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Abstract—Internet of Things (IoT) traffic will become increas-
ingly heterogeneous not only in terms of traditional metrics as
required bandwidth and maximum latency, but also in terms of
functional requirements such as compute power and temporary
storage. Sophisticated planning and engineering approaches must
be adopted by service providers to account for this heterogene-
ity, inherent in IoT applications. Metropolitan Area Networks
(MANs) are ideally suited to manage and implement resource
provisioning of heterogeneous IoT application traffic and, as
a result, possess a unique ability to conserve MAN and Wide
Area Network (WAN) bandwidth costs. We propose a novel
comprehensive MAN resource provisioning model in a hybrid
fog-cloud architecture which decouples compute and storage
functions while accounting for traffic of a set of heterogeneous
parameterized application profiles. This is intended to assist
the MAN service provider to minimize the total operational
cost of provisioning IoT traffic demands as well as provide a
framework for dynamic lightpath reallocation within the MAN.
The model demonstrates which application profile and topological
parameters have the most significant effect on the individual
cost components. As a result of the model, we demonstrate that
optimal resource provisioning, i.e. whether functions are placed in
the fog or cloud, depends heavily on application computational
complexity, compression factor, and latency budget, as well as
proportions of local and global traffic.

I. INTRODUCTION

Internet of Things (IoT) traffic is expected to consume
an increasing share of the total Internet bandwidth for the
foreseeable future. Cisco predicts more than 50 billion individ-
ual devices will be connected by 2020 [1]. Traffic generated
and consumed by these devices and networks, due to their
anticipated rapid deployment, will require more intelligent
and sophisticated network engineering and traffic provisioning
approaches in Metropolitan Area Networks (MANs). MANs
typically perform traffic distribution and aggregation (at the
distribution layer) over a traditional three-tiered hierarchical
network, between the core and access layers. With ever-
increasing and heterogeneous IoT (and machine to machine -
M2M) traffic requiring a more diverse set of network resources
under more restrictive constraints, “Smart MANs” become a
crucial network segment where complex resource-allocation
decisions should be performed to minimize the total provi-
sioning cost of heterogeneous IoT traffic. Specifically, a smart
MAN must support application, destination, and resource-
aware compute, storage, and routing solutions to accomplish
this objective.

The Central Office Re-architectured as a Data Center
(CORD) concept [2] seeks to “bring data center economies

and cloud agility to service providers for their residential, en-
terprise, and mobile customers.” It will allow COs to perform
functions similar to large data centers at a much smaller scale.
A CORD implementation in MANs would allow for an intel-
ligent hybrid fog-cloud system, facilitated by our functional
provisioning model. To maintain minimal operational cost, it
will be necessary to adjust processing and storage locations
as traffic fluctuates in application profile mixture and overall
demand on any time scale. This will necessitate lightpath
reconfiguration on a somewhat periodic basis or in response
to less predictable traffic fluidity. Reconfigurable Optical Add-
Drop Multiplexers (ROADMs) could perform this function in
response to changes in traffic demand to conserve costs and
provide enough bandwidth on each respective lightpath.

Cloud computing and storage are the catalysts that will
allow compute-intensive IoT applications to flourish. Data
center economies of scale allow large cloud service providers,
such as Google Cloud Platform [3] and Amazon Web Services
[4], to supply inexpensive compute and storage capabilities
to customers. For real-time applications, cloud computing
may become impractical, due to the significant propagation
delays of the core (backbone) network, compared to maxi-
mum latency thresholds. Thus, the recent exploration into fog
computing, which, according to [5], “extends the cloud to be
closer to the things that produce and act on IoT data.” It also
documents several goals of an IoT-focused computing model,
including, but not limited to: minimizing latency, conserving
network bandwidth, and moving data to the best place for pro-
cessing. Latency-sensitive, high-bandwidth applications, such
as augmented/virtual reality, are prime examples of when
intelligent fog-cloud resource allocation decisions would have
a significant impact on total operational costs.

