
Power-Aware Run-Time Incremental Mapping for 3-D
Networks-on-Chip

Xiaohang Wang1, Maurizio Palesi2, Mei Yang3,
Yingtao Jiang3, Michael C. Huang4 , Peng Liu1∗

1 Zhejiang University, China
2Kore University, Italy

3 University of Nevada Las Vegas, USA
4University of Rochester, USA

1 {baikeina,liupeng}@zju.edu.cn, 2maurizio.palesi@unikore.it,
3{mei.yang, yingtao}@egr.unlv.edu,

4michael.huang@rochester.edu

Abstract. 3-D Networks-on-Chip (NoCs) emerge as a powerful solution to
address both the interconnection and design complexity problems facing future
Systems-on-Chip (SoCs). Effective run-time application mapping on a 3-D
NoC-based Multiprocessor Systems-on-Chip (MPSoC) can be quite challenging,
largely due to the fact that the arrival order and task graphs of the target
applications are not known a priori. This paper presents a power-aware run-time
incremental mapping algorithm for 3-D NoCs that aims to minimize the
communication power for each incoming application as well as reduce the
impact of the mapped applications on future applications that are yet to be
mapped. In this algorithm, if the vertical links are found to be shorter and
provide higher communication bandwidth than horizontal links, more
communications will be mapped to vertical links to reduce delay and power
consumption. Extensive experiments have been conducted to evaluate the
performance of the proposed algorithm and the results are compared with those
obtained from the optimal mapping algorithm (branch-and-bound), a random
mapping and a simple heuristic. When mapping a single application, the
proposed algorithm is four orders of magnitude faster than the branch-and-
bound algorithm at a small degradation of mapping quality. When mapping
multiple applications incrementally, our algorithm can save 50%
communication power compared to the random mapping and 20%
communication power compared to the simple heuristic.

Keywords: Networks-on-chip, application mapping, 3-D IC.

1 Introduction
Advance in CMOS technology keeps driving the increase of the number of processing
cores that can be integrated on a single chip. With the further increase of the number
of processing cores, the integration limitations of SoCs become more significant. 3-D
integration together with the NoC design paradigm provide a promising solution to
overcome these limitations [1]. In the literature, several approaches exist for 3-D
integration, e.g., wire bounded, microbump, through via and contactless [2]. 3-D

∗ Peng Liu is the corresponding author.

This work is supported in part by NSFC under the grants 60873112 and 61028004

integration can considerably reduce the global interconnection length, resulting in
lower interconnection delay, power consumption and also the overall chip area [2].
Combining 3-D ICs and NoC can provide significant performance improvement and
make the chip more power efficient .

The large number of processing cores integrated into 3-D NoC-based MPSoCs
unquestionably offer high parallelism in computation. To better utilize these vast
available computation resources, virtualization is applied to allow a single MPSoC to
be shared by multiple applications which can be mapped to different networks of the
chip at run time. However, the behaviors of the multiple applications vary so
dramatically at run time, making it nearly impossible for these applications to be
efficiently mapped offline. For these applications, run-time incremental mapping
methods should be designed which could not only minimize the overall
communication power but also consider future applications whose arrival orders are
not known. In addition, in 3-D NoCs, the wire lengths of vertical links (in a few tens
of µm) is much shorter than those of horizontal links (in a few thousand µm) [1][3].
As such, more communication could be mapped to vertical links to further reduce
transmission delay and power consumption. In a simple word, a run-time mapping
method for applications on 3-D NoC systems shall take multiple factors into
consideration, namely the dynamic feature of applications with ever changing
behaviors and the benefits of vertical links in 3-D NoCs.

Up to date, there is very little work on run-time 3-D NoC mapping reported in the
open litterature. Existing approaches for offline 3-D NoC mapping [4] are not suitable
for run-time mapping as they do not consider the shape of the mapped region and the
impact on future applications. The 2-D NoC run-time incremental mapping
algorithms [5, 6] cannot be directly applied to 3-D NoCs because the vertical links in
3-D NoCs are not an issue in those approaches.

In this paper, we propose a novel run-time incremental mapping algorithm which
maps applications that can randomly enter and leave an embedded 3-D NoC system
while considering the benefits of vertical links. The mapping algorithm tries to
minimize overall communication power as well as minimize the impact on future
applications (i.e., to reduce the fragmentation caused by small region of tiles). The
proposed algorithm is composed of three steps: 1) NoC region selection which selects
a cuboid region to reduce the impact on future applications; 2) set matching which
allocates the application graph to the sub-regions in different layers such that the
vertical links are used as much as possible; and 3) CTG to NoC region mapping which
maps the IP cores to the tiles in different sub-regions with minimized total
communication power. The higher bandwidth and lower delay properties of the
vertical links in 3-D NoC are particularly exploited in set matching and region
mapping steps. Experimental results have confirmed that the proposed algorithm
saves up to 50% communication power over random mapping and about 20% over a
simple heuristic.

