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Abstract. Massive scale distributed database like Google’s BigTable and 
Yahoo!’s PNUTS can be modeled as Distributed Ordered Table, or DOT, 
which partitions data regions and supports range queries on key. Multi-
dimensional range queries on DOTs are fundamental requirements; however, 
none of existing schemes work well while considering three critical issues: high 
performance, low space overhead, and high reliability. This paper introduces 
CCIndex scheme, short for Complemental Clustering Index, to solve all three 
issues. CCIndex creates several Complemental Clustering Index Tables for 
performance, leverages region-to-server information to estimate result size, and 
supports incremental data recovery. This paper builds a prototype on Apache 
HBase. Theoretical analysis and micro-benchmarks show that CCIndex 
consumes 5.3% ~ 29.3% more space, has the same reliability, and gains 11.4 
times range queries throughput of secondary index scheme. Synthetic 
application benchmark shows that CCIndex query throughput is 1.9 ~ 2.1 times 
of MySQL Cluster. 
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1   Introduction 

Massive scale distributed databases like Google’s BigTable [1] and Yahoo!’s PNUTS 
[2] gain more and more attention to store data for Internet scale applications. These 
systems can be modeled as Distributed Ordered Table, short as DOT, which partitions 
continuous keys to regions, replicates regions for performance and reliability, 
distributes regions to shared-nothing region servers for scalability, serves as tables 
and columns, and supports range queries on keys. Multi-dimensional range queries on 
DOT systems are natural requirements. For example, a query needs to find out nearby 
restaurants through “latitude > 48.5 and latitude < 48.6 and longitude > 112.5 and 
longitude < 112.8 and type = restaurants”. Another example is finding out hottest 
pictures in this week in a photo-sharing application, such as Flickr, with a query like 
“timestamp > 1267660008 and rank > 1000”. With only DOT’s range queries over 
key, a multi-dimensional range query is a table scan over key with predicates on non-
key columns to filter results, which is very ineffective for a low selectivity query on 



non-key columns, and the latency is unacceptable in large scale data sets, such as TB 
or PB level. This paper refers to selectivity by the percentage of records passing the 
predicate. The inefficiency requires index on non-key columns to accelerate multi-
dimensional range queries. However, multi-dimensional range queries over DOT are 
big challenges if we considering the three critical issues: high performance, low space 
overhead, and high reliability. 

None of existing schemes can work well considering all the three issues. Building 
secondary indexes for non-key columns through creating ordered tables to store 
indexes is common. However, the range query over secondary index is significantly 
slow, because random read is slower than scan (eg. In BigTable is 13.7 times). Other 
“better” index schemes without clustering data will encounter the same problem as 
slow random read. Clustering index reduces the random reads but needs several times 
storage, and data recovery is a big issue if the underlying replica mechanism is 
disabled. Lacking of statistics on DOTs imposes more difficulties on optimizing 
multi-dimensional range queries. 

This paper introduces a new scheme CCIndex, short for Complemental Clustering 
Index, to support multi-dimensional range queries over DOT while achieving high 
performance, low space overhead, and high reliability. CCIndex creates several 
Complemental Clustering Index Tables, or CCIT, each for a search column with the 
full row data, which makes range query over this column a range scan. CCIndex 
leverages the region-to-server mapping information to estimate the result size of each 
queries. CCIndex disables the underlying data replica mechanisms to avoid too much 
storage overhead, and creates a replicated Complemental Check Table, or CCT, for 
each search column to support incremental data recovery. 

CCIndex prototype has been built on Apache HBase, a subproject of Hadoop. 
Theoretical analysis and experimental evaluations have been given. 

The rest of this paper is structured as follows. Section 2 presents related work. 
Section 3 describes the CCIndex architecture design, including the construction of the 
index. Section 4 presents query processing and optimization. Section 5 gives the fault 
tolerant mechanisms. Section 6 gives detailed evaluations. Section 7 concludes the 
paper. 