Our primary contributions in this study are: a unique
application profile and how its individual parameters affect
optimal resource-provisioning solutions and the decoupling of
processing and storage functions - i.e. how profile subsets are
modeled according to the necessity of each. The rest of the
paper is organized as follows: Section II details related work,
Section III describes the application profile and hybrid MAN
topological parameters, Section IV shows the mathematical
formulation, Section V discusses simulation results and anal-
ysis, and Section VI concludes the study.

II. RELATED WORK

Recently, the technical literature is migrating from studies
describing general architectural frameworks for IoT applica-



tions will operate to modeling anticipated IoT traffic char-
acteristics and investigating resource allocation and analysis.
It is widely agreed that cloud (and eventually fog) comput-
ing and storage will enable the vast increase in usable and
archived information generated by IoT devices and networks.
A distributed cloud-computing architecture is proposed in
[6] where applications with various latency requirements are
treated according to their source location by the physically-
distributed virtual cloud. Ref. [7] puts forth a cloud-of-things
architecture which horizontally integrates heterogeneous ap-
plication domains within their respective vertical silos, i.e.,
smart city, health care, traffic monitoring, etc. via multiple
abstraction layers. A description of fog computing’s general
role in IoT is described in [8]. Ref. [9] discusses the potential
effects of mobility, reliable control and activation, and data
aggregation and analytics on fog computing. A dynamic, fog-
based resource management model is presented in [10] where
three different types of end devices - static, small mobile, and
large mobile - require different sets of resources.

Recent works have studied performance tradeoffs within
a hybrid fog-cloud environment. Ref. [11] stresses that “the
Fog complements the Cloud, does not substitute it,” and
presents a distributed fog infrastructure with Embedded Sys-
tems and Sensors and the Data Center Cloud as the bottom
and top layers, respectively. Ref. [12] presents a model of
four subsystems: LAN, Fog, WAN, and Cloud. The authors
model the power consumption-delay tradeoff; however, offered
traffic is not heterogeneous in nature, i.e., no consideration is
given to respective application requirements. A performance
comparison between a two-tier and three-tier cloud-of-things
architecture is conducted in [13], the latter outperforming the
former. The two-tier system consists of the cloud tier and
physical end devices while the three-tier system includes the
fog as the middle tier.

III. MODELING OF APPLICATION PROFILES AND
TOPOLOGICAL PARAMETERS

Our model consists of two primary components: a set of
application profiles A and a MAN topology G(N ,L) with
associated node and link attributes. This approach allows us
to understand which profile and network characteristics have
a more significant impact on the comprehensive provisioning
solution which minimizes total cost.

A. Application Profile

We divide the set of application profiles A into four subsets
such that:

A = Ap ∪ Asp ∪ As ∪ An
where Ap represents the subset of profiles requiring processing
only (cloud gaming, virtual reality), Asp the subset of those
requiring processing and storage (smart grid management
[14]), As the subset of those requiring storage only (data used
for future analytics in its original form), and An the subset of
those requiring neither processing nor storage (simple machine

TABLE I: APPLICATION PROFILE

Parameter Description Units

α Computational complexity CPU
Mbit/s

β Compression factor N/A

κ Average flow size Mbit

∆ Minimum data-availability time hrs

Θ Maximum one-way latency ms

TABLE II: TOPOLOGICAL PROPERTIES

Name Description Units

µm Unit compute cost at node m $/CPU

νf Unit storage cost at node f $/GB

Cm Computation capacity of node m CPU

Sf Storage Capacity of node f GB

Λ Unit cost MAN BW $/Mbit/s

εup Unit cost upstream WAN BW $/Mbit/s

εdown Unit cost downstream WAN BW $/Mbit/s

τm Computation time factor /CPU

P s,m
k

Total propagation delay of
kth path from s→ m

ms

T s,m
k

Total transmission delay of
kth path from s→ m

ms

Ds,m
k Total delay of kth path from s→ m ms

to machine traffic). Each individual application profile consists
of a unique combination of parameters given by Table I.