The rest of this paper is organized as follows. Section 2 summarizes the related
work. Section 3 provides the preliminaries and problem definition. Section 4 presents
a motivating example and decomposition of the problem. Following the observations
from the example, Section 5 presents the run-time mapping algorithm in detail.
Section 6 presents the simulation results. Finally, Section 7 concludes the paper.

2 Related Work
Research in 3-D NoCs emerges in recent years. In [1], both the analytical model of
zero-load latency and the power model for 3-D NoCs are provided. Different 3-D
NoC designs are shown in [7, 8, 9]. In [7], a three-layer NoC is proposed where each
layer has different network topology so that the planar topology on every layer could
be customized to meet different cost-performance demands. In [8], both 3-D mesh-
based architectures (symmetric 3-D mesh, stacked mesh, and ciliated mesh) and 3-D
tree-based architectures are analyzed in terms of network performance and energy
dissipation. The analysis shows that 3-D mesh-based architectures demonstrate
significant performance gains with a small area overhead compared with 2-D meshes.
In [3], the 3-D Dimensionally-Decomposed (DimDe) Router is proposed. The
DimDe router features is a true 3D crossbar with two vertical interconnects spanning
over all layers. As such, the crossbars of all the routers with the same vertical index
are fused into one unit. With the fusion of crossbar, short vertical links could be
utilized such that vertical transmissions among different layers only take one hop. In
addition, the crossbar is decomposed to reduce complexity. Simulation results show
that the 3-D mesh NoC constructed with DimDe routers achieves better throughput,
latency and energy-delay product compared with a symmetric 3-D mesh built with 7-
port routers extended from 5-port routers [3].

In the literature, a number of IP mapping algorithms have been proposed for 2-D
NoCs with the objective of minimizing the overall communication power. However,
most of these existing mapping algorithms designed for 2-D NoCs summarized in [10]
cannot be used in run-time incremental mapping for 3-D NoCs as these algorithms do
not consider the short vertical links featured in 3-D NoCs. The branch-and-bound
algorithm [11][12] can be extended to run-time incremental mapping for 3-D NoCs.
However, the extremely long running time is not suitable for run-time mapping. In [4],
a genetic algorithm based thermal-aware 3-D offline mapping is proposed. Due to the
complexity, it is also not suitable for run-time 3-D NoC mapping.

In terms of run-time incremental mapping for 2-D NoCs, several schemes have
been proposed. In [13], a run-time task assignment algorithm is proposed for
heterogeneous processors with the task graphs limited to a small number of tasks. A
dynamic task mapping scheme is proposed for NoC-based MPSoCs in [14], aiming to
improve the performance by minimizing the channel load. The incremental mapping
algorithms proposed for 2-D NoCs [5, 6] may be helpful for 3-D NoCs. The general
idea of these run-time mapping algorithms is to find a convex tile region first,
followed by mapping the incoming application to the convex region. The convexity of
the tile region helps to reduce communication within the region and the impact on
future applications as the remaining tiles always form a continuous shape.

Run-time mapping algorithms in traditional parallel and distributed systems [15]
do not suit for the on-chip application mapping as they do not consider on-chip power
consumption.

3 Problem Formulation
In this paper, our study is focused on run-time mapping for 3-D mesh-based NoCs
considering the regularity and advantage of the topology [8]. Fig. 1 shows the 3-D
mesh-based NoC architecture, which is composed of N layers of IP cores and routers.

Each IP core is indexed by (x, y, z) where 0 ≤ x ≤ Mx, 0 ≤ y ≤ My and 0 ≤ z ≤ N-1, (each
layer is composed of a Mx x My mesh). At each layer, each IP core is on a single
physical plane and connected to its router through a horizontal link. Due to its
advantages, the 3-D DimDe router [3] is adopted here. As shown in Fig. 1, each router
still has five horizontal ports, i.e., E, W, N, S and local. The guided flit queuing
methods [3] are used to decompose the traffic into X, Y, and Z dimensions. The 5x5
crossbar in a 2-D mesh is split into two 4x2 crossbars to reduce the router complexity.
Each vertical link has one input connection from its associated path set (PS) MUX
and three output connections, one to the East-West crossbar, the North-South crossbar
and the local port, respectively. Assume that the wire length of vertical links between
adjacent layers is much shorter than the wire length of horizontal links between
adjacent routers. The deterministic XYZ routing is assumed. A tile is defined to be an
IP core with the corresponding part of the router on the same layer.

