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Abstract. How to efficiently reduce the fuzzing data scale while assuring high 

fuzzing veracity and vulnerability coverage is a pivotal issue in program fuzz 

test. This paper proposes a new heuristic method for fuzzing data generation 

named with H-Fuzzing. H-Fuzzing achieves a high program execution path 

coverage by retrieving the static information and dynamic property from the 

program. Our experiments evaluate H-Fuzzing, Java Path Finder (JPF) and 

random fuzzing method. The evaluation results demonstrate that H-Fuzzing can 

use fewer iterations and testing time to reach more test path coverage compared 

with the other two methods.  

Keywords: Fuzzing test, static analysis, dynamic analysis, program slicing, 

control flow graph, program security testing. 

1   Introduction 

Fuzzing, according to its basic definition, might be characterized as a blind fishing 

expedition that aims at uncovering completely unsuspected problems in the software. 

If the program contains a code slice that may lead to exceptions, crash or errors, it can 

be determined that a vulnerability has been discovered. Generally, fuzzers are good at 

finding buffer overflow, DoS, SQL Injection, XSS, and Format String bugs, but 

always suffer the difficulty of finding vulnerabilities that does not cause program to 

crash, such as information disclosure, encryption flaws and so on. 

Because of its random nature, the fuzzing data space must be huge enough to 

achieve high veracity and vulnerability coverage. For many applications, injecting 

random bits is almost infeasible. Consequently, completely random fuzzing is a 

comparatively ineffective way to uncover problems in an application.  

To address this limitation, this paper presents a new heuristic fuzzing data 

generation method, namely H-Fuzzing. H-Fuzzing collects the information of key 

branch predictions and builds its relations with the program input variables. Besides, 



H-Fuzzing supervises how the fuzzing data space shrinks with the branch predictions 

and input variables. By abstracting these static information and dynamic property 

from the analyzed program, it accomplishes high program execution path coverage. 

The remainder of this paper is organized as follows. Section 2 is a brief 

introduction of the related work. Before the description of our method, the program 

model is built in section 3. The details of H-Fuzzing is described in section 4 and an 

experimental evaluation is presented in section 5. Finally, we conclude our work with 

a brief summary and discussion of open problems in section 6. 

2   Related Work 

The term fuzzing is derived from the fuzz utility [1], which is a random character 

generator for testing applications by injecting random data at their interfaces [2]. In 

this narrow sense, fuzzing just means injecting noise at program interfaces. For 

example, one might intercept system calls made by the application while reading a 

file and make it appear as though the file containing random bytes. The idea is to look 

for interesting program behavior that results from noise injection. Such behavior may 

indicate the presence of vulnerability or other software fault. 

A simple technique for automated test generations is random testing [3-8].In 

random testing, the tested program is simply executed with randomly-generated 

inputs. A key advantage of random testing is that it scales well in the sense that 

generating random test input takes negligible time. However, random testing is 

extremely unlikely to expose all possible behaviors of a program. For instance, the 

“then” branch of the conditional statement “if (x= =10) then” has only one in 232 

chances of being executed if x is a randomly chosen 32-bit input variable. This 

intuitively explains why random testing usually provides low code coverage. 

Several symbolic techniques for automated test generation [9-13] have been 

proposed to ameliorate the limitations of manual and random testing. Grammar-based 

techniques [14, 15] have recently been presented to generate complex inputs for 

software systems. However, these techniques require a grammar to be given for 

generating the tested program’s input, which may not always be feasible. 

There are several other works including some more intelligent techniques. For 

example, fuzzing tools are aware of commonly used Internet protocols, so that testers 

can selectively choose which parts of the data will be fuzzed. These tools also 

generally let testers specify the format of test data. This is very useful for applications 

that do not use the standard protocols. These features overcome the limitations 

discussed in the previous paragraph. In addition, fuzzing tools often let the tester 

systematically explore the input space. Such tester might be able to specify a range of 

input variables instead of having to rely on randomly generated inputs. 

To sum up, existing traditional fuzzing ways suffer the following deficiencies: 

1) They lack general fuzzers because they have to put focus on special objects to 

reduce the complexity and scale of fuzzing data generation.  