2   Related work 

Recently, some research focuses on index mechanisms over DOT. Yahoo! focuses on 
optimizing range queries on DOT through adaptive parallelizing [3], and multi-
dimensional range queries are done through range scan over primary key with 
predicates. This approach is very ineffective with low selectivity queries. Google and 
Yahoo! claim the future work on secondary index over DOTs [4, 2]. A currently 
available secondary index over DOT is the IndexedTable mechanism in Apache 
Hbase [5]. IndexedTable creates a new table for each index column, saves it in the 
DOTs in the order of the index value. IndexedTable is more effective for low 
selectivity queries than table scan, and has acceptable space overhead and fault 
tolerance ability. However, index scan needs random reads on original table which is 
very slow. Traverse [6] builds B-tree [7, 8] index for the map-reduce-merge system. 



Traverse has the same performance problem as IndexedTable, and is lack of reliability 
due to the non-replica B-tree indexes. CCIndex is better than these approaches in 
space overhead, reliability, and index scan performance. 

Multi-dimensional range queries in databases are topics gaining attentions for more 
than 20 years. R-tree [9], R+-tree [10], and their successors extend B-tree, divide the 
multi-dimensional space, and store the recursively divided spaces as tree nodes. 
Queries walk through the tree to find out the data block. These schemes does not 
consider the reliability problem over DOT, unless they are implemented in a scalable 
and reliable way, just like the distributed B-tree [11]. Even though, the performance 
degradation also exists due to missing clustered data. 

DB2 introduces multi-dimensional clustering [12] to form every unique 
combination of dimension values as a logical ‘cell’, which is physically organized as 
block of pages. Multiple B-tree indexes are built for every dimension and the B-tree 
leaves point to the block. This scheme can avoid random read only when the values in 
block are dense, and the reliability of the B-tree index is not considered. 

Parallel databases [13, 14] support multi-dimensional queries and have good 
reliability, such as the MySQL cluster [15]. CCIndex is designed for more scalable 
DOTs to get good performance with large dataset and many machines. 

DHTs [16, 17, 18, 19] are scalable and reliable for key-value pair storage. Because 
the data is partitioned by hashing functions, DHT systems do not support range 
queries naturally. MAAN [20] and SWORD [21] use locality preserving hashing and 
store attributes in DHT as index to support range queries. However, the logN hop 
latency is not good for user-interactive applications. 

3   Data layout and management 

This section introduces the CCIndex ideas and the underlying data layout. 

3.1   Basic idea 

The CCIndex is inspired through these observations: (1) There are usually 3 to 5 
replica in the DOT systems to assure reliability and improve performance. (2) The 
indexes number is usually less than 5. (3) The random reads is significantly slower 
than scan. The trick of CCIndex is reorganizing the data to a new layout to accelerate 
multi-dimensional range queries. CCIndex introduces several Complemental 
Clustering Index Tables, each for a search column with the full row data, to convert 
the slow random reads to fast range scan. With multiple tables, a key decision is 
determining which table is chosen to scan. CCIndex leverages the region-to-server 
mapping information to estimate the result size of each sub queries. CCIndex disables 
the underlying data replica mechanisms to get an acceptable storage overhead, and 
uses these Complemental Clustering Index Tables to recovery each other to assure 
reliability. CCIndex creates a replicated Complemental Check Table for each search 
column to support incremental data recovery. 



3.2   Data Layout 

In DOT systems, tables are very tall and logically ordered by row keys. Physically, 
each table is partitioned to regions containing continuous ranges, and each region has 
several replicas identical to each other for fault tolerance. CCIndex reorganizes the 
underlying data layout as in Fig. 1. 

 

Fig. 1. Data layout of CCIndex. For a logical table has id as the primary key with two index 
columns idx1 and idx2, CCIndex creates another two CCIT tables each for a index column and 
reorganizes the rows in the order of this column. CCIndex creates replicated CCTs for fast data 
recovery. 

