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Abstract: How to manage the message passing among inter processor cores with lower 

overhead is a great challenge when the multi-core system is the contemporary solution to 

satisfy high performance and low energy demands in general and embedded computing 

domains. Generally speaking, the networks-on-chip connects the distributed multi-core system. 

It takes charge of message passing which including data and synchronization message among 

cores. The size of most data transmission is typically large enough that it remains strongly 

bandwidth-bound. The synchronization message is very small which is primarily latency bound. 

Thus the separated networks-on-chip are needed to transmit the above two types of message. In 

this paper we focus on the network for the transmission of synchronization messages. A 

hardware module – message passing unit (MPU) is proposed to manage the synchronization 

message passing for the heterogeneous multi-core system. Compared with the original single 

network approach, this solution reduces the run-time object scheduling and synchronization 

overhead effectively, thereby, improving the whole system performance. 

Keywords: data flow graph (DFG); multi-core system; parallel programming. 

 

1. Introduction 

Nowadays multi-core system becomes a popular solution for obtaining higher 

performance, short developing period, and low cost in the application system design. 

The multi-core system has its advantages but it also brings new problems: the 

run-time concurrency and synchronization among tasks are crucial if the high system 

performance is pursued [1]. 

We use the data flow graph (DFG) programming model to guide the parallel 

programming [2] in our work. The compiled inter-processor tasks are statically 
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mapped to the distributed processors and the synchronization message passing among 

inter processors are needed for the parallel running of tasks on different processors. 

Usually the size of synchronization message is small which should be transmitted 

among processors with lower latency. But the traditional networks-on-chip is usually 

designed for the data transmission and is not efficient to manage the synchronization 

message passing among inter cores.  

In this paper we suggest a hardware module called message passing unit (MPU) 

which transmits the scheduling and synchronization message for the lightweight 

distributed multi-core system without shared memory. The aim of this work is to 

reduce the inter processor communication overhead. We consider that NoC should not 

only play the role of data transmission but also help to manage part of the application 

scheduling and synchronization work for the multi-core system. The constructs in the 

application program for handling coordination and synchronization between the 

threads are transferred to the control signals that shall be sent and/or received by the 

processors during runtime. The control signals are short and they should be 

transmitted fast with less overhead. If they are transmitted in the same network as data 

the average overhead is expensive which is usually unacceptable. So in the NoC 

design space we specify two sub layers in the link/network layer: the data 

transmission sub layer manages the data communication. The control sub layer - MPU 

manages the control signal flow and messages passing for handling the coordination 

and synchronization among threads which is efficient for the heterogeneous 

multi-core system. 

The rest of the paper is organized as follows: Section 2 gives an overview of 

related work. Section 3 explains our MPU proposal. Section 4 describes the 

implementation details of object scheduling and synchronization flow. Section 5 

discusses the evaluation methodology and gives the evaluated results. Finally 

conclusions are made. 

 

2. Related work  

In the literature, there are some prior work have been done to accelerate the 

synchronization message passing among inter cores. In [3], the MultiFlex uses the 

object request broker (ORB) to connect client task to the server task. The aim is to 

accelerate the scheduling and synchronization message passing among tasks. In [4], 

the MLCA adopts universal register file (URF) to exchange the scheduling and 

synchronization message passing among inter-core tasks. But the ORB and URF have 



3 

the same problem: they transmit the scheduling and synchronization message in the 

general NoC. The general NoC is designed for data transmission among inter cores, 

which usually has large bit-width and the complicated protocol to assure the correct 

data transmission. As a result, the complicated protocol will bring overheads. Thus the 

traditional NoC is not efficient to manage the small size synchronization message 

passing among inter-core tasks. In [5], DMA based message passing mechanism is 

applied in Cheng’s work to transmit the synchronization messages among inter-core 

tasks which is also inefficient for the transmission of synchronization message. 

 

3. Construct of MPU 

3.1 Application model  

Before describing the proposed MPU, the application model is firstly introduced. The 

tasks of a data-driven workload can be modeled as a data flow graph. 

Definition 1: A data flow graph (DFG) [6] is a directed graph DFG(V, E, D), where 

each node ni  V represents a task and a directed edge ek=(ni, nj)E represents the 

communication between nodes ni and nj.. 

