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Abstract—This article overviews the uses and applications of
classical Machine Learning techniques in a variety of network
problems. We first overview the basics of statistical learning,
including the main algorithms and methodologies involved in
the process of designing good Machine Learning models. The
second part addresses a number of network use cases where ML
can be used to complement and extend existing network models
and algorithms, including the classical Routing and Wavelength
Assignment (RWA) problem and fiber access delay modelling.

Index Terms—Machine Learning; Communication Networks;
Simulated data; Passive Optical Networks; Routing and Wave-
length Allocation.

I. INTRODUCTION

We live in a digital interconnected society which generates
tons of data continuously with our mobile phones and com-
puters. According to [1], in 2016 it was estimated that 90% of
the data has been generated in the previous two years only, at
a rate of 2.5 quintillion bytes per day. Many companies have
realised that raw data can be stored and processed at low cost,
and that modern Big Data technologies can extract value from
it.

Big Data comprises the ability to manipulate large volumes
of data and extract the fifth V out of it: Value. In reality
the challenges of Big Data comprises the four Vs: Volume,
Velocity, Variety and Veracity. Big Data is often split into two
main branches of research: Technologies and Analytics. The
former is mostly focused on the technologies and mechanisms
to efficiently store and process large datasets (the ”muscle”),
while the latter is in charge of extracting the value and (often
hidden) patterns from such data. Data analytics comprises a
wide range of statistical and mathematical tools like Data
Mining, Statistical Inference, Machine Learning, Artificial
Intelligence and Knowledge-Discovery from data.

Recently, Machine Learning (ML) and Artificial Intelligence
(AI) techniques have arrived at the optical communications
arena, promising to reduce the complexity of network op-
erations and management. AI/ML together with the rise of
Software Defined Networking (SDN) open a wide range of
possibilities towards the automation of network operations,
including network performance monitoring and troubleshoot-
ing, even promising some sort of plug-and-play or zero-touch
network operations [2], [3].

The number of applications of AI/ML in the context of
computer networks and optical communications are starting to
appear [4]. Examples of applications include network traffic

prediction to later optimize resource allocation [5], quality of
transmission (QoT) prediction of lightpaths [6] or solving the
classical Routing and Wavelength Assignment (RWA) using
a trained ML model from past RWA configuration data [7].
The reader is referred to [8]–[10] for a wide overview of
applications of ML/AI techniques in the context of computer
and communication networks.

In this article, we first overview the main theoretical founda-
tions of supervised ML techniques, covering the whole process
of training, validating and testing models, finding the right
model for each problem and over viewing the main ML models
available in the literature for experimentation with networking
datasets. Finally, we show two use cases where classical
Supervised Learning techniques can provide a performance
increase with respect to other conventional approaches.

II. OVERVIEW OF SUPERVISED ML TECHNIQUES

A. Steps and methodology
Every data-science project starts with a question of interest

or hypothesis which you are interested in quantitatively answer
based and supported on data. After this, the next step is to
collect the appropriate data that may have the answer your
question.

Good quality data is critical, and it often occurs that a
dataset cannot answer your initial hypothesis/question, even
with the best ML algorithm available in the state of the
art. If that is the case, you probably need to reformulate
your question or collect new data, both long and wide (more
samples and more features).

Once good quality data has been collected, the next step in
the classical data science methodology process is to write some
code to produce some visualisations on attempts to get some
understanding on the data variables and their relationships.

The last stage before modelling is to prepare the dataset by
cleaning missing values, normalising the data (using z-score
or others) or create extra dummy variables from original ones.

Once the whole dataset is clean and ready for processing,
one can start building models. The first stage requires to divide
the whole dataset into a training set (typically 80% of the total
data) and a test set (remaining 20%). The training set will be
used to build a model while the test set will be used to evaluate
its quality or goodness of fit on unseen data.

Once a preliminar model is obtained, next step is about
its fine tuning. Model fine tuning is expected to improve the
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model’s quality by (1) optimally adjusting its hyperparameters
(via cross-validation) to avoid overfitting and underfitting,
and/or (2) reducing superfluous variables (feature selection,
PCA, etc) to further enhance the model’s performance metrics
(accuracy, recall, F-score, AUC-ROC, etc).

B. Learning from data: Supervised vs Unsupervised ML

There are two main sets of Machine Learning techniques:
Supervised and Unsupervised Learning.

The former are tools to build statistical models ca-
pable of estimating some output variable from an in-
put dataset, i.e. learning from (labeled) example pairs:
(X1, y1), (X2, y2), . . . , (XN , yN ). When the output labels yi
are continuous, the supervised learning problem is often called
regression; if y is discrete, the problem at hand is a classifi-
cation task.

In unsupervised learning, there is no output y, only input
unlabelled samples X1, X2, . . . , XN , and the goal is to learn
relationships, properties, patterns and structure from the data
samples. Examples of unsupervised algorithms include mainly
clustering techniques, like k-means, hiearchical clustering, etc.