Computational complexity, α, refers to the number of CPUs,
or percentage of a single CPU, required to process 1 Mbps of
traffic of the respective application. Compression factor, β,
is the ratio of processed output traffic to pre-processed input
traffic at the processing node, which generally has the range:
0 < β ≤ 1. Average flow size, κ, represents the average
amount of data that must be processed as a single entity.
Applications that generate a large amount of data per flow
will incur a much larger processing delay as their flow size
can be several orders of magnitude greater than a single packet,
which must be processed as a single entity. Minimum data-
availability time, ∆, refers to the minimum amount of time
data of a particular application must remain accessible to a
customer (human or machine). Maximum one-way latency,
Θ, is the most constraining element of this model as a
significant proportion of next-generation application profiles.
In this model, we do not define latency as completely end
to end. For traffic with a destination in the local MAN, it
is simply the delay from the source node (where the traffic
entered the network) to the destination node, which includes
delay across the core (for cloud processing and/or storage) and
processing delay, if applicable.

B. Topological Properties

To model the general characteristics of a MAN topology
consisting of two hierarchical levels of interconnected rings,
we begin with a graph G(N ,L) where N is the set of nodes
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Fig. 1: MAN topology with cloud extension

to be included in the analysis, ranging from data center nodes
to edge nodes. Accordingly, L represents the set of all MAN
links. Analogous to the subset of application profiles, each
node in the MAN belongs to a specific subset of N such that

N = Ng ∪Nc ∪NDC
where Ng = {1, 2, ..., 16} in Fig. 1 is the set of nodes that
are ingress/source nodes, Nc = {17, 18} is the set of nodes
that, combined, act as the Core CO (interface to WAN), and
NDC = {19, 20} is the set of all data center nodes (for cloud
processing and/or storage). Other important subsets of nodes
are those which contain processing and storage capabilities,
Np and Ns, respectively. Subsets Npl and Nsl contain only
those physically located within the local MAN (excluding
DCs). Fc = {C1, C2, ..., C24} /∈ N is the set of core
nodes which are possible destinations of global traffic. Another
parameter could identify those nodes with ROADMs available.
Additionally, in older, more remote, rural networks, other
constraints would be included related to the capabilities of
installed optical equipment that can operate only at lower data
rates or shorter distances than more advanced equipment at
other locations.

Each node is characterized by a given unit compute and
storage cost (µm & νf ) and a total compute and storage
capacity (Cm & Sf ). We assign each node to specific process-
ing and storage tiers (within the hybrid architecture), which
dictate its unit costs and total capacities, depicted by subscripts
of P and S in Fig. 1, respectively. DC nodes are assigned
the smallest units costs and largest capacities, tier 4, while
each subordinate tier is assigned smaller capacities and larger
unit costs. Upstream and downstream WAN bandwidth costs,
defined by εup and εdown, respectively, are the unit costs a
backbone service provider charges for a WAN connection.
MAN bandwidth unit cost, ∆, is the approximate cost to
operate an internal MAN link. One component of the model
solution is the total amount of traffic each link would be
required to support. As each path solution is determined by its
source destination pair, and traffic demands fluctuate in short

and long-term, lightpaths can be reconfigured within the MAN
as a result of changing optimal resource allocation solutions.
This will require flexible systems, such as ROADMs, to
implement this scheme, especially in more fluid scenarios
where energy costs change throughout the day or on a longer-
term seasonal basis. We only consider propagation (P s,mk ),
transmission (T s,mk ), and processing delays, defined later, as
individual components of total latency. We assume a 25-ms
WAN delay (one-way) and a round-trip time (RTT) of 50 ms
[15], affecting residual latency budgets of global traffic. Link
transmission rates are a result of routing solutions and thus
would render the model non-linear.

IV. MATHEMATICAL FORMULATION

The objective of this resource assignment optimization
problem is to minimize the combined operational cost while
satisfying application and topological constraints. This is a
network planning problem, and we model it using an Integer
Linear Program (ILP).