The tasks are mapped onto processors statically at compile time. All tasks are 

executed in a self-timed manner [7] as follows: a task can be invoked if (1) it receives 

the data from all its predecessors and (2) its output data buffers are valid. The above 

two operations are based on message passing mechanism. So the MPU should manage 

the message passing for these two operations of message passing architecture. The 

tasks are executed atomically and in this paper we define the atomic task as 

object. 

 

3.2 MPU structure  

A hardware/software implementation for the object scheduling, synchronization and 

data transmission between objects is proposed. Essentially the function of real-time 

operating system (RTOS) task/thread management is partly realized in hardware, 

which is named message passing unit (MPU) and situated in the link/network layer of 

NoC. As described in Section 1, MPU is also the control sub net of NoC, which takes 

advantage of the multi-core system’s characteristics and transmits the control signals 

and messages for object scheduling and synchronization efficiently. 

The task/thread management is the controller of the scheduler. The producer 

processor informs MPU that its object execution has been completed and then MPU 

wakes up the consumer objects to start processing the incoming data. This message 
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passing mechanism realized in the control sub net guides the scheduling and 

synchronization of the different objects. The DMA tasks are also set by MPU to 

transfer the data between the producer and consumer objects. 

 

3.2.1 MPU hardware architecture  

The hardware module of MPU supports four functions, (1)receive and response to the 

producer object information, (2)wake up the available consumer objects for execution, 

(3)synchronize the different objects execution, and (4)initialize the DMA tasks for 

data transmission between the different objects. The hardware block diagram of MPU 

is illustrated in Fig. 1, which consists of four parts: an object score board, a wakeup 

logic, an object program counter (PC) array, and a DMA task parameters buffer. 
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Fig.1. Block diagram of MPU hardware 

 

(1) The object scoreboard records the status of objects which are running or pending 

in the multi-core system. It is the kernel part for message interchange. Each processor 

in the multi-core system has one corresponding entry (in Fig. 1 it is supposed that the 

system has four processors) in the object scoreboard, which records the status of the 
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objects assigned to this processor. The length of entry is decided by the maximum 

number of objects that can be mapped to the processor. Each processor or object can 

write data in one bank of register cluster, and each processor (or object) can read 

every entry of the register cluster. So the message passing among tasks are realized in 

this way. Each entry includes five fields: counter, data_ready, syn_consumer_read, 

syn_consumer_processed, and process_enable. 

i) Counter field 

The counter field records the input data port number of the objects allocated on this 

processor. 

ii) Data_ready field 

This field is set by the related producer objects allocated in the other processors, 

which is used to inform the consumer objects that the input data has been ready.  

iii) Syn_consumer_read field 

The syn_consumer_read field is designed to realize the synchronization for data 

reading. 

iv) Syn_consumer_processed field 

This field is served as the synchronization point to assure the synergistic working of 

the producer and consumer objects pair in the multi-core system.  

v) Process_enable field 

In our execution model the object should be executed atomically. When one object is 

in its execution, the other objects cannot interrupt it. This is realized by tag set in the 

process_enable field. 

(2) The wakeup logic selects the available objects for execution.  

(3) The object program counter array records the starting addresses of objects. 

(4) The DMA task parameter buffer is used to store the DMA operation parameters 

which the global memory address, the local memory address, the data length and the 

data format are set in its entries. Directors call for the DMA operation when the input 

data is ready. 

 

3.2.2 Operating system interface for MPU  

We design four functions in RTOS for MPU to manage the task/thread running of 

multi-core system. These functions include Write_MPU(), Syn_consumer_read(), 

Syn_consumer_processed(), and Check_MPU(). 

(1) The Write_MPU function is used by the director of producer object to set and 

clear its consumer object’s data ready fields in the entry of object scoreboard.  
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(2)The Syn_consumer_read function is called by the director of consumer object 

to set its syn_consumer_read field of the object scoreboard.  

(3)The Syn_consumer_processed function is used by the director of consumer 

object to clear its syn_consumer_processed field.  

(4)The Check_MPU function is applied to check the object status in an entry of 

object scoreboard.  

These four functions constitute main part of the task/thread management of RTOS, 

which handles the objects operation in the multi-core system.  

 

4. Object scheduling and synchronization flow 

The scheduling and synergistic synchronization management for the running of the 

parallel program are partly performed by the hardware MPU and partly by software - 

the director in RTOS. The hardware MPU manages the object waken-up and part of 

the operation of synergistic synchronization for the objects execution in the multi-core 

system. After the object scoreboard entries have been set by the producer object 

which completed its execution, the DMA operation will be called first to transfer the 

produced output data to the local memories of the consumer objects. Then the 

consumer objects which have all the input data ready can be selected for execution by 

the wakeup logic. The whole flow includes the following steps. 

