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Abstract. 3-D Networks-on-Chip (NoCs) emerge as a powerful solution to 
address both the interconnection and design complexity problems facing future 
Systems-on-Chip (SoCs). Effective run-time application mapping on a 3-D 
NoC-based Multiprocessor Systems-on-Chip (MPSoC) can be quite challenging, 
largely due to the fact that the arrival order and task graphs of the target 
applications are not known a priori. This paper presents a power-aware run-time 
incremental mapping algorithm for 3-D NoCs that aims to minimize the 
communication power for each incoming application as well as reduce the 
impact of the mapped applications on future applications that are yet to be 
mapped. In this algorithm, if the vertical links are found to be shorter and 
provide higher communication bandwidth than horizontal links, more 
communications will be mapped to vertical links to reduce delay and power 
consumption. Extensive experiments have been conducted to evaluate the 
performance of the proposed algorithm and the results are compared with those 
obtained from the optimal mapping algorithm (branch-and-bound), a random 
mapping and a simple heuristic. When mapping a single application, the 
proposed algorithm is four orders of magnitude faster than the branch-and-
bound algorithm at a small degradation of mapping quality. When mapping 
multiple applications incrementally, our algorithm can save 50% 
communication power compared to the random mapping and 20% 
communication power compared to the simple heuristic.   
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1   Introduction 
Advance in CMOS technology keeps driving the increase of the number of processing 
cores that can be integrated on a single chip. With the further increase of the number 
of processing cores, the integration limitations of SoCs become more significant. 3-D 
integration together with the NoC design paradigm provide a promising solution to 
overcome these limitations [1]. In the literature, several approaches exist for 3-D 
integration, e.g., wire bounded, microbump, through via and contactless [2]. 3-D 

                                                           
∗ Peng Liu is the corresponding author. 

This work is supported in part by NSFC under the grants 60873112 and 61028004 



integration can considerably reduce the global interconnection length, resulting in 
lower interconnection delay, power consumption and also the overall chip area [2]. 
Combining 3-D ICs and NoC can provide significant performance improvement and 
make the chip more power efficient .  

The large number of processing cores integrated into 3-D NoC-based MPSoCs 
unquestionably offer high parallelism in computation. To better utilize these vast 
available computation resources, virtualization is applied to allow a single MPSoC to 
be shared by multiple applications which can be mapped to different networks of the 
chip at run time. However, the behaviors of the multiple applications vary so 
dramatically at run time, making it nearly impossible for these applications to be 
efficiently mapped offline. For these applications, run-time incremental mapping 
methods should be designed which could not only minimize the overall 
communication power but also consider future applications whose arrival orders are 
not known. In addition, in 3-D NoCs, the wire lengths of vertical links (in a few tens 
of µm) is much shorter than those of horizontal links (in a few thousand µm) [1][3]. 
As such, more communication could be mapped to vertical links to further reduce 
transmission delay and power consumption. In a simple word, a run-time mapping 
method for applications on 3-D NoC systems shall take multiple factors into 
consideration, namely the dynamic feature of applications with ever changing 
behaviors and the benefits of vertical links in 3-D NoCs. 

Up to date, there is very little work on run-time 3-D NoC mapping reported in the 
open litterature. Existing approaches for offline 3-D NoC mapping [4] are not suitable 
for run-time mapping as they do not consider the shape of the mapped region and the 
impact on future applications. The 2-D NoC run-time incremental mapping 
algorithms [5, 6] cannot be directly applied to 3-D NoCs because the vertical links in 
3-D NoCs are not an issue in those approaches.  