2) The random methods suffer poor test efficiency. 

3) They only have a low execution path coverage rate, which denotes the execution 

path number divided by the total number of branches in the program. 



3   Program Model 

A program P in a simple imperative programming language consists of a set of 

functions
1 2 n

F = {f , f ,..., f } , one of which is distinguished as main, i.e., the program 

execution entry function. Each function fi is denoted as { Entryi,  Inputi, Exiti }, 

wherein Entryi is the function executing entrance, 
i i1 i2 im

Input = {I ,I ,...,I }  is the 

function input set, and 
i i1 i2 it

Exit = {E ,E ,....,E }  is the set of function return points. The 

function fi is executed as a call, namely call(fi). In its body, m := e means assigning 

the value e to the memory location m, an expression free of side effects and a 

conditional if p then goto l, wherein l is the label of another statement in the same 

function and p is a predicate free of side effects. 

The execution of program P with inputs InputP which the customers give proceeds 

through a sequence of labeled program statements p0;…; pk, with p0 = lmain;0 : Entrymain, 

the first statement of the main function. 

The program P consisting of functions f1, …, and fn. Its combined control flow and 

static call graph CFCGP is a directed graph whose vertices are the statements of P. 

The edges of CFCGP begin from each statement li;j : si;j  and end at its immediate 

successors. 
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To describe the rest of this paper more clearly, the following definitions are 

proposed.  

Definition 1 (Control Flow Graph, CFG) The control flow graph G denotes a 

directed graph. Each of its nodes is a basic module with only one entry and exit, 

symbolized with Entry and Exit correspondingly. If the control flow can reach the 

basic module B from the basic module A directly, there is a directed edge from node 

A to node B. Formally, the control flow graph of program P can be represented with a 

quadruple G (Ⅳ, E, Entry, Exit). IV is the node set which symbolizes the basic 

modules. E denotes the edge set. Each edge is symbolized by an ordered couple <ni, 

nj> which represents a possible control transition from ni to nj (nj may be executed 

just after ni has been executed). 

Definition 2 (Branch Path Tree, BPT) The branch path tree of program P, namely 

Tf, is the set of all the possible execution paths of P. Each node Tf is the set of a 

branch node along with all the non-branch nodes between this branch node and 

previous branch node, or the Exit of P. The root of Tf denotes the initial state of P. 

Definition 3 With the denotation that l represents any node of a control flow graph 

CFG, we can reach the following definitions. 

a) The Definitions Set, Def(l) = { x| x is a variable changed in the sentence l }. 

b) The References Set, Ref(l) = { x| x is a variable referred in the sentence l }. 

Definition 4 (Data Dependence) If node n and m satisfy the following two 

conditions, n is data-dependent on m. 



a) There is a variable v, and v belongs to Def (m) ∩ Ref (n). 

b) There is a path p in G from m to n, and for any node m'∈p - { m , n} , v | 

def( m'). 

Definition 5 (Control Dependence) If node n and m meet the following two 

conditions, n is control-dependent on m. 

a) There is a path p in G from m to n, and for any node m'∈p - { m , n}, n is the 

successive dominator of m'. 

b) n is not the successive dominator of m. 

Definition 6 (Program Slicing) A slice S of a program is an executable sub-

program. For a variable v located in some interest point l (l and v is termed as the 

Slicing Rules), S is composed of all the sentences which may influence v in l. In the 

functionality point of view, the slice S is equivalent with P. The so-called influencing 

v refers to having data-dependence or control-dependence on v. 

Slicing a program is supposed to follow some slicing rules. While slicing the same 

program, the slices worked out will differ with the selected slicing rules. A dynamic 

slicing rule is represented with an ordered triple <Inputp, Sk, v>, wherein Inputp 

denotes the input set of a program. S is a sentence of the program, and then Sk 

indicates that the sentence S is executed at step k. It can also be symbolized with S:|k. 

v denotes a variable. It can represent a single variable or a subset of the program’s 

variable set. 

4   Heuristic Program Fuzzing Data Generation Method 
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Fig. 1. The Work Flow Chart in H-Fuzzing Method. 

