
H-Fuzzing: A New Heuristic Method for

Fuzzing Data Generation

Jinjing Zhao1,2, Yan Wen1,2, Gang Zhao1,2

1 Beijing Institute of System Engineerring,

Beijing, China

2 National Key Laboratory of Science and Technology on Information System Security,

Beijing, China

misszhaojinjing@sina.com.cn, celestialwy@gmail.com, zg@public.bise.ac.cn

Abstract. How to efficiently reduce the fuzzing data scale while assuring high

fuzzing veracity and vulnerability coverage is a pivotal issue in program fuzz

test. This paper proposes a new heuristic method for fuzzing data generation

named with H-Fuzzing. H-Fuzzing achieves a high program execution path

coverage by retrieving the static information and dynamic property from the

program. Our experiments evaluate H-Fuzzing, Java Path Finder (JPF) and

random fuzzing method. The evaluation results demonstrate that H-Fuzzing can

use fewer iterations and testing time to reach more test path coverage compared

with the other two methods.

Keywords: Fuzzing test, static analysis, dynamic analysis, program slicing,

control flow graph, program security testing.

1 Introduction

Fuzzing, according to its basic definition, might be characterized as a blind fishing

expedition that aims at uncovering completely unsuspected problems in the software.

If the program contains a code slice that may lead to exceptions, crash or errors, it can

be determined that a vulnerability has been discovered. Generally, fuzzers are good at

finding buffer overflow, DoS, SQL Injection, XSS, and Format String bugs, but

always suffer the difficulty of finding vulnerabilities that does not cause program to

crash, such as information disclosure, encryption flaws and so on.

Because of its random nature, the fuzzing data space must be huge enough to

achieve high veracity and vulnerability coverage. For many applications, injecting

random bits is almost infeasible. Consequently, completely random fuzzing is a

comparatively ineffective way to uncover problems in an application.

To address this limitation, this paper presents a new heuristic fuzzing data

generation method, namely H-Fuzzing. H-Fuzzing collects the information of key

branch predictions and builds its relations with the program input variables. Besides,

H-Fuzzing supervises how the fuzzing data space shrinks with the branch predictions

and input variables. By abstracting these static information and dynamic property

from the analyzed program, it accomplishes high program execution path coverage.

The remainder of this paper is organized as follows. Section 2 is a brief

introduction of the related work. Before the description of our method, the program

model is built in section 3. The details of H-Fuzzing is described in section 4 and an

experimental evaluation is presented in section 5. Finally, we conclude our work with

a brief summary and discussion of open problems in section 6.

2 Related Work

The term fuzzing is derived from the fuzz utility [1], which is a random character

generator for testing applications by injecting random data at their interfaces [2]. In

this narrow sense, fuzzing just means injecting noise at program interfaces. For

example, one might intercept system calls made by the application while reading a

file and make it appear as though the file containing random bytes. The idea is to look

for interesting program behavior that results from noise injection. Such behavior may

indicate the presence of vulnerability or other software fault.

A simple technique for automated test generations is random testing [3-8].In

random testing, the tested program is simply executed with randomly-generated

inputs. A key advantage of random testing is that it scales well in the sense that

generating random test input takes negligible time. However, random testing is

extremely unlikely to expose all possible behaviors of a program. For instance, the

“then” branch of the conditional statement “if (x= =10) then” has only one in 232

chances of being executed if x is a randomly chosen 32-bit input variable. This

intuitively explains why random testing usually provides low code coverage.

Several symbolic techniques for automated test generation [9-13] have been

proposed to ameliorate the limitations of manual and random testing. Grammar-based

techniques [14, 15] have recently been presented to generate complex inputs for

software systems. However, these techniques require a grammar to be given for

generating the tested program’s input, which may not always be feasible.

There are several other works including some more intelligent techniques. For

example, fuzzing tools are aware of commonly used Internet protocols, so that testers

can selectively choose which parts of the data will be fuzzed. These tools also

generally let testers specify the format of test data. This is very useful for applications

that do not use the standard protocols. These features overcome the limitations

discussed in the previous paragraph. In addition, fuzzing tools often let the tester

systematically explore the input space. Such tester might be able to specify a range of

input variables instead of having to rely on randomly generated inputs.

To sum up, existing traditional fuzzing ways suffer the following deficiencies:

1) They lack general fuzzers because they have to put focus on special objects to

reduce the complexity and scale of fuzzing data generation.

2) The random methods suffer poor test efficiency.