In this paper, we propose a novel run-time incremental mapping algorithm which 
maps applications that can randomly enter and leave an embedded 3-D NoC system 
while considering the benefits of vertical links. The mapping algorithm tries to 
minimize overall communication power as well as minimize the impact on future 
applications (i.e., to reduce the fragmentation caused by small region of tiles). The 
proposed algorithm is composed of three steps: 1) NoC region selection which selects 
a cuboid region to reduce the impact on future applications; 2) set matching which 
allocates the application graph to the sub-regions in different layers such that the 
vertical links are used as much as possible; and 3) CTG to NoC region mapping which 
maps the IP cores to the tiles in different sub-regions with minimized total 
communication power. The higher bandwidth and lower delay properties of the 
vertical links in 3-D NoC are particularly exploited in set matching and region 
mapping steps. Experimental results have confirmed that the proposed algorithm 
saves up to 50% communication power over random mapping and about 20% over a 
simple heuristic.  

The rest of this paper is organized as follows. Section 2 summarizes the related 
work. Section 3 provides the preliminaries and problem definition. Section 4 presents 
a motivating example and decomposition of the problem. Following the observations 
from the example, Section 5 presents the run-time mapping algorithm in detail. 
Section 6 presents the simulation results. Finally, Section 7 concludes the paper. 



2 Related Work 
Research in 3-D NoCs emerges in recent years. In [1], both the analytical model of 
zero-load latency and the power model for 3-D NoCs are provided. Different 3-D 
NoC designs are shown in [7, 8, 9]. In [7], a three-layer NoC is proposed where each 
layer has different network topology so that the planar topology on every layer could 
be customized to meet different cost-performance demands. In [8], both 3-D mesh-
based architectures (symmetric 3-D mesh, stacked mesh, and ciliated mesh) and 3-D 
tree-based architectures are analyzed in terms of network performance and energy 
dissipation. The analysis shows that 3-D mesh-based architectures demonstrate 
significant performance gains with a small area overhead compared with 2-D meshes. 
In  [3], the 3-D Dimensionally-Decomposed (DimDe) Router is proposed. The 
DimDe router features is a true 3D crossbar with two vertical interconnects spanning 
over all layers. As such, the crossbars of all the routers with the same vertical index 
are fused into one unit. With the fusion of crossbar, short vertical links could be 
utilized such that vertical transmissions among different layers only take one hop. In 
addition, the crossbar is decomposed to reduce complexity. Simulation results show 
that the 3-D mesh NoC constructed with DimDe routers achieves better throughput, 
latency and energy-delay product compared with a symmetric 3-D mesh built with 7-
port routers extended from 5-port routers [3].  

In the literature, a number of IP mapping algorithms have been proposed for 2-D 
NoCs with the objective of minimizing the overall communication power. However, 
most of these existing mapping algorithms designed for 2-D NoCs summarized in [10] 
cannot be used in run-time incremental mapping for 3-D NoCs as these algorithms do 
not consider the short vertical links featured in 3-D NoCs. The branch-and-bound 
algorithm [11][12] can be extended to run-time incremental mapping for 3-D NoCs. 
However, the extremely long running time is not suitable for run-time mapping. In [4], 
a genetic algorithm based thermal-aware 3-D offline mapping is proposed. Due to the 
complexity, it is also not suitable for run-time 3-D NoC mapping. 

In terms of run-time incremental mapping for 2-D NoCs, several schemes have 
been proposed. In [13], a run-time task assignment algorithm is proposed for 
heterogeneous processors with the task graphs limited to a small number of tasks. A 
dynamic task mapping scheme is proposed for NoC-based MPSoCs in [14], aiming to 
improve the performance by minimizing the channel load. The incremental mapping 
algorithms proposed for 2-D NoCs [5, 6] may be helpful for 3-D NoCs. The general 
idea of these run-time mapping algorithms is to find a convex tile region first, 
followed by mapping the incoming application to the convex region. The convexity of 
the tile region helps to reduce communication within the region and the impact on 
future applications as the remaining tiles always form a continuous shape.  

Run-time mapping algorithms in traditional parallel and distributed systems [15] 
do not suit for the on-chip application mapping as they do not consider on-chip power 
consumption. 

3 Problem Formulation 
In this paper, our study is focused on run-time mapping for 3-D mesh-based NoCs 
considering the regularity and advantage of the topology [8]. Fig. 1 shows the 3-D 
mesh-based NoC architecture, which is composed of N layers of IP cores and routers. 