In the data layout, each logical table has several complemental tables. In Fig. 1, 
there is a table to support range queries over id and two index columns idx1 and idx2. 
The table CCIT0 is the original table ordered by unique id. CCIT1 and CCIT2 are 
ordered by key1 and key2, which are generated by concatenating index column value, 
the original id, and the index column value length. The construction of the new key 
makes sure the new CCITs are ordered by index column values, and makes the 
duplicated values of index columns be unique keys. The index value length field 
makes it easy to split the index value and id. With these CCITs, range queries over id 
or index columns can be a scan on the corresponding CCITs.  

Each CCIT has a corresponding replicated CCT, which contains the primary key 
and index columns of the CCIT. CCTs are necessary to help incremental data 
recovery of CCITs. The CCITs have no replica but the CCTs have replicas. 

Fig. 1 shows the logical view of CCIndex, and these tables are physically stored in 
DOT system. Storing CCITs and CCTs in DOT leverages the primary key ordering, 
data partition, and various operation optimizations to simplify CCIndex 
implementation. 



3.3   Index create, update, and delete 

The index maintenance is done along with the record insert and delete operations. 
When CCIndex creates a table with specified index columns, all CCITs are created. 

When a record is written to DOT, the CCIndex first reads the original table to check 
whether the index column values are changed, and delete the corresponding records in 
CCITs when necessary. After that, the CCIndex writes the records to all CCITs in a 
parallel way. The delete operation also involves all the CCITs. 

4   Query processing and optimization 

The DOT read and scan operation are simply redirecting to the original CCIT. The 
index scan is processed by CCIndex. 

4.1   Query plan generation and execution 

CCIndex introduces a SQL-like syntax to expression multi-dimensional range queries. 
The query string is like this: 
select rowkey, host, service, time, status from 

MonitoringData where host=’node 216’ and service=’CPU 
Load’ and (time > 1260610511 and time < 1260610521) 

CCIndex translates the SQL expression to a query plan tree, optimizes the tree, and 
translates the tree to disjunctive form. Then CCIndex executes the logic OR part in 
parallel, and executes each internal AND part by the estimated optimal one query 
with predicates of other columns to filter rows. 

4.2   Query plan optimization 

CCIndex first does simple optimization of query plan tree to eliminate redundant 
range queries. For example, the time > 123 and time > 135 could be merged into time 
> 135. Furthermore, the important optimization is estimating result size of multiple 
AND queries and choosing the minimal one. 

In databases, query optimization is based on statistics of tables. However, DOT 
systems are lack of statistics, because the statistics are very difficult to gather and 
maintain in massive scale tables maintained by thousands of region servers. For 
example, there is not any statistics in HBase, and an additional tool must be written to 
count table rows. 

CCIndex introduces a way to estimate the query result size in the absence of 
statistics. CCIndex’s estimation method relies on the region-to-server mapping 
information of DOTs. The mapping information is necessary for DOT systems to 
record the responsible region server for each region. DHTs have no such information, 
because the mapping relationship is deduced by the overlay topology, object ids, and 
node ids. 



The mapping information can be abstracted in the form of <regionStartKey, 
RegionServerInfo>. The regionStartKey is the minimal key in this region and serves 
as the region id. The mapping information is gathered together and ordered by the 
regionStartKey. CCIndex scans all this mapping information using a binary search, 
and finds out the number of covered regions for each range query. CCIndex claims 
that the region number determines the result size, because for a DOT containing more 
than one region and having 64 MB default region size, each region size must be 
between 32 MB and 64 MB. For the first or last region not fully covered in a range, 
the coverage ratio is calculated to estimate the result size for the regions. 

This policy is more accurate for large query result size, because the average region 
size is more accurate when there are lots of regions. For query covering few of 
regions, the detailed size is not important, because this result size is small and the 
estimation objective is determining a query with small result size to execute. 

5   Fault tolerance 

In CCIndex, CCITs have no replica to avoid huge storage overhead, and cause the 
problem of fault tolerance. The basic idea is that CCITs replicate and recovery each 
other in record level. However, when a region of a CCIT is damaged, we can only 
reconstruct the whole CCIT if there is lack of ways to gather necessary records to 
recovery the region. 