3) They only have a low execution path coverage rate, which denotes the execution

path number divided by the total number of branches in the program.

3 Program Model

A program P in a simple imperative programming language consists of a set of

functions
1 2 n

F = {f , f ,..., f } , one of which is distinguished as main, i.e., the program

execution entry function. Each function fi is denoted as { Entryi, Inputi, Exiti },

wherein Entryi is the function executing entrance,
i i1 i2 im

Input = {I ,I ,...,I } is the

function input set, and
i i1 i2 it

Exit = {E ,E ,....,E } is the set of function return points. The

function fi is executed as a call, namely call(fi). In its body, m := e means assigning

the value e to the memory location m, an expression free of side effects and a

conditional if p then goto l, wherein l is the label of another statement in the same

function and p is a predicate free of side effects.

The execution of program P with inputs InputP which the customers give proceeds

through a sequence of labeled program statements p0;…; pk, with p0 = lmain;0 : Entrymain,

the first statement of the main function.

The program P consisting of functions f1, …, and fn. Its combined control flow and

static call graph CFCGP is a directed graph whose vertices are the statements of P.

The edges of CFCGP begin from each statement li;j : si;j and end at its immediate

successors.

'

 and

 and

 otherwise

i

i

i, j

'

i, j+1 i, j

f i, j+1 i, j i

i, j+1

fnone if s = Exit

l l if s = if p goto l

Entry l if s = call(f)

l









 (1)

To describe the rest of this paper more clearly, the following definitions are

proposed.

Definition 1 (Control Flow Graph, CFG) The control flow graph G denotes a

directed graph. Each of its nodes is a basic module with only one entry and exit,

symbolized with Entry and Exit correspondingly. If the control flow can reach the

basic module B from the basic module A directly, there is a directed edge from node

A to node B. Formally, the control flow graph of program P can be represented with a

quadruple G (Ⅳ, E, Entry, Exit). IV is the node set which symbolizes the basic

modules. E denotes the edge set. Each edge is symbolized by an ordered couple <ni,

nj> which represents a possible control transition from ni to nj (nj may be executed

just after ni has been executed).

Definition 2 (Branch Path Tree, BPT) The branch path tree of program P, namely

Tf, is the set of all the possible execution paths of P. Each node Tf is the set of a

branch node along with all the non-branch nodes between this branch node and

previous branch node, or the Exit of P. The root of Tf denotes the initial state of P.

Definition 3 With the denotation that l represents any node of a control flow graph

CFG, we can reach the following definitions.

a) The Definitions Set, Def(l) = { x| x is a variable changed in the sentence l }.

b) The References Set, Ref(l) = { x| x is a variable referred in the sentence l }.

Definition 4 (Data Dependence) If node n and m satisfy the following two

conditions, n is data-dependent on m.

a) There is a variable v, and v belongs to Def (m) ∩ Ref (n).

b) There is a path p in G from m to n, and for any node m'∈p - { m , n} , v |

def(m').

Definition 5 (Control Dependence) If node n and m meet the following two

conditions, n is control-dependent on m.

a) There is a path p in G from m to n, and for any node m'∈p - { m , n}, n is the

successive dominator of m'.

b) n is not the successive dominator of m.

Definition 6 (Program Slicing) A slice S of a program is an executable sub-

program. For a variable v located in some interest point l (l and v is termed as the

Slicing Rules), S is composed of all the sentences which may influence v in l. In the

functionality point of view, the slice S is equivalent with P. The so-called influencing

v refers to having data-dependence or control-dependence on v.

Slicing a program is supposed to follow some slicing rules. While slicing the same

program, the slices worked out will differ with the selected slicing rules. A dynamic

slicing rule is represented with an ordered triple <Inputp, Sk, v>, wherein Inputp

denotes the input set of a program. S is a sentence of the program, and then Sk

indicates that the sentence S is executed at step k. It can also be symbolized with S:|k.

v denotes a variable. It can represent a single variable or a subset of the program’s

variable set.

4 Heuristic Program Fuzzing Data Generation Method

Information of the

paths with Input

Variables

 Information of the

Branch Prediction

Fuzzing Data

Generate

Fuzzing TestProgram
Output

Input Iterate

Program

Bug

Input

Fig. 1. The Work Flow Chart in H-Fuzzing Method.

H-Fuzzing is composed of two processes: static analysis process and fuzzing process.