A. Variable Definition

We calculated k-shortest paths with respect to total path
latency (Ds,m

k ), setting k = 4 to ensure each source node
has at least one path to each DC node through each core CO
node to provide limited path diversity to each DC. Offered
traffic from s to f of application a, processed at m is defined
as vs,ma,f . For any applications requiring storage, there is no
initially defined destination node and thus offered traffic
must be mirrored across all possible storage nodes, visually
depicted in Fig. 2. Ri,j represents the set of all admissible
paths containing link i, j.

xs,ma,f = 1 if traffic of application profile a ∈ A, of
source s ∈ Ng , is processed at node m ∈ Np, stored at node
f ∈ Ns, or both. If a ∈ As, m = f (Fig. 2d). If a ∈ Ap, f
represents the final destination, whether in the local MAN
(Fig. 2a) or in the core (Figs. 2b and 2c).
rs,ma,k,f = 1 if pre-processed or direct traffic is routed over
the kth path between node s and processing (or destination -
Figs. 2d and 2f) node m.
r′s,ma,k,f = 1 if post-processed traffic is routed over the kth path
between node m and node f . It represents post-processed
traffic where f is either the destination (Fig. 2a) or storage
node (Fig. 2e).
r′′s,m,da,k,f = 1 if post-processed traffic of source s and final
destination f , is routed over the kth path between processing
node m and core CO node d - Fig. 2b.

B. Objective Function

We define the objective function as the total resource provi-
sioning cost necessary to support the given offered traffic over
the given network topology while satisfying all application and
topological constraints. Total cost consists of the following five
components and are defined below.

Costt = Costp + Costs + Costu + Costd + Costc (1)
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Fig. 2: Flow scenarios as a function of application profile subset and destination

We now describe the mathematical formulation of each cost
component. Total processing cost is defined as:

Costp =
∑
m∈Np

µm
∑

a∈Ap∪Asp

αa
∑
s∈Ng

∑
f∈Ng∪Fc

xs,ma,f v
s,m
a,f

(2)
Eq. (2) represents all possible scenarios in which computation
is performed. Storage cost is defined in Eq. (3), where the 2nd
term is multiplied by compression factor, β (see Fig. 2e).

Costs =
∑
a∈As

∆a

∑
f∈Ns

νf
∑
s∈Ng

xs,ma,f v
s,m
a,f

+
∑
a∈Asp

βa∆a

∑
f∈Ns

νf
∑
s∈Ng

∑
m∈Np

xs,ma,f v
s,m
a,f

(3)

Eq. (4) represents total upstream WAN BW cost. First term is
visualized in Fig. 2b, second in Fig. 2c, and third in Fig. 2f.

Costu = εup

[ ∑
a∈Ap∪Asp

βa
∑
s∈Ng

∑
m∈Npl

∑
f∈NDC∪Fc

xs,ma,f v
s,m
a,f

+
∑

a∈Ap∪As∪Asp

∑
s∈Ng

∑
m∈NDC

∑
f∈Ng∪Ns∪Fc

xs,ma,f v
s,m
a,f

+
∑
a∈An

∑
s∈Ng

∑
m∈Nc

∑
f∈Fc

vs,ma,f

]
(4)

We only consider downstream traffic originally generated in
the local MAN when it is processed in the cloud and sent back
to the MAN to a destination or storage node.

Costd = εdown
∑

a∈Ap∪Asp

βa
∑
s∈Ng

∑
m∈NDC

∑
f∈Ng∪Nsl

xs,ma,f v
s,m
a,f

(5)

We now define the internal MAN link capacity costs. Eq.
(6) represents local and global traffic not requiring processing

while Eq. (7) is the amount of pre-processed traffic destined
for its processing node.

