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Abstract. Optical Burst Switching (OBS) is widely believed to be the
technology for the future core network in the Internet. Burst assembly
time at the ingress node is known to affect the traffic characteristics
and loss distribution in the core network. We propose an algorithm for
adapting the burst assembly time based on the observed loss pattern
in the network. The proposed Learning-based Burst Assembly (LBA)
algorithm uses learning automata which probe the loss in the network
periodically and change the assembly time at the ingress node to a fa-
vorable one. We use a discrete set of values for the burst assembly time
that can be selected and assign a probability to each of them. The prob-
ability of selecting an assembly time is updated depending on the loss
measured over the path using a Linear Reward-Penalty (LR−P ) scheme.
The convergence of these probabilities eventually leads to the selection
of an optimal burst assembly time that minimizes the burst loss proba-
bility (BLP) for any given traffic pattern. We present simulation results
for different types of traffic and two network topologies to demonstrate
that LBA achieves lower BLP compared to the fixed and adaptive burst
assembly mechanisms existing in the literature.

1 Introduction

Wavelength Division Multiplexing (WDM) technology has become widely pop-
ular for deployment in the core network to meet the ever-increasing demand for
bandwidth in the Internet. In WDM networks, a single fiber can support con-
current transmission of multiple wavelengths resulting in complexity of switch-
ing compared to the traditional networks. There are three important switching
paradigms in WDM networks, namely, optical circuit switching, optical packet
switching (OPS) and optical burst switching (OBS). Among these, OBS has
attracted attention of the researchers due to its advantages among the other
paradigms [1].

In an OBS network, IP packets are assembled into bursts at the ingress
node and a control burst is sent out before each data burst. The control burst
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carries necessary information about the arrival time and the duration of the
burst. Wavelengths are reserved only for the duration of the bursts. A time gap,
called offset time, is maintained between the control burst and the data burst
to enable reservation. At the egress node, the bursts are disassembled into IP
packets again. Due to the dynamic reservation mechanism bursts are dropped
without any information to the ingress node, whenever contention occurs at the
core nodes. Thus, contention becomes the main source of the losses in an OBS
network.

There are several factors responsible for contention losses in OBS networks
such as, burst assembly, scheduling algorithm, offset time and routing and wave-
length assignment algorithms. Though several solutions have been proposed for
contention resolution in OBS networks (see [2] for a survey on this work), it
is an active area for research due to inherent complexity of the problem. The
main objective of research in OBS networks is often reduction of the burst loss
probability (BLP) which is done by careful choice of mechanisms for the afore-
mentioned factors. Burst assembly time at the ingress node is an important
parameter in OBS networks that can affect the dynamics of the network. The
assembly mechanism changes the burst size, inter-arrival time, distribution of
traffic at the core node and hence the loss distribution [3].

In this work we try to reduce the BLP by a learning-based burst assembly
mechanism at the ingress node instead of the fixed assembly schemes used ear-
lier. The motivation for this work arises from the observation made in [4] that
an adaptive burst assembly algorithm that considers the variation in the traffic,
outperforms the schemes that set assembly time independent of the traffic. We
use the loss rate in the path as a feedback to learn appropriate assembly time
over the time and hence, achieve reduction in the BLP. The rest of the paper
is organized as follows. Section 2 gives some links to the work in the literature
on the burst assembly mechanisms and provides the motivation for our work.
We give a brief introduction to the theory of Learning Automata and the Lin-
ear Reward Penalty (LR−P ) scheme in Section 3. In Section 4, we propose the
Learning-based Burst Assembly (LBA) algorithm and demonstrate the improve-
ment in BLP through simulations in Section 5. Finally, we conclude the paper
in Section 6.

2 Related Work and Motivation

The impact of burst aggregation on the BLP, primarily for TCP traffic, has been
studied in the literature earlier [4], [5], [6] and it was observed that assembly
time affects the BLP as well as throughput in the network. This is primarily
because, the size of the bursts as well as their inter-arrival times at the core
node depend on the assembly mechanism used at the ingress node. The impact
of burst assembly time on the TCP throughput was studied in [7]. The existence
of an optimal burst assembly time for which the TCP throughput is maximum
was proved theoretically as well as through simulations.



Intuitively there are two ways to aggregate the bursts: either define a fixed
burst size or define a burst aggregation time. In [4], the authors studied the effect
of a time-based Fixed Assembly Period (FAP) algorithm and a combination of
size-based and time-based algorithm, called Min-Burst Length-Max-Assembly-
Period (MBMAP) algorithm on TCP traffic. Since the FAP is independent of the
traffic rate, it was found to adversely impact the network performance. Therefore,
the authors of [4] proposed an Adaptive Assembly-Period (AAP) algorithm that
can dynamically change the value of assembly period (AP) at every ingress node
according to the length of burst recently sent. It was shown that AAP is best
among the three assembly algorithms, because it matches with the TCP rate
control mechanism.