 

H-Fuzzing is composed of two processes: static analysis process and fuzzing process. 

Fig. 1 illustrates the working flow of H-Fuzzing. Firstly, the information of all branch 

predictions and possible execution paths is collected, especially their relations with 

the input variables. Secondly, an initial input is generated, and then a new path will be 

chosen to be analyzed next time according to the execution path selecting rules. With 

the information supervised in the static analysis process, a new input variable set will 

be generated to run the program continually. If it works, the fuzzing process will get 

the next path until all the paths in the program are covered. Otherwise, the process 

will iterate the input variable again. 



4.1   The Program Static Analysis Procedure 
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Fig. 2.The Output Information of The Static Analysis. 

The static analysis is responsible for analyzing the relations between the possible 

execution paths and the input variables. The program tested here can be source code, 

inter-procedure language or even Java byte code. The working steps of the static 

analysis are listed as follows, as shown in Fig.2. 

1) Construct the CFG of the fuzzed program; 

2) Build the branch path tree (BPT) of the program with the CFG information;  

3) Slice the program with every branch prediction variable in branch lines, and 

record its data & control dependence information, especially with the input 

variables. 

4) Deduce the relation functions between execution paths and input variables. 

All such information is organized with a table, called Branch Prediction 

Information Table (BPIT).   

5) According to the BPT and BPIT, deduce the information of every possible 

path in the fuzzed program, and work out a Path Information Table (PIT) 

which records the relations between execution paths and input variables. 

One entry in BPIT includes four elements: { Line Number, Branch Predication, 

Corresponding Input, Relation Function}. Line Number is line no. of the branch 

sentence. Branch Predication is the variables which make the branch be executed.  

Corresponding Input is the input variable set which has effect on the branch 

prediction. Relation Function defines the relation function between the branch 

prediction and the input variable set. 

One entry in PIT is composed of five elements: {ID, Path, Branch Point, 

Corresponding Input, Relation Function}. ID is the exclusive number of path. Path is 

the set of line numbers of the path. Branch Point contains all the line numbers of 

branch sentences. Corresponding Input is the input variable set which has effect on 

this path. Relation Function defines the relation function between the path branches 

and the input variable set. 

Because the generation algorithms of the program CFG and the BPT have been 

fully studied and lots of related tools are available, they would not be discussed here.  

The process of calculating the prediction slicing is listed as follows: Firstly, H-

Fuzzing finds all the nodes which the prediction variable v in the branch sentence S 

has data or control dependence on directly. Secondly, it keeps finding the nodes 

which new nodes have data or control dependence on directly, until no new nodes is 

added. Finally, it parallels these nodes according to the sequence in the program 

sentences. Then, the slice of the variable v in the branch sentence S is generated. 
 



Algorithm “H-Fuzzing Static Analysis Procedure” 
Input: P 

Output: PIT 

Begin 

 Begin at the Entrymain in P, add every object to Object[] in P 

 While Object[] ≠ { 

    For oi ∈Object[]{ 

10:   add every function to Functioni [] in oi; 

   While Functioni [] ≠ { 

20:    For fj ∈Functioni []{ 

         Build CFG fj ; 

     Build BPT fj;  

     For each branch node Bnt ∈BPT fj { 

  Get the information of its { Line Number, Branch Predication, Corresponding Input, Relation 

Function};       }  

         Build BPIT fj; 

         For each path Ptl ∈BPT fj {   

  Get the information of its { ID, Path, Branch Point, Corresponding Input, Relation Function }; }

 Build PIT fj;  } 

    Find the related function fm  to fj; 

    Get their exchanged information; 

    fj = fm ; 

      Delete fm from Functioni [];    

      Goto 20; 

   }   

   Find the related object on to oi; 

   Get their exchanged information;    

   oi =on ; 

   Delete on from Object[];    

   Goto 10;     

      } 

        } 

End 

Fig. 3. H-Fuzzing Static Analysis Procedure. 