Each IP core is indexed by (x, y, z) where 0 ≤ x ≤ Mx, 0 ≤ y ≤ My and 0 ≤ z ≤ N-1, (each 
layer is composed of a Mx x My mesh). At each layer, each IP core is on a single 
physical plane and connected to its router through a horizontal link. Due to its 
advantages, the 3-D DimDe router [3] is adopted here. As shown in Fig. 1, each router 
still has five horizontal ports, i.e., E, W, N, S and local. The guided flit queuing 
methods [3] are used to decompose the traffic into X, Y, and Z dimensions. The 5x5 
crossbar in a 2-D mesh is split into two 4x2 crossbars to reduce the router complexity. 
Each vertical link has one input connection from its associated path set (PS) MUX 
and three output connections, one to the East-West crossbar, the North-South crossbar 
and the local port, respectively. Assume that the wire length of vertical links between 
adjacent layers is much shorter than the wire length of horizontal links between 
adjacent routers. The deterministic XYZ routing is assumed. A tile is defined to be an 
IP core with the corresponding part of the router on the same layer.  
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Fig. 1. The 3-D NoC architecture [3]  

3.1   Communication Power Model 
The communication energy needed for sending a flit from a source tile to a 
destination tile is composed of two parts, the energy consumed at the routers and the 
energy consumed on the interconnection links. The average energy consumption of 
sending one bit of data from tile ti to tile tj can be represented as 

,i jt t
bitE =ER + EL                                                    (1) 

where ER and EL are the energy consumed by the routers and links in the 
communication path from tile ti to tile tj. To be more specific, 

,i jt t
bit Rbit H LHbit V LVbitE E E Eη η η= + +                                     (2) 

where ERbit is the energy consumed when transporting a flit at the router, η  is the 
number of routers traversed from tile ti to tile tj, Hη and Vη are the number of 
horizontal and vertical links in the communication path, and ELHbit and ELVbit are the 
energy consumed on the horizontal and vertical links between tiles ti and tj.  
Following the wire model given in [7], ELbit =dV2Cwire/2, where d is the length of the 
link, V is the supply voltage and Cwire is the wire capacitance. 



3.2   Application and Architecture Model  
Each incoming application is represented by its communication trace graph defined 
below. 
Definition 1 A Communication Trace Graph (CTG) G=(P, E) is an undirected graph, 
where a vertex/node pk∈P represents a task, and an edge ei=(pj, pk)∈E represents the 
communication trace between vertices pj and pk.  

• For edge ei, ω(ei) defines the communication bandwidth request between 
vertices pj and pk given in bits per second (bps).  

• ω(ei) sets the minimum bandwidth that should be allocated by the network in 
order to meet the performance constraints.  

The 3-D NoC architecture is modeled by the architecture characteristic graph.   
Definition 2 An Architecture Characterization Graph (ACG) G′=(T, L) is an 
undirected graph, where each vertex ti∈T represents a tile and each edge li∈L =(tj, tk) 
represents the link between adjacent tiles tj and tk. N is the number of NoC layers. For 
link li 
• bw(li) defines the bandwidth provided on link li between adjacent tiles tj and tk;  

• c(li) defines the link cost of li, i.e., power consumption for transmitting one bit data 
from tj and tk. 

In this paper, we focus on NoC architectures which have bw(li)=B, c(li)=CV if li is a 
vertical link, c(li)=CH if li is a horizontal link for each li∈L, where B, CV and CH are 
constants. ,j kt th j is the set of links forming one of the shortest paths from tile tj to tile 

tk  ( ,j kt th ⊆ L). We also assume that the IP core with index (0, 0, 0) manages the 
whole mapping process.  

