Our experiment results
show that the SBCART model as well as the workload characterization (feature
vector) used in the modeling can produce more accurate predictions and is more
stable than the CART model.

Acknowledgements. The authors gratefully acknowledge the support of the
Fundamental Research Funds for the Central Universities, the National Natural
Science Foundation of China (No.60833004 and No. 60775037), the National High
Technology Research and Development Program of China (863 Program,No.2009
AA01Z123), and Specialized Research Fund for the Doctoral Program of Higher
Education (No.20093402110017). This research was also partially supported by
US National Science Foundation under grant CAREER CCF 0845711.

References

1. Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling. IEEE Computer,
27(3),17–18 (1994)

2. Worthington, B., Ganger, G., Patt, Y.: Scheduling algorithms for modern disk
drives. In: Proc. of the ACM SIGMETRICS Conference, vol.22, pp.241–251, ACM,
New York (1994)

3. The DiskSim Simulation Environment(v3.0), Parallel Data Lab,
http://www.pdl.cmu.edu/DiskSim/

4. Griffin, J.L., Schindler, J., Schlosser, S.W., Bucy, J.S., Ganger, G.R.: Timing-
accurate storage emulation. In: FAST 2002 on File and Storage Technologies,
pp.75–88, USENIX Assoc, Monterey (2002)

5. Barve, R., Shriver, R., Gibbons, P.B., Hillyer, B.K., Matias, B.K., Vitter, J.S.:
Modeling and optimizing i/o throughput of multiple disks on a bus. In: ACM
SIGMETRICS Conference on Measurement and modeling of computer systems,
pp. 83–92, ACM, New York (1999)

6. Uysal, M., Alvarez, M., Merchant, A.: A modular, analytical throughput model for
modern disk arrays. In: 9th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems Conference. pp. 183–92,
MASCOTS, Cinncinnati (2001)

7. Wilkes, J.: The Pantheon storage-system simulator. Technical Report HPL-SSP-
95-14, Storage Systems Program, Hewlett-Packard Laboratories (1996)

8. Aicheler, U.: A visual user interface for the pantheon storage system simulator.
Technical Report HPLSSP961, Storage Systems Program, Hewlett-Packard Labo-
ratories (1996)

9. Wilkes, J., Golding, R., Staelin, C. Sullivan, T.: The HP AutoRAID hierarchical
storage system. ACM Transactions on Computer Systems, 14(1), 108–136 (1996)

10. Cao, P., Lim, S.B., Venkataraman, S., Wilkes, J.: The TickerTAIP parallel RAID
architecture. ACM Transactions on Computer Systems , 12(3), 236–69 (1994)

11. Schindler, J., Ganger, G.R.: Automated disk drive characterization. CMU SCS
Technical Report CMU-CS-99-176 (1999)

12. Andenson, E.: Simple table-based modeling of storage devices. Technical Report
HPL-SSP-2001-04, HP Laboratories (2001)

13. Kelly, T., Cohen, I. Goldszmidt, M., Keeton, K.: Inducing models of black-box
storage arrays. Technical Report HPL-SSP-2004-108, HP Laboratories (2004)

14. Mesnier, M.P., Wachs, M., Sambasivan, R.R., Zheng, A.X., Ganger, G.R.: Modeling
the relative fitness of storage. In: Joint International Conference on Measurement
and Modeling of Computer Systems, ACM, New York (2007)

15. Wang, M., Au, K. Ailamaki, A., Brockwell, A., Faloutsos, C., Ganger, G.R.: Stor-
age device performance prediction with cart models. In: 12th Annual International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, MASCOTS, USA (2004)

16. Breiman, L., Friedman, J., Stone, C.J., Olshen. R.A.: Classification and regression
trees. Chapman and Hall CRC (1984)

17. Kohavi, R., Kunz, C. Option decision trees with majority votes.: In: 14th Inter-
national Conference on Machine Learning, San Francisco, CA: Morgan Kaufman
(1997)

18. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36(1-2), 105–139 (1999)

19. Breiman, L., Bagging predictors. Machine learning, 24(1), 123–140 (1996)

20. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: 13th
International Conference on Machine Learning, Morgan Kaufmann (1996)

21. Zhou, Z.H., Tang, W.: Ensembling neural networks: Many could be better than
all. Artificial Intelligence, 137(1-2), 239–263 (2003)

22. Bakker, B., Heskes, T.: Clustering ensembles of neural networks. Neural Networks
, 16(2), 261–269 (2003)

23. Mart nez2mu noz G, Su rez, A.: Pruning in ordered bagging ensembles. In: 23th
International Conference on Machine Learning , pp. 1266–73, IEEE, Piscataway
(2006)

24. Umass trace repository, http://traces.cs.umass.edu/index.php/Storage/Storage
25. Jiang, S., Zhang, X.: LIRS: an effcient low inter-reference recency set replacement

to improve buffer cache performance. In: ACM SIGMETRICS Conference on Mea-
surement and modeling of computer systems, pp. 31–42, ACM, New York (2002)

