
1

An Efficient Architectural Design of Hardware Interface

for Heterogeneous Multi-core System

Xiongli Gu
1
, Jie Yang

1
, Xiamin Wu

2
, Chunming Huang

1
, Peng Liu

1,1

Department of Information Science and Electronic Engineering,

1Zhejiang University, Hangzhou, 310027, China

2UTStarcom Co.Ltd., Hangzhou, 310053, China

{guxiongli2010, mckeyyang, alonewoo}@gmail.com,

hcm198611@yahoo.com.cn,liupeng@zju.edu.cn

Abstract: How to manage the message passing among inter processor cores with lower

overhead is a great challenge when the multi-core system is the contemporary solution to

satisfy high performance and low energy demands in general and embedded computing

domains. Generally speaking, the networks-on-chip connects the distributed multi-core system.

It takes charge of message passing which including data and synchronization message among

cores. The size of most data transmission is typically large enough that it remains strongly

bandwidth-bound. The synchronization message is very small which is primarily latency bound.

Thus the separated networks-on-chip are needed to transmit the above two types of message. In

this paper we focus on the network for the transmission of synchronization messages. A

hardware module – message passing unit (MPU) is proposed to manage the synchronization

message passing for the heterogeneous multi-core system. Compared with the original single

network approach, this solution reduces the run-time object scheduling and synchronization

overhead effectively, thereby, improving the whole system performance.

Keywords: data flow graph (DFG); multi-core system; parallel programming.

1. Introduction

Nowadays multi-core system becomes a popular solution for obtaining higher

performance, short developing period, and low cost in the application system design.

The multi-core system has its advantages but it also brings new problems: the

run-time concurrency and synchronization among tasks are crucial if the high system

performance is pursued [1].

We use the data flow graph (DFG) programming model to guide the parallel

programming [2] in our work. The compiled inter-processor tasks are statically

1 The corresponding author, liupeng@zju.edu.cn

mailto:%20hcm198611@yahoo.com.cn

2

mapped to the distributed processors and the synchronization message passing among

inter processors are needed for the parallel running of tasks on different processors.

Usually the size of synchronization message is small which should be transmitted

among processors with lower latency. But the traditional networks-on-chip is usually

designed for the data transmission and is not efficient to manage the synchronization

message passing among inter cores.

In this paper we suggest a hardware module called message passing unit (MPU)

which transmits the scheduling and synchronization message for the lightweight

distributed multi-core system without shared memory. The aim of this work is to

reduce the inter processor communication overhead. We consider that NoC should not

only play the role of data transmission but also help to manage part of the application

scheduling and synchronization work for the multi-core system. The constructs in the

application program for handling coordination and synchronization between the

threads are transferred to the control signals that shall be sent and/or received by the

processors during runtime. The control signals are short and they should be

transmitted fast with less overhead. If they are transmitted in the same network as data

the average overhead is expensive which is usually unacceptable. So in the NoC

design space we specify two sub layers in the link/network layer: the data

transmission sub layer manages the data communication. The control sub layer - MPU

manages the control signal flow and messages passing for handling the coordination

and synchronization among threads which is efficient for the heterogeneous

multi-core system.

The rest of the paper is organized as follows: Section 2 gives an overview of

related work. Section 3 explains our MPU proposal. Section 4 describes the

implementation details of object scheduling and synchronization flow. Section 5

discusses the evaluation methodology and gives the evaluated results. Finally

conclusions are made.

2. Related work

In the literature, there are some prior work have been done to accelerate the

synchronization message passing among inter cores. In [3], the MultiFlex uses the

object request broker (ORB) to connect client task to the server task. The aim is to

accelerate the scheduling and synchronization message passing among tasks. In [4],

the MLCA adopts universal register file (URF) to exchange the scheduling and

synchronization message passing among inter-core tasks. But the ORB and URF have

3

the same problem: they transmit the scheduling and synchronization message in the

general NoC. The general NoC is designed for data transmission among inter cores,

which usually has large bit-width and the complicated protocol to assure the correct

data transmission. As a result, the complicated protocol will bring overheads. Thus the

traditional NoC is not efficient to manage the small size synchronization message

passing among inter-core tasks. In [5], DMA based message passing mechanism is

applied in Cheng’s work to transmit the synchronization messages among inter-core

tasks which is also inefficient for the transmission of synchronization message.