In the rest of the paper, we shall focus on supervising
learning techniques.

C. Problem statement: Learning from data

In Supervised Machine Learning, the data scientist is often
given a dataset with N data sample pairs {(Xi, yi)}Ni=1. Each
sample pair (Xi, yi) comprises:

• P features or predictors per sample: (Xi1, Xi2, . . .XiP )
• One objective variable y (the label), either continuous or

discrete.
In general, the first goal is to understand the relationships
between the predictors (X1, X2, . . . , XP ) and the label y,
for instance, answering questions like which are the most
important/relevant features or the relationships between them.
The second goal is to also build a model that captures such
patterns and relationships, and can accurately predict the
output label y from a given non-seen data observation X . In
other words, the model should be able to generalize to unseen
observations, that is the key idea of learning.

In mathematical terms, this idea of building a model results
in a mathematical function f constructed by a particular ML
technique making use of the training dataset only, as follows:

y = f(X1, X2, . . . , XP ) + e (1)

Here, f represents the information provided from X to y,
and e represents the error which accounts for what X cannot
explain about y.

D. Types of ML models

As previously stated, function f must capture the main
patterns from the data, not necessarily has to be a perfect
match of the data.

Each ML model constructs function f in a different way, but
all of them seek to minimize some error e or penalty between

the predicted value f(X) and the real target value y for the
training set.

The amount of ML models available is vast. A survey
conducted in 2016 in KD Nuggets1, revealed the top-10 most
popular ML algorithms that every ML engineer need to know:

• Regression
• Clustering
• Decision Trees
• K-Nearest Neighbors
• Principal Component Analysis
• Random Forests
• Time-Series analysis
• Text Mining
• Support Vector Machines
• Ensemble Methods
Essentially, there is not a best model that suits every

problem, this is often referred to as the no-free lunch (NFL)
theorem of ML. Instead each model has its pros and cons,
and it is often a good idea to try several models. In addition,
some models are mostly intended for inference, i.e. seeking
to understand the relationships between the predictors X and
the label y (linear models and decision trees), while others
are mostly focused on maximising accuracy and prediction
(Support Vector Machines, Random Forests, Deep Neural
Networks, etc).

The former set of models are often simple and interpretable
parametric models that are especially well-suited when work-
ing with little data. The later type of algorithms use complex
non-parametric models that act as a black-box, typically pro-
viding high prediction accuracy and recall but offering little
interpretability; in addition such complex black-box models
often require a lot more data to fit their parameters and produce
successful results than simpler ones.

Is it good to have a complex model? In general, a model
must be complex enough to capture the patterns (often non-
linear) within the data, but not too complex since it may end
up overfitting the data, i.e. the model matches the training
data, but is not capable of generalising to new unobserved
data samples.

In general, following the Occam’s razor principle, under
the assumption that two models have similar performance, a
shorter explanation (simpler model) for observed data should
be favored over a lengthier explanation.

E. ML models and techniques
Linear Models are simple but very powerful, both suitable

for classification and regression. They assume a linear rela-
tionship between the label y and the predictors X1, . . . , XP :

y = β0 +
P∑

j=1

βjXj

where the coefficients βj are the model’s parameters. The βj

parameters tell us the relationship between each predictor Xj

1See https://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-
engineers.html, last access Jan 2020



and the label y, thus providing a means to understand their
impact on the model with the so-called p-values.

Decision/Regression Trees separate the input space X into
J non-overlapped regions R1, . . . , RJ which minimise some
error function. There exist multiple algorithms to build De-
cision Trees, but the most popular ones are CART, C5.0 and
ID3. These models are non-linear but offer interpretability, so
they are a often a good comprimise between simple linear
models and complex black box ones.

Random Forests are ensemble methods that combine mul-
tiple decision trees trained on different subsets of the training
dataset. They are very powerful in terms of prediction accuracy
and recall but highly black-box like.

Support Vector Machines (SVMs) build a hyperplane in a
multi-dimensional space for separating the classes in a classifi-
cation task. This hyperplane is constructed by maximising the
separation margin between the classes. Thanks to the Kernels,
a classification problem, which may not be linearly separable
in the original space, is then transformed into a linearly
separable problem in a higher-dimensional space. SVMs are
also applicable to regression problems.

Finally, Artificial Neural Networks (ANNs) resemble bi-
ological neural networks by interconnecting several layers
of nodes (neurons) interconnected with weights (synapses).
Thanks to backpropagation, the weights at each neuron are
adjusted to minimise some classification/regression error func-
tion. ANNs are well known to be universal function approxi-
mators.

Recently Deep Neural Networks (DNN) and its flavors
(CNN, RNN, etc) have been proposed in the literature, show-
ing outstanding performance in different areas like computer
vision, speech recognition, natural language processing, etc.
DNNs are essentially a variant of ANN with several hidden
layers, and novel features like Rectifier Linear Unit (ReLU)
activation functions (instead of classical sigmoid ones) and
dropout strategies to mitigate overfitting.