IP core

Router VC 1
VC 3

East-West
4x2 crossbar

North-South
4x2 crossbar

East
In

West
In

North
In

South
In

PE
In

PE
Out

North
Out

South
Out

East
Out

West
Out

V
er

tic
al

 m
od

ul
e

PE
 O

ut

UP/
DOWN

VC
identifier

...

...

...

...

...

...

Guided flit
queuing

Path set
(PS)

Fig. 1. The 3-D NoC architecture [3]

3.1 Communication Power Model
The communication energy needed for sending a flit from a source tile to a
destination tile is composed of two parts, the energy consumed at the routers and the
energy consumed on the interconnection links. The average energy consumption of
sending one bit of data from tile ti to tile tj can be represented as

,i jt t
bitE =ER + EL (1)

where ER and EL are the energy consumed by the routers and links in the
communication path from tile ti to tile tj. To be more specific,

,i jt t
bit Rbit H LHbit V LVbitE E E Eη η η= + + (2)

where ERbit is the energy consumed when transporting a flit at the router, η is the
number of routers traversed from tile ti to tile tj, Hη and Vη are the number of
horizontal and vertical links in the communication path, and ELHbit and ELVbit are the
energy consumed on the horizontal and vertical links between tiles ti and tj.
Following the wire model given in [7], ELbit =dV2Cwire/2, where d is the length of the
link, V is the supply voltage and Cwire is the wire capacitance.

3.2 Application and Architecture Model
Each incoming application is represented by its communication trace graph defined
below.
Definition 1 A Communication Trace Graph (CTG) G=(P, E) is an undirected graph,
where a vertex/node pk∈P represents a task, and an edge ei=(pj, pk)∈E represents the
communication trace between vertices pj and pk.

• For edge ei, ω(ei) defines the communication bandwidth request between
vertices pj and pk given in bits per second (bps).

• ω(ei) sets the minimum bandwidth that should be allocated by the network in
order to meet the performance constraints.

The 3-D NoC architecture is modeled by the architecture characteristic graph.
Definition 2 An Architecture Characterization Graph (ACG) G′=(T, L) is an
undirected graph, where each vertex ti∈T represents a tile and each edge li∈L =(tj, tk)
represents the link between adjacent tiles tj and tk. N is the number of NoC layers. For
link li
• bw(li) defines the bandwidth provided on link li between adjacent tiles tj and tk;

• c(li) defines the link cost of li, i.e., power consumption for transmitting one bit data
from tj and tk.

In this paper, we focus on NoC architectures which have bw(li)=B, c(li)=CV if li is a
vertical link, c(li)=CH if li is a horizontal link for each li∈L, where B, CV and CH are
constants. ,j kt th j is the set of links forming one of the shortest paths from tile tj to tile

tk (,j kt th ⊆ L). We also assume that the IP core with index (0, 0, 0) manages the
whole mapping process.

3.3 Problem Description
The 3-D NoC run-time mapping problem is described as: Given the CTG of the

incoming application and the ACG of the current 3-D NoC system, find a mapping
function M:P T, with the objective of minimizing the communication power, i.e.,

(), ()

(), ()

| || | 1

 0 0
(,)

(() ())
M p M pj k

i j k k M p M pj k

hE

i m
i m

e p p E l h

Min e c lω
−

= =
= ∈ ∈

⋅∑ ∑ (3)

satisfying

jp P∀ ∈ , M(jp)∈T, (4)

,j kp p P∀ ∈ and j kp p≠ , M(jp)≠ M(kp), (5)

∀ lm, B ≥ (), ()
(,)

() (,)
j k

i j k

i m M p M p
e p p

e f l hω
=

⋅∑ , (6)

where
(), ()

(), ()
(), ()

1

0
(,) j k

j k

j k

m M p M p

m M p M p
m M p M p

if l h

if l h
f l h

∈

∉

⎧⎪= ⎨
⎪⎩

.

Conditions given by (4) and (5) ensure that each task should be mapped exactly to
one tile and no tile can host more than one task. The inequities given in (6) specify the
bandwidth constraint for every link.