Fig. 1 illustrates the working flow of H-Fuzzing. Firstly, the information of all branch

predictions and possible execution paths is collected, especially their relations with

the input variables. Secondly, an initial input is generated, and then a new path will be

chosen to be analyzed next time according to the execution path selecting rules. With

the information supervised in the static analysis process, a new input variable set will

be generated to run the program continually. If it works, the fuzzing process will get

the next path until all the paths in the program are covered. Otherwise, the process

will iterate the input variable again.

4.1 The Program Static Analysis Procedure

BPTCFG BPIT PITProgramm
Relation

Function

Static Analysis

Fig. 2.The Output Information of The Static Analysis.

The static analysis is responsible for analyzing the relations between the possible

execution paths and the input variables. The program tested here can be source code,

inter-procedure language or even Java byte code. The working steps of the static

analysis are listed as follows, as shown in Fig.2.

1) Construct the CFG of the fuzzed program;

2) Build the branch path tree (BPT) of the program with the CFG information;

3) Slice the program with every branch prediction variable in branch lines, and

record its data & control dependence information, especially with the input

variables.

4) Deduce the relation functions between execution paths and input variables.

All such information is organized with a table, called Branch Prediction

Information Table (BPIT).

5) According to the BPT and BPIT, deduce the information of every possible

path in the fuzzed program, and work out a Path Information Table (PIT)

which records the relations between execution paths and input variables.

One entry in BPIT includes four elements: { Line Number, Branch Predication,

Corresponding Input, Relation Function}. Line Number is line no. of the branch

sentence. Branch Predication is the variables which make the branch be executed.

Corresponding Input is the input variable set which has effect on the branch

prediction. Relation Function defines the relation function between the branch

prediction and the input variable set.

One entry in PIT is composed of five elements: {ID, Path, Branch Point,

Corresponding Input, Relation Function}. ID is the exclusive number of path. Path is

the set of line numbers of the path. Branch Point contains all the line numbers of

branch sentences. Corresponding Input is the input variable set which has effect on

this path. Relation Function defines the relation function between the path branches

and the input variable set.

Because the generation algorithms of the program CFG and the BPT have been

fully studied and lots of related tools are available, they would not be discussed here.

The process of calculating the prediction slicing is listed as follows: Firstly, H-

Fuzzing finds all the nodes which the prediction variable v in the branch sentence S

has data or control dependence on directly. Secondly, it keeps finding the nodes

which new nodes have data or control dependence on directly, until no new nodes is

added. Finally, it parallels these nodes according to the sequence in the program

sentences. Then, the slice of the variable v in the branch sentence S is generated.

Algorithm “H-Fuzzing Static Analysis Procedure”
Input: P

Output: PIT

Begin

 Begin at the Entrymain in P, add every object to Object[] in P

 While Object[] ≠ {

 For oi ∈Object[]{

10: add every function to Functioni [] in oi;

 While Functioni [] ≠ {

20: For fj ∈Functioni []{

 Build CFG fj ;

 Build BPT fj;

 For each branch node Bnt ∈BPT fj {

 Get the information of its { Line Number, Branch Predication, Corresponding Input, Relation

Function}; }

 Build BPIT fj;

 For each path Ptl ∈BPT fj {

 Get the information of its { ID, Path, Branch Point, Corresponding Input, Relation Function }; }

 Build PIT fj; }

 Find the related function fm to fj;

 Get their exchanged information;

 fj = fm ;

 Delete fm from Functioni [];

 Goto 20;

 }

 Find the related object on to oi;

 Get their exchanged information;

 oi =on ;

 Delete on from Object[];

 Goto 10;

 }

 }

End

Fig. 3. H-Fuzzing Static Analysis Procedure.

In the concrete analyzing process, H-Fuzzing introduces the hierarchical

decomposing method. H-Fuzzing need to separate the program into data layer,

function layer, object layer and class layer, abstract the hierarchical slicing models,

and figure out all kinds of dependence relations between them. Following that, H-

Fuzzing builds the CFGs and BPTs in different layers, and then utilize the prediction

slicing algorithm to calculate different granularity slices in every layer from the top

level to the bottom. When the slicing process is working among layers, the escalating

algorithm is adopted. This concrete static analysis algorithm is described in Fig. 3.

4.2 The Fuzzing Data Generation Algorithm

The fuzzing data generation process of H-Fuzzing is listed as follows. H-Fuzzing

firstly constructs an initial input in a random or manual way. Then, it records the

execution pathes and adjusts one or more input variables following the relation

functions. In this way, a new input will be generated and make the tested function

execute the specified path iteratively. H-Fuzzing will repeat the above process until

the whole paths have been executed.

The branch prediction includes the following symbols.