CCIndex introduces the CCTs to help recoverying the damaged region. CCIndex 
only checks the corresponding CCTs to get the proper keys for CCITs and get the 
record data to rebuild the region. 

The CCTs imposes additional overhead on inserting or deleting records. CCIndex 
maintains the CCTs in an asynchronous way to minimize the overhead. CCIndex 
leverages the log of DOTs to update CCTs in batch mode by the background threads. 

6   Implementation and Evaluations 

This paper implements a CCIndex prototype and evaluates CCIndex through 
theoretical analysis, micro benchmarks, and synthetic application benchmarks. 

6.1   Implementation 

This paper builds a CCIndex prototype based on Apache Hbase, an open-source 
implementation of BigTable. Hbase is a sub-project of Apache Hadoop [22], which 
has HDFS as the distributed file system and MapReduce as the parallel computing 
model. HBase builds on top of HDFS, has one master process called HMaster and 
many slave processes called HRegionServer to manage data regions. 

The CCIndex prototype uses HBase v0.20.1 as code base, adds clustering index 
table package, and implements CCIndex in Java. CCIndex disables the replica of 
HDFS by setting the replica factor to one, and creates one CCIT for each search 



column. CCIndex builds several CCTs on replicated HFDS files to achieve reliability. 
HBase has multiple META regions, and each META region contains mapping of a 
number of user regions comprising the tables to HRegionServers. HBase has a ROOT 
region to locate all the META regions. CCIndex scans the ROOT and META regions 
to get the region-to-server mapping information and estimates the query result size. 

The comparable IndexedTable is a built-in index mechanism provided in HBase. 
IndexedTable creates a replicated ordered table for each index column and is an 
implementation of secondary index scheme. IndexedTable does not provide multi-
dimensional range queries interface or optimization to estimate query result size for 
multi-dimensional range queries.  

6.2   Theoretical analysis 

For the three metrics performance, space overhead, and reliability, the first one is easy 
to evaluate through experiments, while the other two are more suitable to do 
theoretical analysis to get more insight. 

 
Theorem 1. The space overhead ratio of CCIndex to IndexedTable is 

  (N*N+1)/(2*N+(N+1)*L/Ln)                   
Where N is the number of index columns without primary key, and L/Ln is factor 

that total record length divided by the sum of index column lengths and key length, 
with the suppose that the replica factor for record data is N+1, and index column and 
primary key has the same length. 

Proof. In IndexTable, the space for each record is the original table plus index: 
Sii=(Lk+Li)*N*F+L*F                         (1) 

Where N is the number of index columns, F is the replica number, Lk is the length 
of key, Li is the average length of index columns, and L is the total length of a record. 

In CCIndex, the space for each record is the CCITs plus CCTs. The space for 
CCTs is: 

Sc = (Lk+N*Li)*N*F + (Lk+N*Li)*F = (Lk+N*Li)*(N+1)*F          (2) 
The total space for CCIndex is: 

Scc=Sc+L*(N+1)                            (3) 
If Lk = Li, F = N + 1, the space overhead ratio of CCIndex to IndexedTable is: 

(Scc-Sii)/Sii = (N*N+1) / (2*N+L/Lk)              (4) 
Let Ln=Lk + N*Li, then the formula (4) is:  

(Scc-Sii)/Sii = (N*N+1)/(2*N+(N+1)*L/Ln)            (5) 
□ 
The equation (5) in theorem 1 can be plotted as Fig. 2. 
 
From Fig. 2, the overhead ratio drop significantly as the L/Ln increases and the N 

decreases, which indicates that CCIndex should have less columns to index and all 
index columns should have small length to avoid big space overhead. If N changes 
from 2 to 4 and the L/Ln changes from 10 to 30, then the overhead changes from 5.3% 
to 29.3%. 