4 Motivating example and Problem Decomposition

4.1 Motivating Example

A motivating example of mapping a newly incoming application to a 3-D mesh-based
NoC (with 3x16 tiles) is given in Fig. 2 to illustrate the composition of the problem.
Fig. 2(a) gives the CTG of an example application with 16 tasks. The black tiles in
Fig. 2(b) are reserved for other applications already running in the system. Before
mapping, as in run-time incremental mapping for 2-D NoCs [5, 6], a region of
available tiles shall be selected. Intuitively, a cuboid region is preferred to minimize
the impact to future applications. Fig. 2(b) shows such a region of 18 tiles (in grey
color). Next, in the mapping process, the tasks which have high communication
requests should be considered first [10]. Based on the definitions in Section 3, these
tasks shall be allocated to the sub-regions in different layers such that the
communications with high bandwidth requests can utilize vertical links. Fig. 2(c)
shows an allocation result of the tasks which have high communication requests. Last,
all tasks are mapped to the tiles in the sub-regions as shown in Fig. 2(d).

Fig. 2. Illustration of the whole problem.

4.2 A Mapping Flow by Problem Decomposition

Based on the observations from this example, the run-time mapping problem for 3-D
NoCs is divided into three sub-problems as shown in Fig. 3. The three sub-problems
are described below.

Fig. 3. The mapping process.

 (4.1.1) NoC Region Selection

First, a region is selected to map each incoming application. This region is
composed of N sub-regions, one on each layer. To reduce the impact on future
applications, these sub-regions should be rectangle in shape and the size of each of the
sub-regions shall be made as close to each other as possible.

Given the CTG of the incoming application, the ACG of the 3-D NoC, and the
current system behavior (i.e. the used and unused tiles), this sub-problem is to find a
cuboid region SR={SR0, …, SRN-1}, where SRw represents the sub-region of
unallocated tiles on layer w, with the objective of:

Min (| SRw| ⋅ N - |G|), for each w=0, …, N-1 (7)

satisfying,

|SRw| ⋅ N ≥ |G|, (8)

|SRw|=|SRw+1| for w =0, …, N-2, (9)

Here |G| gives the number of tasks in G and |SRw| gives the number of tiles in set
SRw.
(P2) Set Matching

The basic idea of set matching is to find the layers to be mapped for those tasks
which have high bandwidth (BW) communication requests. When both vertical and
horizontal links are available, according to the assumption that vertical links tend to
be shorter than horizontal links, vertical links are thus preferred. That is,
communication edges with high BW requests shall be allocated to vertical links if
possible in order to reduce delay and power consumption.

Assume the edges in G are sorted in a non-increasing order in terms of their
communication bandwidth request (i.e., ω(ei)). Let SG⊂ G be a sub-graph formed
with the first α% edges in the sorted edge list [10]. The objective is to allocate the
vertices in SG into N subsets to be mapped to the corresponding N sub-regions found
in (P1) such that the vertical links are used as much as possible. This sub-problem is
formally defined as follows.

Given the sub-graph SG of the CTG and the sub-regions SR0, …, SRN-1 obtained
from region selection step described in (P1), allocate the vertices in SG into N sets
SG0, …, SGN-1, assuming vertical links are preferred, with the objective of:

Max
(,)

()
i j k

j u
k v

i
e p p
p SG
p SG
u v

eω
=
∈
∈
≠

∑ , (10)

satisfying,

SGu∩ SGv =∅ , for u ≠ v (11)

|SGu|≤ |SRw|, for each u=0,…, N-1 (12)

 (P3) CTG to NoC Region Mapping

With the sub-regions and sets obtained in (P1) and (P2), the application is then
mapped to minimize the communication power.

Given the CTG of the incoming application, N sets of the vertices SG0, …, SGN-1
and a set of sub- regions SR={SR0, …, SRN-1}, find a mapping function M: P SR
with the objective:

Min
| |

 0
(,)

(() [((), ())

i j k

E

i v j k V
i

e p p E

e MD M p M p Cω
=

= ∈

⋅ ⋅∑

((), ())])H j k HMD M p M p C+ ⋅ , (13)

satisfying

jp P∀ ∈ , M(jp)∈T, (14)

,j kp p P∀ ∈ and j kp p≠ , M(jp)≠ M(kp), (15)

∀ lm, B ≥ (), ()
(,)

() (,)
j k

i j k

i m M p M p
e p p

e f l hω
=

⋅∑ , (16)

where
(), ()

(), ()
(), ()

1

0
(,) j k

j k

j k

m M p M p

m M p M p
m M p M p

if l h

if l h
f l h

∈

∉

⎧⎪= ⎨
⎪⎩

, MDH() and MDV() denote the

horizontal and vertical Manhattan distance between two tiles, respectively. Conditions
given by (14) and (15) ensure that each task should be mapped exactly to one tile and
no tile can host more than one task. The inequities given in (16) specify the
bandwidth constraint for every link.