3. Construct of MPU

3.1 Application model

Before describing the proposed MPU, the application model is firstly introduced. The

tasks of a data-driven workload can be modeled as a data flow graph.

Definition 1: A data flow graph (DFG) [6] is a directed graph DFG(V, E, D), where

each node ni  V represents a task and a directed edge ek=(ni, nj)E represents the

communication between nodes ni and nj..

The tasks are mapped onto processors statically at compile time. All tasks are

executed in a self-timed manner [7] as follows: a task can be invoked if (1) it receives

the data from all its predecessors and (2) its output data buffers are valid. The above

two operations are based on message passing mechanism. So the MPU should manage

the message passing for these two operations of message passing architecture. The

tasks are executed atomically and in this paper we define the atomic task as

object.

3.2 MPU structure

A hardware/software implementation for the object scheduling, synchronization and

data transmission between objects is proposed. Essentially the function of real-time

operating system (RTOS) task/thread management is partly realized in hardware,

which is named message passing unit (MPU) and situated in the link/network layer of

NoC. As described in Section 1, MPU is also the control sub net of NoC, which takes

advantage of the multi-core system’s characteristics and transmits the control signals

and messages for object scheduling and synchronization efficiently.

The task/thread management is the controller of the scheduler. The producer

processor informs MPU that its object execution has been completed and then MPU

wakes up the consumer objects to start processing the incoming data. This message

4

passing mechanism realized in the control sub net guides the scheduling and

synchronization of the different objects. The DMA tasks are also set by MPU to

transfer the data between the producer and consumer objects.

3.2.1 MPU hardware architecture

The hardware module of MPU supports four functions, (1)receive and response to the

producer object information, (2)wake up the available consumer objects for execution,

(3)synchronize the different objects execution, and (4)initialize the DMA tasks for

data transmission between the different objects. The hardware block diagram of MPU

is illustrated in Fig. 1, which consists of four parts: an object score board, a wakeup

logic, an object program counter (PC) array, and a DMA task parameters buffer.

Reg00

Reg10

Reg20

Reg30

Reg01

Reg11

Reg21

Reg31

Reg02

Reg12

Reg22

Reg32

Reg03

Reg13

Reg23

Reg33

Processor0 Write

Processor1 Write
Processor2

Write Processor3

Write
Bank0 Bank1 Bank2 Bank3

Processor0

Read

Wakeup Logic

Data ready

Indication

Object PC

array

DMA Task

parameter

s

Selected object

ID

Selected object

ID

Processor1

Read

Processor2

Read

Processor3

Read

Object

PC

Register

Cluster

Entry3

o
b

je
c
t s

c
o

re
b

o
a

rd

N
e

tw
o

rk
 In

te
rfa

c
e

s

Entry2

Entry1

Entry0

Hardware

Interruption

counter data_ready
syn_consumer_re

ad

process_enabl

e

syn_consumer_proces

sed

An object scoreboard entry

Data ready

Indication

Data ready

Indication

Data ready

Indication

Data transfer

parameters

Fig.1. Block diagram of MPU hardware

(1) The object scoreboard records the status of objects which are running or pending

in the multi-core system. It is the kernel part for message interchange. Each processor

in the multi-core system has one corresponding entry (in Fig. 1 it is supposed that the

system has four processors) in the object scoreboard, which records the status of the

5

objects assigned to this processor. The length of entry is decided by the maximum

number of objects that can be mapped to the processor. Each processor or object can

write data in one bank of register cluster, and each processor (or object) can read

every entry of the register cluster. So the message passing among tasks are realized in

this way. Each entry includes five fields: counter, data_ready, syn_consumer_read,

syn_consumer_processed, and process_enable.