Cap1,i,j =
∑

a∈An∪As

∑
s∈Ng

[ ∑
f∈Ng∪Nsl

∑
k∈Ri,j

rs,ma,k,fv
s,m
a,f

+
∑
f∈Fc

∑
m∈Nc

∑
k∈Ri,j

rs,ma,k,fv
s,m
a,f

] (6)

Cap2,i,j =∑
a∈Ap∪Asp

∑
s∈Ng

∑
m∈Np

∑
f∈Ng∪Ns∪Fc

∑
k∈Ri,j

rs,ma,k,fv
s,m
a,f (7)

Cap3,i,j =
∑

a∈Ap∪Asp

βa
∑
s∈Ng

∑
m∈Np

∑
f∈Ng∪Ns∪Fc

[ ∑
k∈Ri,j

r′s,ma,k,f

+
∑
d∈Nc

∑
k∈Ri,j

r′′s,m,da,k,f

]
vs,ma,f

(8)

Eq. (8) includes the compression factor β, which converts pre-
processed traffic to post-processed traffic. The total internal
MAN link capacity is therefore:

Costc = Λ
∑
i,j∈Ll

∑
h

Caph,i,j (9)

where Ll is the set of local links and Λ is the unit cost per
Mbps of MAN BW. We have now defined all components of
the objective function and write the problem statement as:

min(Costt) (10)

subject to the following constraints:

C. Function Placement∑
m∈Np

xs,ma,f = 1,∀ (a ∈ Ap, s ∈ Ng, f ∈ Ng ∪ Fc) (11)∑
f∈Ns

xs,ma,f = 1,∀ (a ∈ As, s ∈ Ng,m = f) (12)∑
m∈Np

∑
f∈Ns

xs,ma,f = 1,∀ (a ∈ Asp, s ∈ Ng) (13)



Fig. 3: Itemized costs as a function of average application latency budget

Eqs. (11)-(13) dictate that only one node processes traffic
of a single application profile (a ∈ Ap) and source/destination
pair, a single storage node for each application profile (a ∈ As)
and source node, and a single node for each function for each
application profile (a ∈ Asp) and source node.

D. Compute Capacity
The following equation restricts total computation per-

formed at each node m ∈ Np:∑
a∈Ap∪Asp

αa
∑
s∈Ng

∑
f∈Ng∪Ns∪Fc

xs,ma,f v
s,m
a,f ≤ Cm,∀m ∈ Np

(14)

E. Storage Capacity
Storage capacity of each storage-capable node is defined in

Eq. (15). If processed data is stored (2nd term), initial offered
traffic must also be multiplied by compression factor, β:∑

a∈As

∆a

∑
s∈Ng

xs,ma,f v
s,m
a,f

+
∑
a∈Asp

βa∆a

∑
s∈Ng

∑
m∈Np

xs,ma,f v
s,m
a,f ≤ Sf , ∀f ∈ Ns

(15)

F. Solenoidality
Eqs. (16)-(18) dictate unsplittable traffic on all paths be-

tween any combination of source, destination, processing, and
storage nodes, flow scenarios of which are shown in Fig. 2.∑

k∈Ri,j

rs,ma,k,f = xs,ma,f ,

∀(a ∈ Ap ∪ Asp ∪ As, s ∈ Ng,m ∈ Np,
f ∈ Ng ∪Ns ∪ Fc)

(16)

∑
k∈Ri,j

r′s,ma,k,f = xs,ma,f ,

∀(a ∈ Ap ∪ Asp, s ∈ Ng,m ∈ Np, f ∈ Ng ∪Ns)
(17)

∑
m∈Nc

∑
k∈Ri,j

r′′s,m,da,k,f = xs,ma,f ,

∀(a ∈ Ap, s ∈ Ng, f ∈ Fc)
(18)

G. Latency

To formulate latency constraints, we must first define a
secondary variable, indicating the average processing delay
at node m of application a, γa,m:

γa,m = αaκaτm (19)