3.3   Problem Description  
The 3-D NoC run-time mapping problem is described as: Given the CTG of the 

incoming application and the ACG of the current 3-D NoC system, find a mapping 
function M:P T, with the objective of minimizing the communication power, i.e., 
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Conditions given by (4) and (5) ensure that each task should be mapped exactly to 
one tile and no tile can host more than one task. The inequities given in (6) specify the 
bandwidth constraint for every link.  

4   Motivating example and Problem Decomposition 

4.1   Motivating Example 

A motivating example of mapping a newly incoming application to a 3-D mesh-based 
NoC (with 3x16 tiles) is given in Fig. 2 to illustrate the composition of the problem. 
Fig. 2(a) gives the CTG of an example application with 16 tasks. The black tiles in 
Fig. 2(b) are reserved for other applications already running in the system. Before 
mapping, as in run-time incremental mapping for 2-D NoCs [5, 6], a region of 
available tiles shall be selected. Intuitively, a cuboid region is preferred to minimize 
the impact to future applications. Fig. 2(b) shows such a region of 18 tiles (in grey 
color). Next, in the mapping process, the tasks which have high communication 
requests should be considered first [10]. Based on the definitions in Section 3, these 
tasks shall be allocated to the sub-regions in different layers such that the 
communications with high bandwidth requests can utilize vertical links. Fig. 2(c) 
shows an allocation result of the tasks which have high communication requests. Last, 
all tasks are mapped to the tiles in the sub-regions as shown in Fig. 2(d). 

 
Fig. 2. Illustration of the whole problem.  

4.2 A Mapping Flow by Problem Decomposition 

Based on the observations from this example, the run-time mapping problem for 3-D 
NoCs is divided into three sub-problems as shown in Fig. 3. The three sub-problems 
are described below. 
 



 

Fig. 3. The mapping process.  

 (4.1.1) NoC Region Selection 

First, a region is selected to map each incoming application. This region is 
composed of N sub-regions, one on each layer. To reduce the impact on future 
applications, these sub-regions should be rectangle in shape and the size of each of the 
sub-regions shall be made as close to each other as possible.  

Given the CTG of the incoming application, the ACG of the 3-D NoC, and the 
current system behavior (i.e. the used and unused tiles), this sub-problem is to find a 
cuboid region SR={SR0, …, SRN-1}, where  SRw represents the sub-region of 
unallocated tiles on layer w, with the objective of:  

Min (| SRw| ⋅ N - |G|), for each w=0, …, N-1          (7) 

satisfying,  

|SRw| ⋅ N ≥ |G|,                                     (8) 

|SRw|=|SRw+1| for w =0, …, N-2,                (9) 

Here |G| gives the number of tasks in G and |SRw| gives the number of tiles in set 
SRw. 
(P2) Set Matching 

The basic idea of set matching is to find the layers to be mapped for those tasks 
which have high bandwidth (BW) communication requests. When both vertical and 
horizontal links are available, according to the assumption that vertical links tend to 
be shorter than horizontal links, vertical links are thus preferred. That is, 
communication edges with high BW requests shall be allocated to vertical links if 
possible in order to reduce delay and power consumption.  

Assume the edges in G are sorted in a non-increasing order in terms of their 
communication bandwidth request (i.e., ω(ei)). Let SG⊂ G be a sub-graph formed 
with the first α% edges in the sorted edge list [10]. The objective is to allocate the 
vertices in SG into N subsets to be mapped to the corresponding N sub-regions found 
in (P1) such that the vertical links are used as much as possible. This sub-problem is 
formally defined as follows.  

Given the sub-graph SG of the CTG and the sub-regions SR0, …, SRN-1 obtained 
from region selection step described in  (P1), allocate the vertices in SG into N sets 
SG0, …, SGN-1, assuming vertical links are preferred, with the objective of: 

Max
( , )

( )
i j k

j u
k v

i
e p p
p SG
p SG
u v

eω
=
∈
∈
≠

∑ ,                              (10) 

satisfying,  
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|SGu|≤ |SRw|, for each u=0,…, N-1                (12) 

 (P3) CTG to NoC Region Mapping 

With the sub-regions and sets obtained in (P1) and (P2), the application is then 
mapped to minimize the communication power. 