i) Counter field

The counter field records the input data port number of the objects allocated on this

processor.

ii) Data_ready field

This field is set by the related producer objects allocated in the other processors,

which is used to inform the consumer objects that the input data has been ready.

iii) Syn_consumer_read field

The syn_consumer_read field is designed to realize the synchronization for data

reading.

iv) Syn_consumer_processed field

This field is served as the synchronization point to assure the synergistic working of

the producer and consumer objects pair in the multi-core system.

v) Process_enable field

In our execution model the object should be executed atomically. When one object is

in its execution, the other objects cannot interrupt it. This is realized by tag set in the

process_enable field.

(2) The wakeup logic selects the available objects for execution.

(3) The object program counter array records the starting addresses of objects.

(4) The DMA task parameter buffer is used to store the DMA operation parameters

which the global memory address, the local memory address, the data length and the

data format are set in its entries. Directors call for the DMA operation when the input

data is ready.

3.2.2 Operating system interface for MPU

We design four functions in RTOS for MPU to manage the task/thread running of

multi-core system. These functions include Write_MPU(), Syn_consumer_read(),

Syn_consumer_processed(), and Check_MPU().

(1) The Write_MPU function is used by the director of producer object to set and

clear its consumer object’s data ready fields in the entry of object scoreboard.

6

(2)The Syn_consumer_read function is called by the director of consumer object

to set its syn_consumer_read field of the object scoreboard.

(3)The Syn_consumer_processed function is used by the director of consumer

object to clear its syn_consumer_processed field.

(4)The Check_MPU function is applied to check the object status in an entry of

object scoreboard.

These four functions constitute main part of the task/thread management of RTOS,

which handles the objects operation in the multi-core system.

4. Object scheduling and synchronization flow

The scheduling and synergistic synchronization management for the running of the

parallel program are partly performed by the hardware MPU and partly by software -

the director in RTOS. The hardware MPU manages the object waken-up and part of

the operation of synergistic synchronization for the objects execution in the multi-core

system. After the object scoreboard entries have been set by the producer object

which completed its execution, the DMA operation will be called first to transfer the

produced output data to the local memories of the consumer objects. Then the

consumer objects which have all the input data ready can be selected for execution by

the wakeup logic. The whole flow includes the following steps.

(1) The syn_consumer_processed bit becomes unavailable after the data ready bit has

been set. The MPU sends the DMA operation interruption signal to the corresponding

consumer object director to initiate the data transfer between the producer and

consumer objects. When the DMA operation is over, the director of consumer object

will set syn_consumer_read bit and decrease the number by one in the corresponding

counter. Later the data ready bit will be cleared by the producer object.

(2) The wakeup logic scans the counters to find out the ready objects for execution. If

the processor of the ready object is free (process_enable bit is available) the highest

priority ready object will be activated, MPU sends execution interruption signal to the

corresponding processor. Then this processor fetches the program from the address

indicated by the PC array.

(3) After the scheduled object finishes its execution the result data will be written to

the global memory and its consumer objects’ entries in the object score board will be

set if they have completely processed the former produced data (all the

syn_consumer_processed bits of its consumer objects are cleared). Then this producer

object’s syn_consumer_processed bit is cleared, process_enable is reset to valid and

7

the counter is reset to its input data number by hardware.

Thus it means that the parallel program has finished its execution for one batch of

its input data, the process mentioned above will be repeated cyclically for the

successive batches of the input data. The MPU scheduling flow is depicted in Fig. 2.