We approximate delay as a combination of computational
complexity and average flow size of application a as well as
the computation factor of node m, which is normalized to tier
four data center nodes (τ19, τ20 = 1).∑

k∈Ri,j

rs,ma,k,fD
s,m
k ≤ θa,f ,∀(a ∈ An ∪ As, s ∈ Ng,

m ∈ Nl ∪Ns, f ∈ Ng ∪Ns ∪ Fc)
(20)

In Eq. (20), no processing is required and f ∈ N , Θa = θa,f .∑
k∈Ri,j

rs,ma,k,fD
s,m
k + γa,m +

∑
k

r′s,ma,k,fD
m,f
k ≤ θa,f,m,

∀(a ∈ Ap ∪ Asp, s ∈ Ng,m ∈ Np, f ∈ Ng ∪Ns)
(21)

Eq. (21) accounts for total delay of the pre-processed data path,
processing delay, and processed data path, whether destined
for a storage node (Fig. 2e) or a local destination (Fig. 2a).∑
k∈Ri,j

rs,ma,k,fD
s,m
k + γa,m +

∑
k

r′′s,m,da,k,f Dm,d
k ≤ θa,f ,

∀(a ∈ Ap, s ∈ Ng,m ∈ Np, d ∈ Nc, f ∈ Fc)
(22)

Eq. (22) where f ∈ Fc, Θa,f = θa − 25 ms accounts for the
average one-way WAN delay, as shown in Fig. 2b.

V. SIMULATION AND RESULTS

We used PuLP to generate the LP model, written in Python
3.4. Offered traffic is distributed uniformly across all source
nodes (s ∈ Ng) and all local (f ∈ Ng) and global (f ∈ Fc)
destination nodes, the sum total of which is only 100 Gbps
in all plots (thus the small total cost). Any traffic requiring
storage is automatically classified as local as it does not have
a destination outside of the local MAN and either data center.

Fig. 3 shows the effect of application’s latency when com-
paring those with low and high complexities. Most interesting
here is that, under more restrictive latencies, processing delay
of higher-complexity applications demand more of the overall
budget which results in computation restricted to the fog. As
latency increases, processing delay demands less of overall
latency and higher-complexity applications can be shifted to
the cloud to reduce costs.

Fig. 4 depicts the effect average compression factor has
on provisioning solutions, to a greater extent with global as
compared to local traffic. Fig. 4a shows how the decoupling
of processing and storage is an advantage as computation can
remain in the fog while a much smaller volume of traffic is
transmitted over the WAN and stored in the cloud at lower
cost. MAN BW and cloud processing requirements increase
at a higher rate with increasing compression factor at lower
complexities as computation is a smaller proportion of total
cost. Global traffic of applications with low computational



(a) Local traffic (b) Global traffic

Fig. 4: Comparison of effect of compression factor on itemized costs with primarily (a) local and (b) global traffic.

complexity and low compression factor in Fig. 4b are pro-
cessed in the fog as WAN BW cost savings overcome higher
computational cost, aiding in minimizing the total traffic sent
over the WAN. Naturally, processing of both high and low
complexity applications shift toward the cloud exclusively as
cost savings of a smaller volume of post-processed traffic sent
over the WAN diminishes with increasing compression factor.
MAN BW also increase at a higher rate with low complexity
than high complexity, as with local traffic.

VI. CONCLUSION

In this study, we divided IoT-specific application profiles
into four primary subsets that have various functional and
performance requirements and developed an ILP model which
determines optimal functional location. We also demonstrated
how specific application profile parameters affect individual
MAN operating costs in a hybrid fog-cloud architecture. We
have briefly discussed how the optical layer would be affected
by our model, specifically in lightpath reconfiguration in short
and long-term scenarios. Adjusting lightpath configuration is
required by a newly computed optimal resource allocation
solution which minimizes operational costs in response to
constantly changing traffic demands, implemented within the
CORD architecture. This would allow the necessary flexibility
for MANs to adapt to unpredictable changes in traffic volume
and characteristics. In future work, we will quantitatively show
how, and in what circumstances, MAN bandwidth is affected
by traffic growth, especially that which is nonuniform in
source destination pair as well as application profile.
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