5 Algorithm Description
For each sub-problem listed in Section 4, an algorithm is introduced in each of

following subsections. Before discussing these algorithms, the following assumption
is made. All the edges of an incoming application’s CTG are sorted in a decreasing
order by the edge weight ω(ei). The sorted edge list is represented as SE.

5.1 NoC Region Selection (P1)
As discussed in Section 4, a cuboid of NoC tiles shall be first found. This problem

can be further divided into two small problems. First, given the incoming
application’s CTG G, a window with a size of size l·w should be found such that
N·l·w ≥ |G| and N·l·w - |G| is minimized. That is, the shape and size of sub-region
should be chosen to minimize fragmentation. Second, after finding the l·w matrix,
unallocated tiles which form the N·l·w cuboid should be found (these tile regions are
called NoC regions). A window sweeping process is used as in Fig. 4(a).

A window of size l·w starts from tile (0, 0, 1) and moves at the first layer. The
window sweeps the whole layer until all of the tiles inside the window are found not
allocated yet.

An example of applying this algorithm is shown in Fig. 2(b). The CTG shown in
Fig. 2(a) has 16 tasks. Thus, a 3x2x3 cuboid is selected based on the window
sweeping process (Fig. 2(b)).

The NoC region selection algorithm is shown in Fig. 4(b). The complexity of the
algorithm is xy+(|T|/|N|·x·y) =O(|T|/|N|)2.

| | /G N⎡ ⎤⎢ ⎥

Fig. 4. The NoC region selection algorithm.

5.2 Set Matching (P2)
In the second step, the sub-graph of the CTG, i.e. SG, which includes the tasks with
high communication BW requests should be allocated into the N sets, one for each
layer. The sub-graph SG is formed by the first 50% edges (denoted as SE′) in SE,
Vertical links are preferred for high BW communication edges. Hence, edges with
larger weight will be first allocated to vertical links if possible. However, there is only
one vertical link between the two tiles (x, y, z) and (x, y, z+1), z= 0, …, N-2. Thus, if a
task is allocated to tile (x, y, z) and has two neighbors in layer z+1, it may result in
higher power consumption than mapping one of the neighbors to the same layer z. Fig.
5 shows such an example. Given the CTG shown in Fig. 5(a), if tasks 1 and 2 are
mapped to layer 1 (Fig. 5(b)), the energy cost is 10·(CV+CV+CH) suppose the link
energy cost are CV and CH for vertical and horizontal links, respectively. If task 2 is
mapped to the same layer of task 0 (Fig. 5(c)), the energy cost is 10·(CV+CH) which is
lower than that of Fig. 5(b). Thus, an observation is made that when vertical links are
preferred, a task can be allocated to the same layer of its neighbor if the neighbor
already has edges allocated to adjacent layers.

The algorithm works as follows. For each edge (pj, pk) in the sorted edge list SE′,

• If neither of the two tasks is allocated, the tasks are checked to see whether one of
them has degree in SG greater than 1. If so, the task with a larger degree in SG is
allocated to SGu with (0<u<N-1), i.e., to a layer whose tiles have two vertical links,
up and down. Otherwise, the tasks are allocated to SGu and SGv with u ≠ v and |u-v|
minimized.

• If one of the tasks is allocated, e.g., pj is allocated to SGu, the unallocated task pk is
allocated to SGv (u ≠ v) such that |u-v| is minimized, given that pj has no neighbor
in SGv. Otherwise, pk is allocated to SGu.

Fig. 6 shows an example of the set matching processing based on the CTG given in
Fig. 2(a). The sub-graph SG of this CTG is given in Fig. 6(a) and the size of region on
each layer is 6. The sorted edge list of the sub-graph is {(0, 1), (0, 2), (1, 5), (2, 6), (13,
15), (14, 15)}. Fig. 6(b) shows that tasks 0 and 1 are first allocated to SG1 and SG0 as
task 0 has a degree of 2 in Fig. 6(a). When allocating edge (0, 2), task 2 is allocated to
SG0 as task 0’s neighbor task 1 is already allocated to SG1 (Fig. 6(c)). When allocating
edge (1, 5), task 5 is allocated to SG0 as task 1’s neighbor task 0 is already allocated
to SG1. Similarly, task 6 is allocated to SG2 as in Fig. 6(d). Tasks 13, 14 and 15 are
allocated similarly as in Fig. 6(e) and (f). The final result of the set matching problem
for the vertices in SG is shown in Fig. 6(f).

The set matching algorithm is shown in Fig. 5(d). The complexity of the algorithm
is O(|E||N|2).