(1) The syn_consumer_processed bit becomes unavailable after the data ready bit has 

been set. The MPU sends the DMA operation interruption signal to the corresponding 

consumer object director to initiate the data transfer between the producer and 

consumer objects. When the DMA operation is over, the director of consumer object 

will set syn_consumer_read bit and decrease the number by one in the corresponding 

counter. Later the data ready bit will be cleared by the producer object. 

(2) The wakeup logic scans the counters to find out the ready objects for execution. If 

the processor of the ready object is free (process_enable bit is available) the highest 

priority ready object will be activated, MPU sends execution interruption signal to the 

corresponding processor. Then this processor fetches the program from the address 

indicated by the PC array. 

(3) After the scheduled object finishes its execution the result data will be written to 

the global memory and its consumer objects’ entries in the object score board will be 

set if they have completely processed the former produced data (all the 

syn_consumer_processed bits of its consumer objects are cleared). Then this producer 

object’s syn_consumer_processed bit is cleared, process_enable is reset to valid and 
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the counter is reset to its input data number by hardware. 

Thus it means that the parallel program has finished its execution for one batch of 

its input data, the process mentioned above will be repeated cyclically for the 

successive batches of the input data. The MPU scheduling flow is depicted in Fig. 2. 
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Fig.2. MPU scheduling and synchronization flow 

 

5. Experimental results 

5.1 Evaluation methodology 

In order to evaluate the proposed MPU performance two applications – FFT program 

[8] and eigenvalue of matrix – Jacobi algorithm [9] program are adopted in the 

experiment. The experimental platform integrates one 32-bit integer RISC core - 

RISC32E [10] and eight 32-bit integer DSPs - MediaDSP3200 [11-12]. A 3x3 mesh 

topology NoC connects them and the DMA engine is also included. Each core has a 

local memory and the SDRAM is used as the global data buffer for the application. 

Each DSP has one allocated director and RTOS is running on the RISC processor. The 
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MPU and software directors (proxy of RTOS) manage the object scheduling and 

synchronization for this multi-core system.  

 

5.2 The fast Fourier transform (FFT) 

The fast Fourier transform (FFT) is the fast algorithm for DFT and one of the most 

popular algorithm is the Cooley-Turkey algorithm which is written as below: 
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In the experiment 64-point FFT is applied as the test algorithm. The 64-point 

FFT on platform is arranged as N1=N2=8 and Fig.3 shows its parallel programming 

process and synchronizations among objects.  
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Fig. 3 Parallel programming process and synchronizations in FFT  

 

1) The object t00 is the predecessor for the inter-processor objects t1j (j=1…8), which 

calculates the indexes for original data. It is allocated to the control RISC. 
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 by using the FFT algorithm. The objects are allocated to DSPs. 
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3) The object t20 calculates the
12n k

NW which multiplies by input data and finishes the 

data permutation operation from the order of x[k1,n2] to x[n2,k2]. It is allocated to the 

control RISC. 

4) The objects t3j (j=1…8) calculate the summation algorithm of the 
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 by using the FFT algorithm. The objects are allocated to 

DSPs. 

5) The object t40 manages the output data permutation to the frequency domain 

parameter and is allocated in control RISC. 

 

Table 3. FFT experimental result 

Overhead 

Scheduler 

RTOS kernel on 

RISC(Kbytes) 

Director on 

processor(Kbytes) 

Kernel delay/ total 

execution time 

(cycles) 

Software Director 10 1.884 6716/21299 

MPU 9 0.584 1435/16018 

 

The experimental results are shown in Table 3. From Table 3 we can see that the 

MPU solution has less memory space requirement for RTOS kernel and directors. It 

takes an average time consumption of 16018 cycles for one time 64-point FFT. The 

kernel delay for the scheduling and synchronization of MPU approach takes up 8.96% 

and for software director the percentage is 31.53%. Thus the MPU efficiently reduces 

the kernel delay for the multi-core system which improves the system efficiency by 

24.79%. 