However, the AAP algorithm can be defined only for TCP traffic. It assumes
that the rate of the incoming traffic varies linearly and uses an equation to
adjust the assembly period proportional to the average burst length. The recently
arrived burst is given a higher weight while computing the assembly period, to
enable synchronization of the assembly algorithm with TCP. Such a scheme
works well mainly with a linearly increasing traffic like TCP but not with other
traffic sources like, ON/OFF, CBR or a combination of these. For non-TCP
traffic, adapting burst assembly according to the arrival rate is infeasible because,
the traffic does not follow a regular pattern. Instead of using rate of the traffic to
change the assembly time, we observe the variation in the BLP along the path
to learn the optimal assembly time. Since it was proved in [8] that any algorithm
that arrives at an optimal policy over time through exploration outperforms the
schemes based on fixed policy, we propose a learning automata-based solution
for the burst assembly.

3 Learning Automata

In a learning automata system, a finite number of actions can be performed in a
random environment. When a specific action is performed, the environment pro-
vides either a favorable or an unfavorable random feedback. The objective in the
design of the learning automata system is to determine how the previous actions
and responses should affect the choice of the current action to be taken, and to
improve or optimize some predefined objective function. A learning automaton
comprises of a learning module which learns from the feedback provided by the
environment, and a decision module that makes decisions based on the assimi-
lated knowledge of the environment. At any stage, the choice of action could be
either deterministic or stochastic. In the latter case, probabilities are maintained
for each possible action to be taken which are updated with each response from
the environment.

A learning automaton can be formally described as a triple {α, β, A}, where
α(n) is the output or action of the automaton at time instant n, β(n) is the input
to the automaton at time instant n, and A is called the updating algorithm

or the reinforcement scheme. The updating algorithm determines the α(n +
1) in terms of the network state and β(n), and could be either deterministic



or stochastic. Determining the updating algorithm for a stochastic automaton
makes for a very important design choice. The updating function can be either
linear or non-linear. Well known linear updating functions include reinforcement
schemes such as the Linear Reward-Penalty (LR−P ) scheme, the Linear Reward-
Inaction (LR−I) scheme, and the Linear Reward-ε-Penalty (LR−εP ) scheme [9].
The objective of the updating function is to enable the automaton to learn the
state of the environment based on the feedback obtained and choose the best
possible action at any point of time. It should be able to efficiently guide the
automaton to quickly adapt to the changes in the environment. The updating
function needs to be simple, and yet efficient, especially when the environment
is known to change rapidly. For a detailed description of learning automata,
readers are referred to [9] and references thereof.
The LR−P Scheme: For the burstification problem, we use the LR−P scheme [9]
to update the automaton action probabilities. When a positive response is ob-
tained for an action, its probability is increased and the probabilities of all the
other actions are decreased. If a negative feedback is received for an action, the
probability of that action is decreased and that of others is increased. For a
multi-action system with S states, the updating algorithm can be written as fol-
lows, where Pi(n) represents the probability of choosing action i at time instant
n, and a and b are the reward and penalty parameters, respectively:

– When a positive feedback is obtained for action i,

Pi(n + 1) = Pi(n) + a(1 − Pi(n))
Pj(n + 1) = (1 − a)Pj(n), j 6= i

– When a negative feedback is obtained for action i,

Pi(n + 1) = (1 − b)Pi(n)
Pj(n + 1) = b

S−1
+ (1 − b)Pj(n)), j 6= i

and similarly for all i = 1, 2, . . . , S, where 0 < a < 1, 0 ≤ b < 1. In our case,
an increased or decreased BLP are the two kinds of feedback returned to the
automaton residing on an ingress node for the action of selecting a burst assembly
time. Convergence of the S-model LR−P scheme has been discussed in detail
in [9].

4 Learning-based Burst Assembly Mechanism

Since the action selection is only made at the ingress node, the learning
automata are placed only at the edge nodes. The burst manager at the ingress
node and the learning agent comprise the decision module which decides the
assembly time to be used. For every time period T , the learning agent decides
the action to be chosen which here corresponds to selecting a burst assembly time
from a discrete set of values. The bursts for the next period are transmitted with
the selected assembly time. The BLP value for each ingress-egress pair obtained
from the acknowledgment packet is used as the feedback from the environment.