 
 



 

Fig. 2. The space overhead ratio of CCIndex to IndexedTable. The overhead ratio drops 
significantly as the L/Ln increases and the N decreases. If N changes from 2 to 4 and the L/Ln 
changes from 10 to 30, then the overhead changes from 5.3% to 29.3%. 

Theorem 2. In CCIndex, the probability of being able to recovery a damaged 
record is  

(1 - f(N+1))2 
Where f is the probability of a record damages, N is the indexed column number. 

The probability is the same as that of IndexedTable. 
Proof. 
CCIndex recoveries the data through CCTs and CCITs. 

CCTs have N replicas plus another copy in the corresponding columns in CCIT 
and the probability of failing to read from all CCTs is f(N+1). The probability of 
replicas for a given record in all CCITs are damaged is f(N+1). 

So, the probability of being able to recovery a damaged record is (1 - f(N+1))2. 
For IndexedTable, data access relies on replicated index and the original table. 

The probability is obviously the same as CCIndex.                  
□ 

6.3   Micro benchmarks 

BigTable introduces a micro benchmark to evaluate the basic operations throughput, 
including random read/write, sequential read/write, and scan. The workload is 
comprised of a table with 1KB rows, and each row has an additional 10 bytes rowkey. 
The throughput is defined as rows per seconds for all clients. HBase implements this 
micro benchmark and has single thread client, multi-threads clients, or MapReduce 
clients to evaluate the throughput. CCIndex extends the micro benchmark by adding 
an “index” column family to contain three columns and each is 10 bytes, and building 
three indexes using these columns. CCIndex adds an IndexScan operation to scan 
through the first column index. 

We setup an experimental environment having two clusters. The small cluster has 
3 nodes for micro benchmarks, and the big one has 16 nodes for synthetic application 
benchmark. Each node has two 1.8 GHz dual-cores AMD Opteron (tm) Processor 270, 
6 GB memory. Each node in the small cluster has 321 GB RAID5 SCSI disks, and 



each node in the big cluster has 186GB RAID1 SCSI disks. All nodes in each cluster 
are connected by Gigabits Ethernet. Each node uses Red Hat CentOS release 5.3 
(kernel 2.6.18), ext3 file system, Sun JDK1.6.0_14, Hadoop v0.20.1, and HBase 
0.20.1. The HBase itself uses 3 GB heap memory.  

In our experiments, we choose the workloads which have 1 million rows, and run 
each tests three times to report the average value. The client uses one of the 3 
machines with three concurrent threads. The micro benchmarks use 3 machines. 

 

Fig. 3. Basic Operation Performance of Two Index Schemes. CCIndex throughput is 11.4 times 
of IndexTable’s in IndexScan operation. CCIndex random write and sequential write operations 
is 54.9% and 121.4% better than that of IndexTable. 

We compare CCIndex with IndexedTable in HBase and show results in Fig. 3. 
CCIndex’s IndexScan operation throughput is 11.4 times of IndexTable’s, which 
shows the benefits of CCIndex through avoiding random reads in primary key. 
CCIndex random write and sequential write operations are 54.9% and 121.4% better 
than those of IndexTable, which is due to the parallel index updating. The scan, 
random read, and sequential read of these two schemes are nearly identical due to the 
same logic path. 

We compare the throughput of CCIndex with the original table, and the result is in 
the Fig. 4. The IndexScan is unavailable for origin table without index. CCIndex 
IndexScan throughput is 10.9% more than origin table, which is due to the first 
column in the “index” family is moved to the row key, so the data length of CCIndex 
table is smaller than original table’s. Fig. 4 further interprets why CCIndex can gain 
an order of magnitude improvement over IndexedTable. For IndexedTable, a range 
query over an index column should first scan the index table, and then issue multiple 
random reads in the original table to get the row data. In IndexedTable, throughput of 
scan over index table is nearly the same as scanning the original table. While in 
CCIndex, range query over an index column is done by IndexScan, which scans over 
corresponding CCIT. The IndexScan throughput for CCIndex is 8.2 times of random 
read in original table, and 1.1 times of scan in original table, so the throughput is at 
least 9.3 times over IndexedTable, because IndexedTable needs additional time to 
parse and wrap intermediate results. 