In the concrete analyzing process, H-Fuzzing introduces the hierarchical 

decomposing method. H-Fuzzing need to separate the program into data layer, 

function layer, object layer and class layer, abstract the hierarchical slicing models, 

and figure out all kinds of dependence relations between them. Following that, H-

Fuzzing builds the CFGs and BPTs in different layers, and then utilize the prediction 

slicing algorithm to calculate different granularity slices in every layer from the top 

level to the bottom. When the slicing process is working among layers, the escalating 

algorithm is adopted. This concrete static analysis algorithm is described in Fig. 3. 

4.2   The Fuzzing Data Generation Algorithm 

The fuzzing data generation process of H-Fuzzing is listed as follows. H-Fuzzing 

firstly constructs an initial input in a random or manual way. Then, it records the 

execution pathes and adjusts one or more input variables following the relation 

functions. In this way, a new input will be generated and make the tested function 

execute the specified path iteratively. H-Fuzzing will repeat the above process until 

the whole paths have been executed. 



The branch prediction includes the following symbols.  

Relation symbols: “>”, “<”, “==”, “>=”, “<=”, “≠”. 

Operator symbols: “+”, “一”, “ *”, “／”. 

Conjoint symbols: “&”, “||”. 

The branch predictions can be categorized into several types, such as atom 

predictions, twice-dimension predictions, triple-dimension predictions, and so on. 

The input variable generation algorithm of the atom predictions is listed as follows. 

 (1) If “nl+n2+⋯+ni>m” , then nl =N, n2=N+1, ...,ni =N+i-1, m=-1+i(2N+i-1)/2. 

 (2) If “nl+n2+⋯+ni <m”, then nl =N, n2=N+1, ...,ni =N+i-1, m=1+i(2N+i-1)/2. 

(3) If “nl+n2+⋯+ni =m”, then nl =N, n2=N+1, ...,ni =N+i-1, m= i(2N+i-1)/2.  

(4) If “nl+n2+⋯+ni≠m”, then nl =N, n2=N+1, ...,ni =N+i-1, m ≠ i(2N+i-1)/2. 

The input variable generation algorithm of twice-dimension predictions is 

illustarted as follows. 

 (1) “&” conjunction 

①  If “a>(<, =, >=, <=)N1 & b>(<, =, >=, <=)N2 & a+(-, *,/ )b>(<, =, >=, 

<=)N3”, then H-Fuzzing takes a, b for the axis and choose the points 

surrounded by three lines to establish dimensional rectangular coordinate 

system. 

②  If “a≠ N & b≠ M”, then H-Fuzzing takes a, b for the axis and choose the 

points outside the two lines to establish dimensional rectangular coordinate 

system. 

(2) “||” conjunction 

①  If “a>(<、=、>=、<=)b || c>(<、=、>=、<=)d”, then generate three set 

values, i.e., (a=N+l, b=N, c=M, d=M+l), (a=N, b=N+1, c=M+1, d=M), and 

(a=N+1, b=N, c=M+1, d=M). 

②  If “a≠b || c≠ d”, then generate three set values, i.e., (a≠N, b=N, c=M, 

d=M), (a=N, b=N, c≠M, d=M), and (a≠N, b=N, c≠M, d=M). 

The search method for more complex three-dimensional predicated coverage test is 

shown as follows. 

(1) “&” conjunction (“≠”conjunction is not considered). 

①  Reduce inequalities to linearly independent inequalities. 

②  Figure out the critical values for the one-dimensional expression variables, 

in accordance with the direction of the critical value inequality +1 or -1 (eg, 

“a> N” will take “a = N + l"). 

③  Adjust another variable conditioning variables included in the two-

dimensional variables inequalities, which have been identified, to satisfy 

the two-dimensional variable inequality. 

④  Adjust the value of third variable to meet the three-dimensional variable 

inequality, regulate the value of the fourth variable to meet the four-

dimensional variable inequality ..., and finally adjust the value of i-

variables to satisfy the N-dimensional variable inequality. 

 (2) “||” conjunction (“≠”conjunction is not considered).  

The values are that satisfying the i-th expression accordance with the “||” 

conjunction input variable generation method of the two-dimensional complex 

predicate coverage  

 (3) Conjunctions contain the relation symbol “≠” 



Following the above two-step search algorithm, H-Fuzzing can puzzle out  any 

value, which satisfies the expression, and the other variable values. 