Algorithm 1 Learning-based Burst Assembly Algorithm

Let T = {t1, t2, . . . , tn} be the vector of assembly times and i be the index of the
burst assembly time chosen.
Let Pi be the probability of selecting the ith burst assembly time, Ti.
Let Pi = 1/n be the initial probabilities ∀, 1 ≤ i ≤ n .

if (loss = zero) then
Pi = Pi + a ∗ (1 − Pi)

for all Tj , 3 j 6= i
Pj = 1 − a ∗ Pj

endif

elseif (loss > zero) then
Pi = (1 − b) ∗ Pi

for all Tj , 3 j 6= i
Pj = b

n−1
+ (1 − b) ∗ Pj

endfor

endif

where a is the reward and b is the penalty.

Depending on whether the response is favorable or not (decreased/increased
BLP), the next assembly time (action) is selected. The period T for which the
assembly time is changed, is selected such that the overhead incurred in collecting
the feedback is minimized and any transient network conditions are ignored by
the agent. A low value of T increases the probe overhead and also leads to
transient conditions due to frequent changes in burst size. However, if T is set to
a large value the response to congestion is slow but the overhead is low. Hence,
T can be selected judiciously depending on the burstiness of the traffic. We
assume that the time taken to collect feedback is much smaller than the time of
adaptation. This is valid since the probe packets take negligibly small time for
transmission and processing compared to the period in which decision is made.

We assume that a set of values for burst assembly time is available at the
burst manager. Initially all the values have equal probability. The main idea in
this mechanism, is to estimate the BLP for a selected burst assembly time and
use the one with lowest BLP. Due to the LR−P updation scheme, the assembly
time corresponding to the lowest BLP has the highest probability. The estimated
BLP is initially set to a predefined value. Each node in the network maintains
the loss information for every connection (traffic request between an ingress
node and an egress node). When a burst loss occurs at the node, the local BLP
value for that flow is updated. The agent at every ingress node periodically
sends a probe packet to the egress node. The probe packet collects information
on the BLP along the path and the egress sends a negative feedback through
acknowledgment packet if the BLP is higher than a threshold.

When a burst loss occurs at the node, the local BLP value for that flow
is updated and this information is sent to the destination along with the probe
packet. When the BLP is higher than a threshold, the source gets a negative feed-
back. On receiving the BLP value, the source node updates the probability for



the corresponding burst assembly time using the LR−P scheme and accordingly
selects the assembly time for the next burst. We reserve a control wavelength for
the probe and acknowledgment packets and assume no losses in control plane.
This also avoids contention losses of control bursts. To avoid the implementation
complexity at the core node to generate a control packet, we assume that the
feedback is only sent from the egress node and the core nodes along the path
update the cumulative BLP in the probe packet.

The LBA algorithm that uses LR−P equations given in Section 3 to update
the probability associated with a value of assembly time, depending on the re-
sulting BLP is given in Algorithm 1. This problem wherein an agent selects an
action from a finite set at each time instant to optimize an objective function
over the long run is similar to the multi-armed bandit problem in the literature
of reinforcement learning [10] for which learning automata provides an optimal
solution. This is the motivation to design a learning automata-based solution for
burst assembly. Here the reward for an action (selecting a burst assembly time)
is characterized by a decreasing BLP value. So the learning automaton tries to
select the optimal burst assembly time that minimizes the BLP over a period
of time. Every time it selects an assembly time, depending on whether the BLP
increases or decreases over the next time period, the agent selects an assembly
time that minimizes BLP in the subsequent period.

5 Simulation Results

Fig. 1. NSFNET Topology. Fig. 2. USIP Backbone Topology.

In this section, we study the performance of LBA algorithm and compare
it with AAP and MBMAP algorithms for Just-Enough-Time (JET) reservation
scheme. Architectures for core node and edge node as proposed in [11] with
Latest Available Unused Channel with Void Filling (LAUC-VF) scheduler were
used. We use variation in the BLP with the network load (percentage of the
maximum load), as a measure for the performance of the algorithms. A connec-

tion wherever used means a demand generated between a pair of edge nodes at



higher layer that results in a flow of bursts for a time period between them. A set
of 20 values equally spaced between 0.1 ms and 1 ms constitute the action set.
The time period of updating assembly time was selected keeping the trade-off
between the learning rate and control overhead. We assign +10 for reward and
−10 for penalty. We use two topologies, NSFNET topology (Fig. 1) and USIP
network (Fig. 2) with 32 wavelengths per link (8 control wavelengths) in all our
simulations. All the results were obtained at 95% confidence level.
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Fig. 3. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for CBR traffic on NSFNET.
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Fig. 4. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for CBR traffic on USIPNET.
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Fig. 5. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for ON/OFF traffic on NSFNET.
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Fig. 6. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for ON/OFF traffic on USIPNET.