 

Fig. 4. Basic Operation Performance with Original Table. CCIndex IndexScan throughput is 
10.9% more than origin table. The random write and sequential write is significantly lower 
than the origin table due to the overhead to maintain index, which is a common issues for both 
index schemes. 

The throughput of random write and sequential write for CCIndex is significantly 
lower than the origin table, because maintaining index needs another random read to 
get row data for checking whether to change index column value, and a further delete 
and write to update index if is necessary. 

Because scanning index to get the matching row data is the most important 
functions of building index, we claim that CCIndex significantly outperforms 
IndexedTable and is suitable for range queries over indexes. However, we should 
carefully choose the workloads having less write operations and choose more stable 
index columns to avoid the performance degradation of write, and these are general 
guidelines for all two index schemes. 

 

 

Fig. 5. Index scan latency of all three schemes. CCIndex is 9.2 times faster than IndexedTable 
when the result count is larger than 1024. 

 



The following experiments show the index scan latency of all the three schemes in 
different result count. We use the scan over primary key to represents the unavailable 
index scan of the origin table. The results are illustrated in Fig. 5. 

From Fig. 5, the CCIndex latency is significantly smaller than IndexedTable, and 
the ratio is stable at 9.2 when the result count is larger than 1024. Another interesting 
thing is that the absolute latency of CCIndex is low, and the round-trip latency to get 
1024 1KB continuous rows is 42 micro-seconds. The low latency of CCIndex over 
HBase shows the ability of serving high user-interactivity applications, such as blog, 
wiki, and twitter. 

6.4   Synthetic Application benchmarks 

Multi-dimensional range queries are not directly supported by IndexedTable, so we 
designed a suite of experiments to compare the performance with the memory-based 
parallel database MySQL cluster. 

 
 
There are no common accepted benchmarks for multi-dimensional range queries 

over DOTs yet. The well-known benchmarks for database, such as TPC-C [23] and 
TPC-H [24], have a majority of operations not supported by DOT, such as 
transactions over multiple records and complex queries with joins and aggregations. 

This paper designs a synthetic application benchmark by analyzing a well-known 
cluster monitoring application Nagios [25]. Nagios supports comprehensive 
monitoring of operating systems, applications, network protocols, system metrics, and 
network infrastructure through user-configured monitoring items, called “service”, in 
a fixed interval on all hosts in a cluster. Nagios records the information about 
launching a monitoring item on a host into the log, including timestamp, host, service, 
execution time, and the response message for this monitoring item, etc. Nagios 
provides a web portal contacting backend CGI programs to read monitoring data and 
show various aspects of the cluster. The log information volume is exposing if we 
have more monitor items, more hosts, shorter interval, and a longer period of 
information to store. 

Through analyzing the application logic of the Nagios web portal, we construct a 
table ServiceTime using host concatenating service and time as the primary key, and 
with service and time as the record. We design two queries for our tests. 
 AndQuery: Multi-dimensional range queries with AND operations results in a 

big result count. The query likes “select * from ServiceTime where 
(primaryKey > K1 and primaryKey < K2) and (time > k3 
and time < k4) and (service = ‘CPU Load’)”. The query runs 
with multiple clients concurrently, each with different ranges to get load balance. 
The result count for each client is about 5 million. 

 OrQuery: Multi-dimensional range queries with OR operations results in a big 
result count. The query is similar as AndQuery, but uses OR to connect different 
dimensions. The result count for each client is about 10 million. 

These queries should be run in multiple clients to get the total throughput of all 
clients. 



We use the 16 node cluster described in the micro benchmarks, and there is totally 
64 cores and 96 GB memory. In our experiments, we collect more than 120 million 
monitoring records with average record length 118 bytes. 