∈

/2NSG⎡ ⎤⎢ ⎥

/2NSG⎡ ⎤⎢ ⎥

≠

Fig. 5. The set matching algorithm (P2).

Fig. 6. An example of set matching when vertical links are preferred.

5.3 CTG to NoC Region Mapping (P3)
After finding the set of tile regions SR and the allocation of the vertices in SG to the N
set SR0, …, SRN-1, all of the vertices in CTG should be mapped to SR. In this
algorithm, a metric Dist() is used to find the weighted distance of two tiles. The Dist()
metric is defined as: Dist(ta,tb)=|xa-xb|CH+|ya-yb|CH+|za-zb|CV, where (xa,ya,za) and
(xb,yb,zb) represent the coordinates of tiles ta and tb, respectively. As discussed in
Section 3, Dist() reflects the power consumption of each communication edge after
mapping the two tasks. The algorithm checks for each edge in SE of CTG and maps
the tasks to minimize their distance. It works as follows. For each edge (pj, pk),
• If neither of the two tasks pj, pk are mapped. There are three cases to consider

1) Both tasks are already allocated to the N sets SR0, …, SRN-1, e.g., pj allocated
to SGu and pk allocated to SGv (0≤ u, v≤N-1). If pj has high degree (>2) in SG,
find a tile in SRu with large number of free neighbor tiles. Otherwise, find an
unused tile in SRu for pj. Then find a tile for pk in SRv to minimize the Dist() metric.

2) One of the two tasks already allocated to the N sets, e.g., pj allocated to SGu. If
pj has high degree (>2) in SG, find a tile in SGu with large number of free neighbor
tiles. Otherwise, find an arbitrary tile in SGu for pj. Then find a tile for pk in SR to
minimize the Dist() metric.

3) Neither of the two tasks allocated to the N sets yet. If pj has high degree (>2)
in SG, find a tile in SR with large number of free neighbor tiles. Otherwise, find an
arbitrary tile in SR for pj. Then find a tile for pk in SR to minimize the Dist() metric.

• If one of the two tasks is mapped, e.g., pj is mapped to tile t. If the unmapped task
pk is allocated to SGu, find a tile in SRu for pk to minimize the Dist() metric.
Otherwise, find a tile for pk in SR to minimize the Dist() metric.

The CTG to NoC region mapping algorithm is shown in Fig. 7. The complexity of
the CTG to NoC region mapping algorithm (P3) is O(|E||T|2). The total complexity of
the run-time incremental mapping algorithm (combining the algorithms introduced in
section 5.1 to 5.3) is O(|E||T|2).

Assume the vertical links are preferred for communications with high BW requests.
Fig. 2(d) shows the mapping result given the CTG in Fig. 2(a) based on the results of
NoC region selection (Fig. 2(b)) and set matching (Fig. 2 (c)).

CTG_to_NoC_mapping (G, SE, SR)
Input: (1) G: the CTG of the incoming application
 (2) SE: the sorted edge list of the CTG
 (3) SR: the set of sub-regions for the incoming application

(4) SG0, …, SGN-1: the N sets containing the vertices in SG
Output: (1) MAP: mapping table for each IP core
Function: map each IP core to a tile in SR
Procedure body:
{
 for (each edge ei =(pj, pk)∈ SE) {
 if (neither pj nor pk are mapped) {
 if (pj ∈ SGu and pk ∈ SGv) { // u,v=0,…,N-1
 MAP[pj] = ta s.t. ta∈ SRu;

// if pj has more than two neighbors in SG,
// find a ta have more than two free neighbor tiles

 MAP[pk] = tb s.t. tb∈ SRv and Dist(ta, tb) is minimized;
 }
 else if (suppose pj ∈SGu) { // u =0,…,N-1
 MAP[pj] = tc s.t. tc∈ SRu;

// if pj has more than two neighbors in SG,
// tc should also have more than two free neighbor tiles

 MAP[pk] = td s.t. td∈ SR and Dist(tc, td) is minimized;
 }
 else {
 MAP[pj] = te s.t. te∈ SR;

// if pj has more than two neighbors in SG,
// te should also has more than two free neighbor tiles

 MAP[pk] = tf s.t. td∈ SR and Dist(te, tf) is minimized;
 }
 }
 else if (only one IP core is mapped){

// suppose pj is mapped to tile t
 if (pk∈ SGv) { // v=0,…,N-1
 MAP[pk] = tg s.t. tg∈ SRv and Dist(t, tg) is minimized;
 }
 else {
 MAP[pk] = th s.t. Dist(t, th) is minimized;
 }

 }
}

}
Fig. 7. The CTG to NoC region mapping algorithm.