Relation symbols: “>”, “<”, “==”, “>=”, “<=”, “≠”.

Operator symbols: “+”, “一”, “ *”, “／”.

Conjoint symbols: “&”, “||”.

The branch predictions can be categorized into several types, such as atom

predictions, twice-dimension predictions, triple-dimension predictions, and so on.

The input variable generation algorithm of the atom predictions is listed as follows.

 (1) If “nl+n2+⋯+ni>m” , then nl =N, n2=N+1, ...,ni =N+i-1, m=-1+i(2N+i-1)/2.

 (2) If “nl+n2+⋯+ni <m”, then nl =N, n2=N+1, ...,ni =N+i-1, m=1+i(2N+i-1)/2.

(3) If “nl+n2+⋯+ni =m”, then nl =N, n2=N+1, ...,ni =N+i-1, m= i(2N+i-1)/2.

(4) If “nl+n2+⋯+ni≠m”, then nl =N, n2=N+1, ...,ni =N+i-1, m ≠ i(2N+i-1)/2.

The input variable generation algorithm of twice-dimension predictions is

illustarted as follows.

 (1) “&” conjunction

① If “a>(<, =, >=, <=)N1 & b>(<, =, >=, <=)N2 & a+(-, *,/)b>(<, =, >=,

<=)N3”, then H-Fuzzing takes a, b for the axis and choose the points

surrounded by three lines to establish dimensional rectangular coordinate

system.

② If “a≠ N & b≠ M”, then H-Fuzzing takes a, b for the axis and choose the

points outside the two lines to establish dimensional rectangular coordinate

system.

(2) “||” conjunction

① If “a>(<、=、>=、<=)b || c>(<、=、>=、<=)d”, then generate three set

values, i.e., (a=N+l, b=N, c=M, d=M+l), (a=N, b=N+1, c=M+1, d=M), and

(a=N+1, b=N, c=M+1, d=M).

② If “a≠b || c≠ d”, then generate three set values, i.e., (a≠N, b=N, c=M,

d=M), (a=N, b=N, c≠M, d=M), and (a≠N, b=N, c≠M, d=M).

The search method for more complex three-dimensional predicated coverage test is

shown as follows.

(1) “&” conjunction (“≠”conjunction is not considered).

① Reduce inequalities to linearly independent inequalities.

② Figure out the critical values for the one-dimensional expression variables,

in accordance with the direction of the critical value inequality +1 or -1 (eg,

“a> N” will take “a = N + l").

③ Adjust another variable conditioning variables included in the two-

dimensional variables inequalities, which have been identified, to satisfy

the two-dimensional variable inequality.

④ Adjust the value of third variable to meet the three-dimensional variable

inequality, regulate the value of the fourth variable to meet the four-

dimensional variable inequality ..., and finally adjust the value of i-

variables to satisfy the N-dimensional variable inequality.

 (2) “||” conjunction (“≠”conjunction is not considered).

The values are that satisfying the i-th expression accordance with the “||”

conjunction input variable generation method of the two-dimensional complex

predicate coverage

 (3) Conjunctions contain the relation symbol “≠”

Following the above two-step search algorithm, H-Fuzzing can puzzle out any

value, which satisfies the expression, and the other variable values.

In order to improve the efficiency of fuzzing data generation algorithm, H-Fuzzing

defines the following rules.

Rule 1. Maximum Iteration Times Rule: The search will terminate into failure if it

runs out of branches to select, exhausts its budget of test iterations, or uncovers no

new branches after some set number of iterations.

Rule 2. The Minimum Variable Changing Rule: If one branch prediction is

influenced by several input variables, H-Fuzzing will change the numbers of inputs as

least as possible during the fuzzing data reducing process.

Rule 3. DFS and Nearest Rule: While choosing the next execution path, H-

Fuzzing will follow the depth first order and the path nearest to the current execution

path because they have the most same code.
Algorithm “H-Fuzzing Fuzzing Procedure”

Input: P,{xinit,yinit},PIT,Almax

Output: Bug

Begin

 Execute the program P with input {xinit,yinit};

 According to the Rule 3, find the next pathi in PIT;

10: for (j= Almax;0;j--) {

 Find the Branch Point set BPi[] in pathi ;

 Find Corresponding Input fset In i[] in pathi ;

 Generate {xj,yj} according to the Relation Function Rf() in pathi ;

 Execute the program P with input {xi,yi};

 if (the path follows pathi){

 if ((Bug found) or (pathl=)) return (Bug) ; else Break; } }

 Printf(“Could find the inputs to execute s%”, pathi.path);

 find the next pathl in PIT;

 if ((pathl=)) return (0) ;

 else{ pathi= pathl; goto 10; }

End

Fig. 4. H-Fuzzing Fuzzing Procedure.