The MySQL cluster is version 7.09, which is configured with 1 management node, 
2 SQL nodes, and 14 data nodes. In this test the maximum data node number is 14 
because data nodes must not co-located with management node and must be even 
number. The HBase regionserver in each node has 3GB heap memory. 

In the following tests, we use at most 90 million records because it reaches the 
capacity limits of our configured MySQL cluster. We allocate 3 GB as the data 
memory for each MySQL data node. MySQL cluster stores all records in data 
memory and cannot accept new records when the memory is all consumed.  

In the tests, each node runs an instance of client. Fig. 6 shows the results. 

 

Fig. 6. Multi-dimensional range queries throughput for multiple clients. MySQL Cluster 
performance is stable when the data sets increases from 30 million to 90 million records. With 
the 90 million records, CCIndex AndQuery and OrQuery throughput is 2.1 and 1.9 times of the 
memory-based parallel database MySQL Cluster. 

CCIndex AndQuery and OrQuery throughput is 2.1 and 1.9 times over MySQL 
Cluster with 90 million records dataset, which shows CCIndex performance is 
significant better than MySQL Cluster. 

In Fig. 6, the MySQL Cluster performance is stable for AND and OR queries when 
the data sets increase from 30 million to 90 million records. However, the MySQL 
Cluster scalability problem is that the capacity is determined by the total memory for 
data, because all the data has a copy in memory, which improves the performance but 
limits the capacity. 

6.5   Discussion 

The CCIndex can be applied to DOT systems with few of columns to index, which 
has great impact on the storage overhead. For a table more than 5 columns having 



query requirements, the practical solution is identifying the most frequently used 
columns to build index with CCIndex, or combines some columns to reduce the 
column number.  

CCIndex practically does not support adding or removing index after the table is 
created, for the reason that creation or deleting of CCIT costs unaffordable time for 
massive scale data. Another problem is that CCIndex write operation is slower than 
the original table. These two are common problems for many index schemes. 

In CCIndex, the probability of being able to recovery a damaged record is fairly 
good; however, the data recovery time is longer than IndexedTable scheme. Because 
in CCIndex, recovery a region needs gathering all records by random read in other 
CCITs, which is slower than copying a 64 MB region data file. 

7   Conclusions and future work 

This paper models the massive scale databases as Distributed Ordered Table, or DOT, 
which partitions continuous keys to regions, replicates regions for performance and 
reliability, distributes regions to shared-nothing region servers for scalability, serves 
as tables and columns, and supports range queries on keys. This paper formulates the 
problem as supporting multi-dimensional range queries over DOT while considering 
the three metrics: high performance, low space overhead, and high reliability. 

This paper proposes a scheme called CCIndex, short for Complemental Clustering 
Index, to tackle this problem. CCIndex introduces Complemental Clustering Index 
Tables each for a search column with the full row data to reorganize data and improve 
query performance. CCIndex leverages the region-to-server mapping information to 
estimate the result size of each query without statistics. CCIndex disables the 
underlying data replica mechanisms to avoid too much storage overhead, and 
introduces replicated Complemental Check Table to support incremental data 
recovery. 

CCIndex prototype has been built on Apache HBase. Theoretical analysis shows 
that CCIndex consumes 5.3 ~ 29.3% storage more than secondary index scheme in 
HBase for typical situations and the probability of failing to recovery bad rows is the 
same as secondary index scheme. Micro benchmarks show that CCIndex throughput 
of range queries on non-key column is about 11.4 times of secondary index. The 
synthetic monitoring application range queries in a 16-node cluster shows that 
CCIndex AndQuery and OrQuery throughput is 2.1 and 1.9 times over MySQL 
Cluster with 90 million records dataset. 

The future work includes further optimization and evaluation the space overhead 
and reliability in terms of recovery time. Additional work should be done to optimize 
the index updating performance. Some real world application benchmarks should be 
involved to evaluate the query performance in real world scenarios. More practical 
experiences and lessons should be given. 
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