Initialization

(Counter = Zero)&

process_enable
NO

YES

In
itialisatio

n

Data ready bit setting

DMA operation interruption

syn_consumer_processed setting

syn_consumer_read setting

Counter decrease

O
b
ject sy

n
ch

ro
n
isatio

n

Execution Interruption

Invalid process_enable

O
b
ject

activ
atio

n

Clear

syn_consumer_

processed

Reset counter
Valid

process_enable

O
b
ject sy

n
ch

ro
n
isatio

n

D
irecto

r

Fig.2. MPU scheduling and synchronization flow

5. Experimental results

5.1 Evaluation methodology

In order to evaluate the proposed MPU performance two applications – FFT program

[8] and eigenvalue of matrix – Jacobi algorithm [9] program are adopted in the

experiment. The experimental platform integrates one 32-bit integer RISC core -

RISC32E [10] and eight 32-bit integer DSPs - MediaDSP3200 [11-12]. A 3x3 mesh

topology NoC connects them and the DMA engine is also included. Each core has a

local memory and the SDRAM is used as the global data buffer for the application.

Each DSP has one allocated director and RTOS is running on the RISC processor. The

8

MPU and software directors (proxy of RTOS) manage the object scheduling and

synchronization for this multi-core system.

5.2 The fast Fourier transform (FFT)

The fast Fourier transform (FFT) is the fast algorithm for DFT and one of the most

popular algorithm is the Cooley-Turkey algorithm which is written as below:

2 1

2 2 2 1 1 1

2 1

2 1

1 1

1 2 1 2

0 0

[,] [,]
N N

n k n k n k

N N N

n n

X k k W W x n n W
 

 

 
  

 
 

- point DFT transfer

2 1[,]x n k

2

2 2

2

2

1

2 1

0

[,]
N

n k

N

n

W x n k




 

1N - point DFT transfer
2N

,

1 1

2 1 2

2 2

0 1

0 1

n N
n N n n

n N

  
  

  
,

1 1

1 1 2

2 2

0 1

0 1

k N
k k N k

k N

  
  

  
,

1 2N N N .

In the experiment 64-point FFT is applied as the test algorithm. The 64-point

FFT on platform is arranged as N1=N2=8 and Fig.3 shows its parallel programming

process and synchronizations among objects.

DSP8DSP7DSP6DSP5DSP4DSP3DSP2DSP1

t1j

t00

t20

t3j

t40

Task scheduling

t11

t00

t12 t13 t14 t15 t16 t17 t18

t20

t31 t32 t33 t34 t35 t36 t37 t38

t40

(a) task graph (b) mapped graph

RISC

Indicates the input synchronization Represents the output synchronization

Fig. 3 Parallel programming process and synchronizations in FFT

1) The object t00 is the predecessor for the inter-processor objects t1j (j=1…8), which

calculates the indexes for original data. It is allocated to the control RISC.

2) The objects t1j (j=1…8) calculate the inner summation algorithm of the

FFT 11

1

1

1

21

1

0

],[kn
N

N

n

Wnnx




 by using the FFT algorithm. The objects are allocated to DSPs.

9

3) The object t20 calculates the
12n k

NW which multiplies by input data and finishes the

data permutation operation from the order of x[k1,n2] to x[n2,k2]. It is allocated to the

control RISC.

4) The objects t3j (j=1…8) calculate the summation algorithm of the

FFT],[22
22

2

2

2

1

0

knxW kn
N

N

n






 by using the FFT algorithm. The objects are allocated to

DSPs.

5) The object t40 manages the output data permutation to the frequency domain

parameter and is allocated in control RISC.

Table 3. FFT experimental result

Overhead

Scheduler

RTOS kernel on

RISC(Kbytes)

Director on

processor(Kbytes)

Kernel delay/ total

execution time

(cycles)

Software Director 10 1.884 6716/21299

MPU 9 0.584 1435/16018

The experimental results are shown in Table 3. From Table 3 we can see that the

MPU solution has less memory space requirement for RTOS kernel and directors. It

takes an average time consumption of 16018 cycles for one time 64-point FFT. The

kernel delay for the scheduling and synchronization of MPU approach takes up 8.96%

and for software director the percentage is 31.53%. Thus the MPU efficiently reduces

the kernel delay for the multi-core system which improves the system efficiency by

24.79%.