In order to improve the efficiency of fuzzing data generation algorithm, H-Fuzzing 

defines the following rules. 

Rule 1. Maximum Iteration Times Rule: The search will terminate into failure if it 

runs out of branches to select, exhausts its budget of test iterations, or uncovers no 

new branches after some set number of iterations. 

Rule 2. The Minimum Variable Changing Rule: If one branch prediction is 

influenced by several input variables, H-Fuzzing will change the numbers of inputs as 

least as possible during the fuzzing data reducing process.  

Rule 3. DFS and Nearest Rule: While choosing the next execution path, H-

Fuzzing will follow the depth first order and the path nearest to the current execution 

path because they have the most same code. 
Algorithm “H-Fuzzing Fuzzing Procedure” 

Input: P,{xinit,yinit},PIT,Almax 

Output: Bug 

Begin 

 Execute the program P with input {xinit,yinit}; 

 According to the Rule 3, find the next pathi in PIT; 

10: for (j= Almax;0;j--) { 

   Find the Branch Point set BPi[] in pathi ; 

   Find Corresponding Input fset In i[] in pathi ; 

   Generate {xj,yj} according to the Relation Function Rf() in pathi ; 

         Execute the program P with input {xi,yi}; 

   if (the path follows pathi){ 

    if  ((Bug found) or (pathl= ))  return (Bug) ; else Break; }  } 

 Printf(“Could find the inputs to execute s%”, pathi.path); 

  find the next pathl in PIT; 

 if  ((pathl= ))   return (0) ;  

 else{             pathi= pathl;  goto 10; } 

End 

Fig. 4. H-Fuzzing Fuzzing Procedure. 

5   Experimental Evaluation 

Table 1. The Key Attributes of The Tested Programs. 

 Jar File Size Code Line  Class Count Function Count 

JLex 50 7874 21 146 

SAT4J 428 19641 120 1056 

JCL2 56984 3586 35 179 

JLine 91183 5636 36 324 

checkstyle 627333 49029 328 1982 

We have implemented H-Fuzzing based on the official Java platform, viz., OpenJDK. 

In this section, we will evaluate H-Fuzzing and compare it with JPF and random 

fuzzing method to demonstrate its effectiveness. The testbed is equipped with an Intel 

i7 920 processor, 4G RAM, Windows XP SP3 operating system, and OpenJDK 



(version b71). We test five open source Java projects, exploring JLex, SAT4J, Java 

Class Loader 2 (JCL2), JLine and checkstyle. Table 1 lists the key attributes of their 

source code. 

In our experiment, the time for each test is limited within one hour. The evaluation 

makes statistic on the input file numbers and the paths covered by H-Fuzzing, JPF and 

random fuzzing method. The evaluation results demonstrate that H-Fuzzing can use 

fewer fuzzing iterations and testing time to reach higher test path coverage than the 

other two methods. 

Due to the page limitation, the static analysis results are only presented for JLex. 

For the other programs, just the evaluation results (the path coverage comparisons) 

are illustrated. 

 JLex 

JLex is a Lex file parser generator. Its input is just the path of a Lex file. The static 

analysis process of H-Fuzzing analyzes 162 functions of JLex, however there are only 

146 methods in its source code. This is because that some functions will be added by 

the Java compiler during the compiling procedure, such as class's default constructor, 

destructor and so on. The static analysis process also generates the control flow graph 

and pollution spreading graph, which contains the Java intermediate language 

expressions of the branch nodes dependent on the input variables. Fig. 5 is the static 

decompiled results of the main function of JLex. As shown in this figure, the 

statement, tagged with [3], is the branch statement dependent on the input variables. 
 

public class JLex.Main extends java.lang.Object 

{ 

…… 

    public static void main(java.lang.String[]) throws java.io.IOException 

    { 

        java.lang.String[] r0;        JLex.CLexGen r1, $r4; 

        java.lang.Error r2, $r6;      int $i0; 

        java.io.PrintStream $r3, $r7; java.lang.String $r5, $r8; 

        [1] r0 := @parameter0; 