6 Performance Evaluation
The proposed algorithms have been evaluated through extensive experiments. Two
sets of experiments are performed. First, single random applications are mapped to a
3-D NoC architecture. In this set of experiments, our algorithm is compared against
the branch and bound (BNB) algorithm in terms of the solution quality. BNB tries to
exhaustively enumerate all possible mapping results where mapping results with
higher power consumption are discarded by estimating upper and lower bounds.
Second, multiple applications (including random applications generated by TGFF [16]
and applications from E3S [17]) are incrementally mapped to a 3-D NoC architecture.
In this set of experiments, our algorithm is compared against a random mapping
algorithm and a simple heuristic algorithm, namely large communication first (LCF).

The power model is adopted from the DimDe router [3]. The network is assumed
to be a 6x6x3 3-D mesh. The flit size is set to be 128-bit. To study the power
consumption trend, vertical and horizontal links with different lengths are chosen. The
wire parameters are adopted from [1], e.g., the unit wire capacitances (Cwire) for
vertical and horizontal links are 600fF/mm and 332fF/mm, respectively. Table I lists
the wire length combinations evaluated where vertical links are preferred over
horizontal links. The Noxim simulator [18] is used as the NoC simulator.

TABLE 1. Different combinations of vertical and horizontal link length

Combinations Length of vertical links
between adjacent layers

Length of horizontal links
between adjacent routers

I 60um 1mm
II 90um 1mm
III 120um 1mm
IV 60um 0.5mm
V 90um 0.5mm
VI 120um 0.5mm

6.1 Mapping Single Application to 3-D NoC

First, we show the single application mapping results of our algorithm compared to
that of BNB. Two types of applications are evaluated: random applications and real
applications. For random applications, TGFF is used to generate the CTGs. The
numbers of tasks range from 12 to 20. The communication BW requests vary from 1
to 10. The tile regions selected for our algorithm and BNB are the same. The running
time of BNB is more than one hour while the running time of our algorithm is within
1 sec. From Fig. 8, we can see that the increase in power consumption of our
algorithm over BNB is within 11%.

Fig. 8 shows that, the results from our algorithm get closer to that of BNB when
the energy cost ratio of horizontal links over vertical links (CH:CV) are smaller. The
ratio of CH:CV is the largest for combination I and smallest for combination VI. The
reason is due to the fact that, as the ratio of CH:CV becomes smaller, the difference in
vertical and horizontal communications is reduced. The power consumption of
horizontal links in the mapping result produced by our algorithm has less impact on
the overall communication power consumption.

6.2 Mapping Multiple Applications Incrementally to 3-D NoC
In this section, our algorithm is compared against a random mapping (RM) and

large communication first (LCF) with multiple applications. Due to the complexity of
BNB, it is not used for runtime mapping. In RM and LCF, the NoC region selection
step is the same as in our algorithm. RM maps the tasks to the tiles in the selected
region randomly. LCF sorts the edges in the non-increasing order of BW request.
Then the terminal vertices of the communication edge with higher bandwidth request
are mapped to links with smaller c(l) values. Both random and real applications are
evaluated.

First, random applications are simulated with their CTGs generated from TGFF
[16]. The numbers of tasks in these CTGs vary from 12 to 20. The communication
BW requests vary from 1 to 10. For each combination in Table I, five experiments are

performed for each number of tasks. In each experiment, 10 applications are mapped
to a 6x6x3 network. The running time of each application is varied from 1 to 10 time
units. Fig. 9 shows the normalized power saving of our algorithm over RM and LCF.
Fig. 9(a) shows that our algorithm can save up to over 50% power compared to RM
and up to 20% over LCF.

Real application CTGs, including auto-industry, consumer, networking, and office
automation, are generated from E3S [17]. Again, for each combination in Table I, five
experiments are conducted. Each experiment is composed of 10 applications which
are mapped to a 6x6x3 network incrementally. Fig. 9(b) shows that our algorithm can
save up to about 30~40% power compared to RM and up to 8~17% compared to LCF.
The power saving in Fig. 9(b) is smaller than that in Fig. 9(a) since the CTG
structures of the real applications from E3S are highly regular, e.g., mostly forming a
chain-type structure. For such chain-type CTGs, RM and LCF will result in better
results compared to non-regular structures.

Fig. 8. Normalized power saving of BNB over our algorithm (normalized over the power consumtiopn of

the results of BNB)

0

0.2

0.5
0.6

Power saving of our
algorithm over RM and LCF

Combinations
I II III IV V VI

0.4
0.3

0.1

Power saving
over RM

Power saving
over LCF

0

0.2

0.5

Combinations
I II III IV V VI

0.4
0.3

0.1

Power saving of our
algorithm over RM and LCF

(a) (b)
Fig. 9. Normalized power consumption of RM and LCF over our algorithm on TGFF (a) and E3S (b).
Power consumption are normalized over the power consumtiopn of the results of our algorithm.