Given the CTG of the incoming application, N sets of the vertices SG0, …, SGN-1 
and a set of sub- regions SR={SR0, …, SRN-1}, find a mapping function M: P  SR 
with the objective: 
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, MDH() and MDV() denote the 

horizontal and vertical Manhattan distance between two tiles, respectively. Conditions 
given by (14) and (15) ensure that each task should be mapped exactly to one tile and 
no tile can host more than one task. The inequities given in (16) specify the 
bandwidth constraint for every link. 

5   Algorithm Description 
For each sub-problem listed in Section 4, an algorithm is introduced in each of 

following subsections. Before discussing these algorithms, the following assumption 
is made. All the edges of an incoming application’s CTG are sorted in a decreasing 
order by the edge weight ω(ei). The sorted edge list is represented as SE. 

5.1  NoC Region Selection (P1) 
As discussed in Section 4, a cuboid of NoC tiles shall be first found. This problem 

can be further divided into two small problems. First, given the incoming 
application’s CTG G, a window with a size of size l·w should be found such that 
N·l·w ≥ |G| and N·l·w - |G| is minimized. That is, the shape and size of sub-region 
should be chosen to minimize fragmentation. Second, after finding the l·w matrix, 
unallocated tiles which form the N·l·w cuboid should be found (these tile regions are 
called NoC regions). A window sweeping process is used as in Fig. 4(a).  

A window of size l·w starts from tile (0, 0, 1) and moves at the first layer. The 
window sweeps the whole layer until all of the tiles inside the window are found not 
allocated yet.  



An example of applying this algorithm is shown in Fig. 2(b). The CTG shown in 
Fig. 2(a) has 16 tasks. Thus, a 3x2x3 cuboid is selected based on the window 
sweeping process (Fig. 2(b)). 

The NoC region selection algorithm is shown in Fig. 4(b). The complexity of the 
algorithm is xy+(|T|/|N|·x·y) =O(|T|/|N|)2. 

| | /G N⎡ ⎤⎢ ⎥

 

Fig. 4. The NoC region selection algorithm.  

5.2 Set Matching (P2) 
In the second step, the sub-graph of the CTG, i.e. SG, which includes the tasks with 
high communication BW requests should be allocated into the N sets, one for each 
layer. The sub-graph SG is formed by the first 50% edges (denoted as SE′) in SE, 
Vertical links are preferred for high BW communication edges. Hence, edges with 
larger weight will be first allocated to vertical links if possible. However, there is only 
one vertical link between the two tiles (x, y, z) and (x, y, z+1), z= 0, …, N-2. Thus, if a 
task is allocated to tile (x, y, z) and has two neighbors in layer z+1, it may result in 
higher power consumption than mapping one of the neighbors to the same layer z. Fig. 
5 shows such an example. Given the CTG shown in Fig. 5(a), if tasks 1 and 2 are 
mapped to layer 1 (Fig. 5(b)), the energy cost is 10·(CV+CV+CH) suppose the link 
energy cost are CV and CH for vertical and horizontal links, respectively. If task 2 is 
mapped to the same layer of task 0 (Fig. 5(c)), the energy cost is 10·(CV+CH) which is 
lower than that of Fig. 5(b). Thus, an observation is made that when vertical links are 
preferred, a task can be allocated to the same layer of its neighbor if the neighbor 
already has edges allocated to adjacent layers.   

The algorithm works as follows. For each edge (pj, pk) in the sorted edge list SE′, 



• If neither of the two tasks is allocated, the tasks are checked to see whether one of 
them has degree in SG greater than 1. If so, the task with a larger degree in SG is 
allocated to SGu with (0<u<N-1), i.e., to a layer whose tiles have two vertical links, 
up and down. Otherwise, the tasks are allocated to SGu and SGv with u ≠ v and |u-v| 
minimized.  