        [2] $i0 = lengthof r0; 

        [3] if $i0 >= 1 goto label0; 

        [4] $r3 = java.lang.System.out; 

        [5] $r3.println("Usage: JLex.Main <filename>"); 

        [6] return; 

        [7]      label0:        $r4 = new JLex.CLexGen; 

        [8] $r5 = r0[0]; 

        [9] specialinvoke $r4.<init>($r5); 

        [10] r1 = $r4; 

        [11] r1.generate(); 

        [12]      label1:        goto label3; 

        [13]      label2:        $r6 := @caughtexception; 

        [14] r2 = $r6; 

        [15] $r7 = java.lang.System.out; 

        [16] $r8 = r2.getMessage(); 

        [17] $r7.println($r8); 

        [18]      label3:        return; 

        [19] catch java.lang.Error from label0 to label1 with label2; 

    } 

} 

Fig. 5. Static Decompiled Results of The Main Function of JLex. 

H-Fuzzing constructs the heuristic fuzz data referring to both the control flow 

graph and the static decompiled results. The static analysis shows there are 775 



branch statements in its source code. Fig. 6 (a) is the evaluation results of H-Fuzzing, 

JPF and random fuzzing method. The horizontal axis is the number of fuzzing 

iterations. The vertical axis is the number of covered branches. When the iteration 

number is over 2,100 times, the number of covered branches almost does not change. 

 
(a) JLex                       (b) SAT4J 

Fig. 6. Trend Graph of JLex & SAT4J Branch Coverage.  

  
(a) JCL2                        (b) JLine 

 
(c) checkstyle 

Fig. 7. Trend Graph of JCL2, JLine & checkstyle Branch Coverage 

 SAT4J 



SAT4J is a Java language Boolean SAT tool. Its input parameters is a set of real 

numbers. 2610 functions of SAT4J are analyzed during the static analysis process. 

There are 3074 branch statements in its source code. Fig. 6 (b) shows the comparison 

results of H-Fuzzing, JPF and random fuzzing method. As shown in this figure, when 

the iteration number exceeds 8,000 times, the number of covered branches almost 

does not increase. 

 JCL2 

JCL2 is a configurable, dynamic and extensible custom class loader that loads java 

classes directly from Jar files and other sources. There are 1356 branch statements in 

JCL2 program. The comparison results are shown in Fig. 7 (a). As illustrated in this 

figure, when the iteration number is more than 4,100 times, the number of covered 

branches reaches a relatively stable state. 

 JLine 

JLine is a Java library for handling console input. It is similar in functionality to 

BSD editline and GNU readline. There are 1987 branch statements in JLine program. 

As shown in Fig. 7 (b), after the iteration number run overs 5,900 times, the number 

of covered branches begins to keep about 1800. 

 checkstyle 

Checkstyle is a development tool to help programmers write Java code that adheres 

to a coding standard. It automates the process of checking Java code to spare humans 

of this boring task. There are 4729 branch statements in checkstyle program. Fig. 7 (c) 

illustrates the comparison results of H-Fuzzing, JPF and random fuzzing method. As 

demonstrated in Fig. 7 (c), after the iteration number is over 141,000 times, the 

number of covered branches begins to keep about 4300. 

5   Conclusion and Discussion 

In this paper, we present a new method named H-Fuzzing for program fuzzing data 

generation. H-Fuzzing achieves high program execution path coverage by virtue of 

the the static analysis information and the program dynamic property. 

In order to effectively reduce the fuzzing data set, H-Fuzzing figures out the key 

branch predictions information and builds its relations with the program input 

variables. 

During the iterative input variable generating procedure, H-Fuzzing abstracts the 

dynamic property from the tested program. Besides, H-Fuzzing introduces a series of 

fuzzing data reduction rules to improve the efficiency of the fuzzing data generation 

algorithm and reach a high execution path coverage rate. 

H-Fuzzing has high practical value for the program security testing. In the future 

study, more efforts will be involved to perfect our fuzzing method, for example,  

recording and recovering the variable information if the next chosen path has the 

same execution part with the previous one. In addition, we will further improve its 

performance to apply it in large-scale program security testing. 
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