5 Experimental Evaluation

Table 1. The Key Attributes of The Tested Programs.

 Jar File Size Code Line Class Count Function Count

JLex 50 7874 21 146

SAT4J 428 19641 120 1056

JCL2 56984 3586 35 179

JLine 91183 5636 36 324

checkstyle 627333 49029 328 1982

We have implemented H-Fuzzing based on the official Java platform, viz., OpenJDK.

In this section, we will evaluate H-Fuzzing and compare it with JPF and random

fuzzing method to demonstrate its effectiveness. The testbed is equipped with an Intel

i7 920 processor, 4G RAM, Windows XP SP3 operating system, and OpenJDK

(version b71). We test five open source Java projects, exploring JLex, SAT4J, Java

Class Loader 2 (JCL2), JLine and checkstyle. Table 1 lists the key attributes of their

source code.

In our experiment, the time for each test is limited within one hour. The evaluation

makes statistic on the input file numbers and the paths covered by H-Fuzzing, JPF and

random fuzzing method. The evaluation results demonstrate that H-Fuzzing can use

fewer fuzzing iterations and testing time to reach higher test path coverage than the

other two methods.

Due to the page limitation, the static analysis results are only presented for JLex.

For the other programs, just the evaluation results (the path coverage comparisons)

are illustrated.

 JLex

JLex is a Lex file parser generator. Its input is just the path of a Lex file. The static

analysis process of H-Fuzzing analyzes 162 functions of JLex, however there are only

146 methods in its source code. This is because that some functions will be added by

the Java compiler during the compiling procedure, such as class's default constructor,

destructor and so on. The static analysis process also generates the control flow graph

and pollution spreading graph, which contains the Java intermediate language

expressions of the branch nodes dependent on the input variables. Fig. 5 is the static

decompiled results of the main function of JLex. As shown in this figure, the

statement, tagged with [3], is the branch statement dependent on the input variables.

public class JLex.Main extends java.lang.Object

{

……

 public static void main(java.lang.String[]) throws java.io.IOException

 {

 java.lang.String[] r0; JLex.CLexGen r1, $r4;

 java.lang.Error r2, $r6; int $i0;

 java.io.PrintStream $r3, $r7; java.lang.String $r5, $r8;

 [1] r0 := @parameter0;

 [2] $i0 = lengthof r0;

 [3] if $i0 >= 1 goto label0;

 [4] $r3 = java.lang.System.out;

 [5] $r3.println("Usage: JLex.Main <filename>");

 [6] return;

 [7] label0: $r4 = new JLex.CLexGen;

 [8] $r5 = r0[0];

 [9] specialinvoke $r4.<init>($r5);

 [10] r1 = $r4;

 [11] r1.generate();

 [12] label1: goto label3;

 [13] label2: $r6 := @caughtexception;

 [14] r2 = $r6;

 [15] $r7 = java.lang.System.out;

 [16] $r8 = r2.getMessage();

 [17] $r7.println($r8);

 [18] label3: return;

 [19] catch java.lang.Error from label0 to label1 with label2;

 }

}

Fig. 5. Static Decompiled Results of The Main Function of JLex.

H-Fuzzing constructs the heuristic fuzz data referring to both the control flow

graph and the static decompiled results. The static analysis shows there are 775

branch statements in its source code. Fig. 6 (a) is the evaluation results of H-Fuzzing,

JPF and random fuzzing method. The horizontal axis is the number of fuzzing

iterations. The vertical axis is the number of covered branches. When the iteration

number is over 2,100 times, the number of covered branches almost does not change.

(a) JLex (b) SAT4J

Fig. 6. Trend Graph of JLex & SAT4J Branch Coverage.

(a) JCL2 (b) JLine

(c) checkstyle

Fig. 7. Trend Graph of JCL2, JLine & checkstyle Branch Coverage

 SAT4J

SAT4J is a Java language Boolean SAT tool. Its input parameters is a set of real

numbers. 2610 functions of SAT4J are analyzed during the static analysis process.

There are 3074 branch statements in its source code. Fig. 6 (b) shows the comparison

results of H-Fuzzing, JPF and random fuzzing method. As shown in this figure, when

the iteration number exceeds 8,000 times, the number of covered branches almost

does not increase.