7 Conclusion
In this paper, we have proposed a power-aware run-time incremental mapping
algorithm for 3-D NoCs with the objective of minimizing the communication power
for each incoming application. In addition, the proposed algorithm attempts to reduce
the fragmentation impact on future applications. The proposed algorithm is composed
of three steps: 1) NoC region selection which selects a cuboid region to reduce the
impact to future applications, 2) set matching which allocates the application graph to
the sub-regions in different layers such that the vertical links are used as much as

possible, 3) CTG to NoC region mapping which maps the tasks to the tiles in different
sub-regions with minimized total communication power. Our experiment results have
confirmed that the proposed algorithm is over four orders of magnitude run time
efficient than BNB when mapping a single application. It has been shown that our
algorithm can also achieve 50% power saving compared to random mapping and 20%
compared to a simple heuristic when mapping multiple applications incrementally.

References

1. V. F. Pavlidis and E. G. Friedman: 3-D topologies for networks-on-chip. IEEE Trans. Very Large

Scale Integration Systems, vol. 15, no. 10, pp. 1081-1090, (2007).
2. W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon:

Demystifying 3D ICs: the pros and cons of going vertical. IEEE Design and Test of Computers, vol.
22, no. 6, pp. 498-511, (2005).

3. J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S. Yousif, and C. R. Das: A novel
dimensionally-decomposed router for on-chip communication in 3D architectures. In: Int'l Symp.
Computer Architecture, vol. 35, pp. 138-149, (2007).

4. C. Addo-Quaye: Thermal-aware mapping and placement for 3-D NoC designs. In: IEEE Int'l SoC
Conf., pp. 25-28, (2005).

5. C. L. Chou and R. Marculescu: Run-time task allocation considering user behavior in embedded
multiprocessor networks-on-chip. IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 1, pp. 78 - 91, (2010).

6. C. L. Chou, U. Y. Ogras, and R. Marculescu: Energy-and performance-aware incremental mapping
for networks on chip with multiple voltage levels. IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 10, pp. 1866-1879, (2008).

7. H. Matsutani, M. Koibuchi, and H. Amano: Tightly-coupled multi-layer topologies for 3-D NoCs, In:
Int'l Conf. Parallel Processing, pp. 75-85, (2007).

8. B. S. Feero and P. P. Pande: Networks-on-Chip in a three-dimensional environment: a performance
evaluation. IEEE Trans. Computers, vol. 58, no. 1, pp. 32-45, (2009).

9. D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan, and C. R. Das: MIRA: a
multi-layered on-chip interconnect router architecture. In: Int'l Symp. Computer Architecture, pp.
251-261, (2008).

10. X. Wang, M. Yang, Y. Jiang, and P. Liu: A power-aware mapping approach to map IP cores onto
NoCs under bandwidth and latency constraints. ACM Trans. Architecture and Code Optimization, vol.
7, no. 1, pp. 1-31, (2009).

11. A. H. Land and A. G. Doig: An automatic method for solving discrete programming problems.
Econometrica, vol. 28, pp. 497-520, (1960).

12. J. Hu and R. Marculescu: Energy-and performance-aware mapping for regular NoC architectures.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 4, pp. 551-562,
(2005).

13. L. T. Smit, G. J. M. Smit, J. L. Hurink, H. Broersma, D. Paulusma, and P. T. Wolkotte: Run-time
assignment of tasks to multiple heterogeneous processors. In: Progress Embedded System Symp., pp.
185-192, (2004).

14. E. Carvalho, N. Calazans, and F. Moraes: Heuristics for dynamic task mapping in NoC-based
heterogeneous MPSoCs. In: IEEE/IFIP Workshop Rapid System Prototyping, pp. 34-40, (2007).

15. V. Lo, K. J. Windisch, W. Liu, and B. Nitzberg: Noncontiguous processor allocation algorithms for
mesh-connected multicomputers. IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 7, pp. 712-
726, (1997).

16. TGFF: task graphs for free. [Online]. Available: http://ziyang.eecs.umich.edu/~dickrp/tgff/.
17. R. Dick: Embedded system synthesis benchmarks suite(E3S). [Online]. Available:

http://ziyang.eecs.umich.edu/~dickrp/e3s/.(2002)
18. Noxim. [Online]. Available: http://noxim.sourceforge.net/.