 

5.3 Eigenvalue of matrix 

The eigenvalue λ of matrix A is defined as Au = λu, where A is an n x n matrix, λ is a 

real number and u is the n dimensional characteristic vector of matrix A. The Jacobi 

matrix algorithm is applied to solve this problem. In experiment a 64*64 matrix is 

applied as the test algorithm. The Fig. 4 shows its parallel programming process and 

the synchronizations among objects. 

1) The object t00 assigns the matrix coefficients of A to the DSPs, which is the 



10 

predecessor of objects t1j (j=1…8). It is allocated to control RISC. 

2) The objects t1j (j=1…8) divide the assigned coefficients into upper diagonal and 

lower diagonal classes. They are the predecessors of object t20 which are allocated to 

DSPs. 

3) The thread t20 finds the maximum value from the collected biggest values, which is 

the predecessor of objects t60 and t3j. It is allocated to control RISC. 

4) The objects t3j (j=1…8) calculate the tangent of rotating angle θ of hyper plane (g, 

h), cos θ and sin θ, which are the predecessors of objects t5j (j=1…8) and are allocated 

to DSPs. 

5) The object t40 broadcasts the matrix coefficients of row g and column h to the 

DSPs, which is the predecessor of objects t5j (j=1…8). It is allocated to control RISC. 

6) The objects t5j (j=1…8) performs multiplication of the former result (Pgh
(1)

 

Pgh
(2)

…Pgh
(k-2)

) by Pgh
(k-1)

, which are the predecessors of t1j and are allocated to DSPs. 

7) The object t60 get the final results, which is allocated to control RISC. 
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Fig.4 Parallel programming process and synchronizations in Jacobi matrix algorithm 

 

Table 4. Jacobi matrix algorithm experimental result 

Overhead 

Scheduler 

RTOS kernel on 

RISC(Kbytes) 

Director on 

processor(Kbytes) 

Kernel delay/ total 

execution time 

(cycles) 

Software Director 10.298 2.182 15870/59182 

MPU 9.494 0.974 5633/48945 

 

The eigenvalue of matrix’s result is shown in Table 4. Similarly, the memory 
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space requirement of MPU is less than the software director’s. The one-time 64*64 

Jacobi matrix algorithm calculation needs 48945 cycles so that the kernel delay of 

MPU approach takes up about 11.51% of the whole time consumption and for 

software director the percentage is 26.82%. Thus the MPU scheme reduces the kernel 

delay which improves the system efficiency by 17.30%. 

 

5.4 Physical parameters of MPU 

The hardware cost of MPU depends on the scale of multi-core system and the 

maximum number of threads/objects which are allocated on the processors. Here the 

scale of MPU is for nine processors multi-core system so that there are nine entries in 

the object scoreboard. For a limited number of threads exploited in the program it is 

supposed that each processor has no more than four threads/objects. In the multi-core 

system each object may have maximum eight producers and eight consumers so every 

object needs 27-bit for the entry. At the same time a 32-bit program counter and a 

128-bit DMA task parameter buffer are needed for one object. So a 187-bit width 

hardware register is needed for one object in total. The 3x3 mesh topology NoC is 

used which the channel width is 64-bit and the depth of the FIFO is 8. We synthesize 

the MPU module and NoC module using Synopsys v-2003.6 and the TMSC90 CMOS 

process technology. The physical parameters of MPU and NoC are listed in Table 5. 

From Table 5 we can see that the MPU module can work at the NoC frequency and 

the area cost of MPU takes up 14.5% of the whole NoC area. 

 

Table 5. Physical parameters of MPU and NoC (TSMC90: worst case, voltage 1.08v, 

temperature 125℃) 

Parameter 

Component 

Delay 

(ns) 

Frequency  

(MHz) 
Gate count 

Dynamic power  

(mW) 

MPU 0.85 1176 97096 6.42 

NoC 1.30 769 669634 80.82 

 

6. Conclusion 

The hardware/software approach – message passing unit interface offers an efficient 

way to manage the object scheduling and synchronization for the multi-core system to 

reduce the communication overhead. Compared with the software director, it not only 

cut down the average delay for object scheduling and synchronization but also 
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reduces the code size for RTOS and director, which is usually important for the 

limited memory space of the embedded system. The physical parameters imply that 

the hardware MPU module has the characteristic of relatively higher frequency and 

small area. Compared with the software approach the MPU approach improves the 

system efficiency by 24.79% in FFT application and 17.30% in Jacobi matrix 

algorithm with the hardware area increase of 14.5%. 
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