 JCL2

JCL2 is a configurable, dynamic and extensible custom class loader that loads java

classes directly from Jar files and other sources. There are 1356 branch statements in

JCL2 program. The comparison results are shown in Fig. 7 (a). As illustrated in this

figure, when the iteration number is more than 4,100 times, the number of covered

branches reaches a relatively stable state.

 JLine

JLine is a Java library for handling console input. It is similar in functionality to

BSD editline and GNU readline. There are 1987 branch statements in JLine program.

As shown in Fig. 7 (b), after the iteration number run overs 5,900 times, the number

of covered branches begins to keep about 1800.

 checkstyle

Checkstyle is a development tool to help programmers write Java code that adheres

to a coding standard. It automates the process of checking Java code to spare humans

of this boring task. There are 4729 branch statements in checkstyle program. Fig. 7 (c)

illustrates the comparison results of H-Fuzzing, JPF and random fuzzing method. As

demonstrated in Fig. 7 (c), after the iteration number is over 141,000 times, the

number of covered branches begins to keep about 4300.

5 Conclusion and Discussion

In this paper, we present a new method named H-Fuzzing for program fuzzing data

generation. H-Fuzzing achieves high program execution path coverage by virtue of

the the static analysis information and the program dynamic property.

In order to effectively reduce the fuzzing data set, H-Fuzzing figures out the key

branch predictions information and builds its relations with the program input

variables.

During the iterative input variable generating procedure, H-Fuzzing abstracts the

dynamic property from the tested program. Besides, H-Fuzzing introduces a series of

fuzzing data reduction rules to improve the efficiency of the fuzzing data generation

algorithm and reach a high execution path coverage rate.

H-Fuzzing has high practical value for the program security testing. In the future

study, more efforts will be involved to perfect our fuzzing method, for example,

recording and recovering the variable information if the next chosen path has the

same execution part with the previous one. In addition, we will further improve its

performance to apply it in large-scale program security testing.

References

1. Fuzz utility. ftp://grilled.cs.wisc.edu/fuzz.

2. Miller, Barton P.; Fredriksen, Lars; & So, Bryan. “An empirical study of the reliability of

UNIX utilities.” Communications of the ACM 33, 12: 32-44. (1990)

3. D. Bird and C. Munoz. Automatic Generation of Random Self-Checking Test Cases. IBM

Systems Journal, 22(3):229–245. (1983)

4. J. Offut and J. Hayes. A Semantic Model of Program Faults. In Proceedings of

International Symposium on Software Testing and Analysis (ISSTA’96), pages 195–200.

(1996)

5. J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness of Windows NT

Applications Using Random Testing. In Proceedings of the 4th USENIX Windows

System Symposium. (2000)

6. C. Csallner and Y. Smaragdakis. JCrasher: An Automatic Robustness Tester for Java.

Software: Practice and Experience, 34:1025–1050. (2004)

7. C. Pacheco and M. D. Ernst. Eclat: Automatic Generation and Classification of Test

Inputs. In Proceedings of 19th European Conference Object-Oriented Programing. (2005)

8. J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,

19(7):385–394. (1976)

9. L. Clarke. A System to Generate Test Data and Symbolically Execute Programs. IEEE

Transaction on Software Engineering, 2:215–222. (1976)

10. S. Visvanathan and N. Gupta. Generating Test Data for Functions with Pointer Inputs. In

Proceedings of 17th IEEE International Conference on Automated Software Engineering

(ICASE’02). (2002)

11. W. Visser, C. S. Pasareanu, and S. Khurshid. Test Input Generation with Java PathFinder.

In Proceedings of 2004 ACM SIGSOFT International Symposium on Software Testing

and Analysis (ISSTA’04), pages 97–107. (2004)

12. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating Test

from Counterexamples. In Proceedings of the 26th International Conference on Software

Engineering (ICSE’04), pages 326–335. (2004)

13. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A Framework for Generating

Object-Oriented Unit Tests using Symbolic Execution. In Proceedings of the 11th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’05). (2005)

14. R. Majumdar and R. Xu. Directed test generation using symbolic grammars. Foundations

of Software Engineering, pages 553–556. (2007)

15. P. Godefroid, A. Kiezun, and M. Levin. Grammar-based Whitebox Fuzzing. In

Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design

and Implementation (PLDI’08). (2008)

16. R. Majumdar and K. Sen. Hybrid concolic testing. In Proceedings of 29th International

Conference on Software Engineering (ICSE’07), pages 416–426. IEEE. (2007)