• If one of the tasks is allocated, e.g., pj is allocated to SGu, the unallocated task pk is 
allocated to SGv (u ≠ v) such that |u-v| is minimized, given that pj has no neighbor 
in SGv. Otherwise, pk is allocated to SGu. 

Fig. 6 shows an example of the set matching processing based on the CTG given in 
Fig. 2(a). The sub-graph SG of this CTG is given in Fig. 6(a) and the size of region on 
each layer is 6. The sorted edge list of the sub-graph is {(0, 1), (0, 2), (1, 5), (2, 6), (13, 
15), (14, 15)}. Fig. 6(b) shows that tasks 0 and 1 are first allocated to SG1 and SG0 as 
task 0 has a degree of 2 in Fig. 6(a). When allocating edge (0, 2), task 2 is allocated to 
SG0 as task 0’s neighbor task 1 is already allocated to SG1 (Fig. 6(c)). When allocating 
edge (1, 5), task 5 is allocated to SG0 as task 1’s neighbor task 0 is already allocated 
to SG1. Similarly, task 6 is allocated to SG2 as in Fig. 6(d). Tasks 13, 14 and 15 are 
allocated similarly as in Fig. 6(e) and (f). The final result of the set matching problem 
for the vertices in SG is shown in Fig. 6(f). 

The set matching algorithm is shown in Fig. 5(d). The complexity of the algorithm 
is O(|E||N|2).  

∈

/2NSG⎡ ⎤⎢ ⎥

/2NSG⎡ ⎤⎢ ⎥

≠

 
Fig. 5. The set matching algorithm (P2). 



 
Fig. 6. An example of set matching when vertical links are preferred.  

5.3 CTG to NoC Region Mapping (P3) 
After finding the set of tile regions SR and the allocation of the vertices in SG to the N 
set SR0, …, SRN-1, all of the vertices in CTG should be mapped to SR. In this 
algorithm, a metric Dist() is used to find the weighted distance of two tiles. The Dist() 
metric is defined as: Dist(ta,tb)=|xa-xb|CH+|ya-yb|CH+|za-zb|CV, where (xa,ya,za) and 
(xb,yb,zb) represent the coordinates of tiles ta and tb, respectively. As discussed in 
Section 3, Dist() reflects the power consumption of each communication edge after 
mapping the two tasks. The algorithm checks for each edge in SE of CTG and maps 
the tasks to minimize their distance. It works as follows. For each edge (pj, pk),  
• If neither of the two tasks pj, pk are mapped. There are three cases to consider 

1) Both tasks are already allocated to the N sets SR0, …, SRN-1, e.g., pj allocated 
to SGu and pk allocated to SGv (0≤ u, v≤N-1). If pj has high degree (>2) in SG, 
find a tile in SRu with large number of free neighbor tiles. Otherwise, find an 
unused tile in SRu for pj. Then find a tile for pk in SRv to minimize the Dist() metric. 

2) One of the two tasks already allocated to the N sets, e.g., pj allocated to SGu. If 
pj has high degree (>2) in SG, find a tile in SGu with large number of free neighbor 
tiles. Otherwise, find an arbitrary tile in SGu for pj. Then find a tile for pk in SR to 
minimize the Dist() metric. 

3) Neither of the two tasks allocated to the N sets yet. If pj has high degree (>2) 
in SG, find a tile in SR with large number of free neighbor tiles. Otherwise, find an 
arbitrary tile in SR for pj. Then find a tile for pk in SR to minimize the Dist() metric. 

• If one of the two tasks is mapped, e.g., pj is mapped to tile t. If the unmapped task 
pk is allocated to SGu, find a tile in SRu for pk to minimize the Dist() metric. 
Otherwise, find a tile for pk in SR to minimize the Dist() metric. 

The CTG to NoC region mapping algorithm is shown in Fig. 7. The complexity of 
the CTG to NoC region mapping algorithm (P3) is O(|E||T|2). The total complexity of 
the run-time incremental mapping algorithm (combining the algorithms introduced in 
section 5.1 to 5.3) is O(|E||T|2). 