5.3 Eigenvalue of matrix

The eigenvalue λ of matrix A is defined as Au = λu, where A is an n x n matrix, λ is a

real number and u is the n dimensional characteristic vector of matrix A. The Jacobi

matrix algorithm is applied to solve this problem. In experiment a 64*64 matrix is

applied as the test algorithm. The Fig. 4 shows its parallel programming process and

the synchronizations among objects.

1) The object t00 assigns the matrix coefficients of A to the DSPs, which is the

10

predecessor of objects t1j (j=1…8). It is allocated to control RISC.

2) The objects t1j (j=1…8) divide the assigned coefficients into upper diagonal and

lower diagonal classes. They are the predecessors of object t20 which are allocated to

DSPs.

3) The thread t20 finds the maximum value from the collected biggest values, which is

the predecessor of objects t60 and t3j. It is allocated to control RISC.

4) The objects t3j (j=1…8) calculate the tangent of rotating angle θ of hyper plane (g,

h), cos θ and sin θ, which are the predecessors of objects t5j (j=1…8) and are allocated

to DSPs.

5) The object t40 broadcasts the matrix coefficients of row g and column h to the

DSPs, which is the predecessor of objects t5j (j=1…8). It is allocated to control RISC.

6) The objects t5j (j=1…8) performs multiplication of the former result (Pgh
(1)

Pgh
(2)

…Pgh
(k-2)

) by Pgh
(k-1)

, which are the predecessors of t1j and are allocated to DSPs.

7) The object t60 get the final results, which is allocated to control RISC.

(a) task graph

DSP7DSP6DSP5DSP4DSP3DSP2
t00

t31 t32 t33 t34 t35 t36 t37 t38

t20

RISC

DSP1 DSP8

t60

task

scheduling

(b) mapped graph

t1j

t00

t60

t20

t3j

t40 t5j

t51 t52 t53 t54 t55 t56 t57 t58

t40

iteratio
n

t18t17t16t15t14t13t12t11

Indicates the input synchronization Represents the output synchronization

Fig.4 Parallel programming process and synchronizations in Jacobi matrix algorithm

Table 4. Jacobi matrix algorithm experimental result

Overhead

Scheduler

RTOS kernel on

RISC(Kbytes)

Director on

processor(Kbytes)

Kernel delay/ total

execution time

(cycles)

Software Director 10.298 2.182 15870/59182

MPU 9.494 0.974 5633/48945

The eigenvalue of matrix’s result is shown in Table 4. Similarly, the memory

11

space requirement of MPU is less than the software director’s. The one-time 64*64

Jacobi matrix algorithm calculation needs 48945 cycles so that the kernel delay of

MPU approach takes up about 11.51% of the whole time consumption and for

software director the percentage is 26.82%. Thus the MPU scheme reduces the kernel

delay which improves the system efficiency by 17.30%.

5.4 Physical parameters of MPU

The hardware cost of MPU depends on the scale of multi-core system and the

maximum number of threads/objects which are allocated on the processors. Here the

scale of MPU is for nine processors multi-core system so that there are nine entries in

the object scoreboard. For a limited number of threads exploited in the program it is

supposed that each processor has no more than four threads/objects. In the multi-core

system each object may have maximum eight producers and eight consumers so every

object needs 27-bit for the entry. At the same time a 32-bit program counter and a

128-bit DMA task parameter buffer are needed for one object. So a 187-bit width

hardware register is needed for one object in total. The 3x3 mesh topology NoC is

used which the channel width is 64-bit and the depth of the FIFO is 8. We synthesize

the MPU module and NoC module using Synopsys v-2003.6 and the TMSC90 CMOS

process technology. The physical parameters of MPU and NoC are listed in Table 5.

From Table 5 we can see that the MPU module can work at the NoC frequency and

the area cost of MPU takes up 14.5% of the whole NoC area.