5.1 CBR Traffic

In this section we use several CBR connections generated randomly between
source-destination pairs each with a rate selected randomly between 1 MB and



8 MB. Fig. 3 and Fig. 4 show the variation of BLP as the load increases for
NSFNET and USIPNET, respectively. Initially when load is less there is no loss
with all the algorithms. But as the load increases, contention losses increase in
the network. We can observe that for upto 70% load LBA has a lower BLP than
AAP. However, as the load grows beyond, both LBA and AAP have the same
BLP. This is because contention losses cannot be controlled by varying the burst
assembly time beyond a certain point. At this point contention losses occur only
because of lack of wavelengths (severe congestion) and the burst size has lower
effect on the contention losses after this.

5.2 ON/OFF Traffic

We use ON/OFF traffic with Pareto distribution with shape factor 1.5. Fig. 5
and Fig. 6 compare the BLP for the three algorithms in case of NSFNET and
USIPNET, respectively as the load increases. Unlike in CBR traffic, where the
packets are sent with constant rate, packets are sent in bursty fashion at certain
times. So, even for a low load, there is contention loss in the network. However,
we can observe that LBA has lower BLP than AAP. The reason is because the
AAP algorithm is designed for TCP traffic and hence does not adapt with losses
for any other traffic pattern. Even here we can observe that AAP and MBMAP
have the same loss probability for ON/OFF traffic whereas LBA has the lowest
BLP among all the schemes.

5.3 TCP Traffic

With increasing percentage load, the variation of BLP for all the three algo-
rithms is compared in Fig. 7 and Fig. 8 for NSFNET and USIPNET topologies,
respectively. In CBR and ON/OFF traffic, loss increases as the load increases.
But, in TCP it is not the case because TCP controls the rate of flow of packets
based on the loss events. However, we can observe that LBA and AAP have
almost equal loss probabilities on an average. This shows that LBA performs
atleast as good as AAP, which was specially designed for TCP traffic. We can
observe that LBA and AAP algorithms are far better than MBMAP algorithm
for TCP traffic. Hence, we can conclude that an adaptive assembly algorithm is
essential to control the losses in an OBS network.

5.4 Mixed Traffic

In this section, the traffic is composed of all the types of traffic mentioned above
(hence called mixed traffic). Fig. 9 and Fig. 10 compare the BLP for LBA, AAP
and MBMAP with NSFNET and USIPNET, respectively. We see that LBA
algorithm outperforms the AAP algorithm significantly at higher network load.
We can observe that upto 30% load, AAP and LBA have almost equal loss
probabilities but lower than MBMAP. When the load is between 30% and 60%,
the BLP for AAP increases faster than that with LBA. Beyond that AAP cannot
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Fig. 7. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for TCP traffic on NSFNET.
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Fig. 8. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for TCP traffic on USIPNET.
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Fig. 9. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for mixed traffic on NSFNET.
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Fig. 10. Variation in the BLP for LBA,
AAP and MBMAP as the load increases
for mixed traffic on USIPNET.

control the loss and it is as good as MBMAP. But LBA is better than AAP in
spite of the higher loss rate for the mixed traffic type. In [4], the authors show
that AAP performs better than MBMAP for TCP traffic. But we can observe
from the results here that AAP and MBMAP have same loss rate for CBR and
ON/OFF traffic and that AAP is advantageous only for TCP traffic and not for
other types of traffic. Even for TCP traffic, LBA performs atleast as good as
AAP algorithm.

6 Conclusion

In this paper, we proposed a new algorithm for adaptive burst assembly for OBS
networks that use learning automata namely, Learning-based Burst Assembly
(LBA). Since it was shown in the literature that the choice of burst assembly
time affects both the throughput and the loss rates in OBS networks, we came up
with a simple scheme to learn the optimal choice of burst assembly time. Upon



convergence, the LBA algorithm learns the optimal burst assembly time for any
traffic pattern. We demonstrated through simulations on two networks topologies
that BLP is indeed reduced compared to the other adaptive assembly mechanism
(AAP algorithm) in the literature. Further, the AAP algorithm available in the
literature has advantage only for TCP traffic whereas, the LBA algorithm works
well irrespective of the type of traffic (comparable to AAP for TCP). Since
AAP algorithm uses the rate of incoming traffic to adapt the assembly time,
it is not suitable to be used for non-TCP traffic and has almost same BLP as
that of MBMAP algorithm for other traffic types. LBA algorithm performs well
independent of the traffic type and captures the explicit dependence of the BLP
on assembly time. We justified the motivation for designing a loss-aware assembly
mechanism through this work and showed the advantage of an autonomic burst
assembly algorithm.
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