Assume the vertical links are preferred for communications with high BW requests. 
Fig. 2(d) shows the mapping result given the CTG in Fig. 2(a) based on the results of 
NoC region selection (Fig. 2(b)) and set matching (Fig. 2 (c)). 

CTG_to_NoC_mapping (G, SE, SR) 
Input: (1) G: the CTG of the incoming application  
  (2) SE: the sorted edge list of the CTG 
  (3) SR: the set of sub-regions for the incoming application 

(4) SG0, …, SGN-1: the N sets containing the vertices in SG 
Output: (1) MAP: mapping table for each IP core 
Function: map each IP core to a tile in SR 
Procedure body:  
{ 
  for (each edge ei =( pj, pk)∈ SE) { 
   if (neither pj nor pk are mapped) { 
   if (pj ∈  SGu and pk ∈  SGv) { // u,v=0,…,N-1 
  MAP[pj] = ta s.t. ta∈ SRu; 

// if pj has more than two neighbors in SG,  
// find a ta have more than two free neighbor tiles 

  MAP[pk] = tb s.t. tb∈ SRv and Dist(ta, tb) is minimized; 
       } 
       else if (suppose pj ∈SGu) { // u =0,…,N-1 
  MAP[pj] = tc s.t. tc∈ SRu; 

// if pj has more than two neighbors in SG,  
// tc should also have more than two free neighbor tiles 

  MAP[pk] = td s.t. td∈ SR and Dist(tc, td) is minimized; 
   } 
       else {  
       MAP[pj] = te s.t. te∈ SR; 

// if pj has more than two neighbors in SG,  
// te should also has more than two free neighbor tiles 

  MAP[pk] = tf s.t. td∈ SR and Dist(te, tf) is minimized; 
       } 
     } 
 else if (only one IP core is mapped){ 

// suppose pj is mapped to tile t 
         if (pk∈  SGv) { // v=0,…,N-1 
  MAP[pk] = tg s.t. tg∈ SRv and Dist(t, tg) is minimized; 
        } 
    else { 
     MAP[pk] = th s.t. Dist(t, th) is minimized; 
        }  

  } 
}  

}  
Fig. 7. The CTG to NoC region mapping algorithm.  

6 Performance Evaluation 
The proposed algorithms have been evaluated through extensive experiments. Two 
sets of experiments are performed. First, single random applications are mapped to a 
3-D NoC architecture. In this set of experiments, our algorithm is compared against 
the branch and bound (BNB) algorithm in terms of the solution quality. BNB tries to 
exhaustively enumerate all possible mapping results where mapping results with 
higher power consumption are discarded by estimating upper and lower bounds. 
Second, multiple applications (including random applications generated by TGFF [16] 
and applications from E3S [17]) are incrementally mapped to a 3-D NoC architecture. 
In this set of experiments, our algorithm is compared against a random mapping 
algorithm and a simple heuristic algorithm, namely large communication first (LCF).  



The power model is adopted from the DimDe router [3]. The network is assumed 
to be a 6x6x3 3-D mesh. The flit size is set to be 128-bit. To study the power 
consumption trend, vertical and horizontal links with different lengths are chosen. The 
wire parameters are adopted from [1], e.g., the unit wire capacitances (Cwire) for 
vertical and horizontal links are 600fF/mm and 332fF/mm, respectively. Table I lists 
the wire length combinations evaluated where vertical links are preferred over 
horizontal links. The Noxim simulator [18] is used as the NoC simulator.  

TABLE 1. Different combinations of vertical and horizontal link length 

Combinations Length of vertical links 
between adjacent layers

Length of horizontal links 
between adjacent routers 

I 60um 1mm 
II 90um 1mm 
III 120um 1mm 
IV 60um 0.5mm 
V 90um 0.5mm 
VI 120um 0.5mm 

 

6.1 Mapping Single Application to 3-D NoC  

First, we show the single application mapping results of our algorithm compared to 
that of BNB. Two types of applications are evaluated: random applications and real 
applications. For random applications, TGFF is used to generate the CTGs. The 
numbers of tasks range from 12 to 20. The communication BW requests vary from 1 
to 10. The tile regions selected for our algorithm and BNB are the same. The running 
time of BNB is more than one hour while the running time of our algorithm is within 
1 sec. From Fig. 8, we can see that the increase in power consumption of our 
algorithm over BNB is within 11%.  