Table 5. Physical parameters of MPU and NoC (TSMC90: worst case, voltage 1.08v,

temperature 125℃)

Parameter

Component

Delay

(ns)

Frequency

(MHz)
Gate count

Dynamic power

(mW)

MPU 0.85 1176 97096 6.42

NoC 1.30 769 669634 80.82

6. Conclusion

The hardware/software approach – message passing unit interface offers an efficient

way to manage the object scheduling and synchronization for the multi-core system to

reduce the communication overhead. Compared with the software director, it not only

cut down the average delay for object scheduling and synchronization but also

12

reduces the code size for RTOS and director, which is usually important for the

limited memory space of the embedded system. The physical parameters imply that

the hardware MPU module has the characteristic of relatively higher frequency and

small area. Compared with the software approach the MPU approach improves the

system efficiency by 24.79% in FFT application and 17.30% in Jacobi matrix

algorithm with the hardware area increase of 14.5%.

Acknowledgment

This work is supported by NSFC under grant 60873112.

References
1. Mignolet, J.-Y., Baert, R., Ashby, T.J., Avasare, P., Hye-On Jang, Jae Cheol Son: MPA:

parallelizing an application onto a multicore platform made easy. IEEE MICRO, Vol.29,

issue3, pp.31-39 , (2009).

2. Robert, G. and Babb,Ⅱ: Parallel processing with large grain data flow techniques,

Computer, Vol.17, No.7, pp.55-61, (1984).

3. Paulin, P.G., Pilkington, C., Langevin, M., Bensoudane, E., Lyonnard, D., Benny, O.,

Lavigueur, B., Lo, D., Beltrame, G., Gagne, V., Nicolescu, G.: Parallel programming

models for a multiprocessor SoC platform applied to networking and multimedia. IEEE

Transactions on Very Large Scale Integration (VLSI) systems, Vol.14, No.7, pp.667-680,

(2006).

4. Abdelrahman, T., Abdelkhalek, A., Aydonat, U. : The MLCA: a solution paradigm for

parallel programmable SoCs. IEEE North-East Workshop on Circuits and Systems,

pp.253-253, (2006).

5. Cheng, X.M., Yao, Y.B., Zhang, Y.X., Liu, P., Yao, Q.D.: An object oriented model

scheduling for Media-SoC. Journal of Electronics (CHINA), Vol.26, No.2, pp. 244-251,

(2009).

6. Sinnen O.: Task scheduling for parallel systems. Hoboken, New Jersey, John Wiley&Sons

press, pp.60-1, (2007).

7. Bekooij M, Hoes R, Moreira O, Poplavko, P., Pastrnak, M., Mesman, B., Mol, J., Stuijk, S.,

Gheorghita, V., Meerbergen, J.V.: Dataflow analysis for real-time embedded

multiprocessor system design. In: Dynamic and Robust Streaming in and between

Connected Consumer-Electronic Device, Vol. 3. Dordrecht: Springer Netherlands, p.

81-108, (2006).

8. Cooley JW and John WT. An algorithm for the machine calculation of complex Fourier

series. Mathematics of Computation; 19(90): 297–301, (1965).

9. Golub GH and van der Vorst HA. : Eigenvalue computation in the 20th century. Journal of

Computational and Applied Mathematics, Vol.123, No.1/2, pp.35–65, (2000).

10. Xiao, Z.B., Liu, P., Yao, Y.B., Yao, Q.D.: Optimizing pipeline for a RISC processor with

multimedia extension. ISA. Journal of Zhejiang University-Science A, Vol.7, No.2,

pp.269–74, (2006).

11. Liu, P., Yao, Q.D., Li, D.X.: 32-bit media digital signal processor. China Patent

ZL200410016753.8. (2004).

12. Shi, C., Wang, W.D., Zhou, L., Gao, L., Liu, P., Yao, Q.D.: 32b RISC/DSP media

processor: MediaDSP3201. Embedded Processors for Multimedia and Communications II,

SPIE Vol.5683, Jan.2005, pp.43-52.