Fig. 8 shows that, the results from our algorithm get closer to that of BNB when 
the energy cost ratio of horizontal links over vertical links (CH:CV) are smaller. The 
ratio of CH:CV is the largest for combination I and smallest for combination VI. The 
reason is due to the fact that, as the ratio of CH:CV becomes smaller, the difference in 
vertical and horizontal communications is reduced. The power consumption of 
horizontal links in the mapping result produced by our algorithm has less impact on 
the overall communication power consumption.  

6.2 Mapping Multiple Applications Incrementally to 3-D NoC 
In this section, our algorithm is compared against a random mapping (RM) and 

large communication first (LCF) with multiple applications. Due to the complexity of 
BNB, it is not used for runtime mapping. In RM and LCF, the NoC region selection 
step is the same as in our algorithm. RM maps the tasks to the tiles in the selected 
region randomly. LCF sorts the edges in the non-increasing order of BW request. 
Then the terminal vertices of the communication edge with higher bandwidth request 
are mapped to links with smaller c(l) values. Both random and real applications are 
evaluated.  

First, random applications are simulated with their CTGs generated from TGFF 
[16]. The numbers of tasks in these CTGs vary from 12 to 20. The communication 
BW requests vary from 1 to 10. For each combination in Table I, five experiments are 



performed for each number of tasks. In each experiment, 10 applications are mapped 
to a 6x6x3 network. The running time of each application is varied from 1 to 10 time 
units. Fig. 9 shows the normalized power saving of our algorithm over RM and LCF. 
Fig. 9(a) shows that our algorithm can save up to over 50% power compared to RM 
and up to 20% over LCF. 

Real application CTGs, including auto-industry, consumer, networking, and office 
automation, are generated from E3S [17]. Again, for each combination in Table I, five 
experiments are conducted. Each experiment is composed of 10 applications which 
are mapped to a 6x6x3 network incrementally. Fig. 9(b) shows that our algorithm can 
save up to about 30~40% power compared to RM and up to 8~17% compared to LCF. 
The power saving in Fig. 9(b) is smaller than that in Fig. 9(a) since the CTG 
structures of the real applications from E3S are highly regular, e.g., mostly forming a 
chain-type structure. For such chain-type CTGs, RM and LCF will result in better 
results compared to non-regular structures. 

 
Fig. 8. Normalized power saving of BNB over our algorithm (normalized over the power consumtiopn of 

the results of BNB)                                                        
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Fig. 9. Normalized power consumption of RM and LCF over our algorithm on TGFF (a) and E3S (b). 
Power consumption are normalized over the power consumtiopn of the results of our algorithm. 
                                                                         

7 Conclusion 
In this paper, we have proposed a power-aware run-time incremental mapping 
algorithm for 3-D NoCs with the objective of minimizing the communication power 
for each incoming application. In addition, the proposed algorithm attempts to reduce 
the fragmentation impact on future applications. The proposed algorithm is composed 
of three steps: 1) NoC region selection which selects a cuboid region to reduce the 
impact to future applications, 2) set matching which allocates the application graph to 
the sub-regions in different layers such that the vertical links are used as much as 



possible, 3) CTG to NoC region mapping which maps the tasks to the tiles in different 
sub-regions with minimized total communication power. Our experiment results have 
confirmed that the proposed algorithm is over four orders of magnitude run time 
efficient than BNB when mapping a single application. It has been shown that our 
algorithm can also achieve 50% power saving compared to random mapping and 20% 
compared to a simple heuristic when mapping multiple applications incrementally. 
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