With such an over-abundance of ML models, which one
to choose? In conclusion, all types of models has pros and
cons, and it is often a good idea to start with simple models
to get a feeling of the relevant parameters and patterns before
moving towards more sophisticated ones. Good reading texts
regarding ML principles and models can be found in [11]–
[13]. Finally, most popular software libraries with lots of ML
models available to practitioners are Python’s scikit-learn2 and
R’s caret3, along with Google’s Tensorflow4 and Microsoft
Azure ML5.

F. Model evaluation and fine-tuning
As previously stated, the ML model f constructed from the

training dataset is not intended to be an exact match of the
data, but instead it is expected to be capable of generalising

2Scikit-learn, https://scikit-learn.org/stable, last access Jan 2020.
3The caret package, http://topepo.github.io/caret/index.html, last access Jan

2020.
4TensorFlow website, https://tensorflow.org, last access Jan 2020.
5Microsoft Azure ML, https://studio.azureml.net/, last access Jan 2020.

the patterns beneath the data. Such a generalisation capability
is measured by testing the model f on the test set and not
only on the training set. In other words, the idea is to check
whether or not the model is valid and performs well on unseen
data.

There are a number of metrics to evaluate the goodness of
fit of a given model; the most popular ones are the coefficient
of determination R2 for regression and Precision, Recall and
F-score for classification. These metrics need to be computed
for the train and test dataset separately and compared. In that
case, three situations may occur:

• Underfitting: Both training and test accuracy are low. In
this case, the model is either too simple or the data fea-
tures/predictors (X1, . . . , XP ) do not have a prediction
power for modelling the label y (the dataset needs to be
increased widewise).

• Overfitting: High accuracy in training but low perfor-
mance in the test set. The model learns the training set
but is not capable of generalising to new data samples. In
this case, the model needs to be fine tuned and/or more
data samples are need (increase the dataset lengthwise).

• Good fitting: High accuracy on both the training and test
datasets. Typically, the training accuracy is slightly higher
than the test accuracy one.

Finding a good fitting model often requires several steps of
trial and error with different ML models and the fine tuning
of their hyper-parameters. Essentially, fine tuning of hyper-
parameters is conducted using cross-validation techniques.

Cross-Validation (CV) extends the idea of splitting the
dataset into train/test sets, and is the best way to estimate
the test error of a model, its generalisation capability, its most
important predictors and the best hyper-parameters of a model.

In CV, the dataset is split into K chunks of equal size (K
= 5 or 10 typically, i.e. 5-fold or 10-fold cross-validation).
Then, the model is trained with K − 1 folds or chunks and
tested on the remaining one. This process is repeated K times,
holding out one chunk at a time. Train and test errors are
studied for all K train/test data splits to evaluate if the model
is suffering from overfitting/underfitting, or to select the best
input predictors or model’s hyper-parameters.

III. TWO OPTICAL NETWORKING USE CASES OF ML WITH
SIMULATED DATA

When real datasets are not available or hard to collect,
simulated data con provide a good source to build accurate
models. The next sections provide a number of examples in
this direction.

A. Classification use case: Learning RWA configurations
In our previous work in [7], [14], we used ML models to

solve the Routing and Wavelength Allocation (RWA) problem
in a faster way than the ILP or a heuristic algorithm.

Essentially, the RWA problem is transformed into an ML-
based multi-class classification problem, where the RWA so-
lution is provided by a classifier in response to a given input
traffic matrix. Essentially, an ML algorithm is trained with a



dataset optimally labelled after solving the ILP for a number
of input traffic matrices and needs to decide for an optimal
RWC upon a traffic matrix input.

The idea is the following: the network simulator
Net2Plan [15], [16] is fed with a 48,096 different real traffic
demand matrices and executed to solve the optimal RWA
problem using the well-known ILP formulation. These traffic
matrices comprise real traffic measurements collected during
six months with a 5 minute granularity in 2004 on the
Abilene network topology of Fig. 1. These data are publicaly
available6. In such scenario, the ILP formulation takes approxi-
mately 1-2 seconds to produce the optimal RWA configuration.
On this network topology and input traffic matrices, the ILP
generates approximately 1,500 different RWC classes, thus
providing the correct labels to be used in a supervised ML
algorithm.

Fig. 1. Abilene network topology, figure from SNDLib.

A Deep Neural Network (DNN) model has been selected
as candidate ML model. In particular, our DNN configuration
comprises six fully connected layers, with dropout in the
first and fourth layers and l2 regularization in the third and
fifth layers. Activation is performed using the well-known
rectified linear unit (ReLU) and hyperbolic tangent (tanh)
functions. The optimization process for the training phase
has been performed using Tensorflow’s Stochastic Gradient
Descent (SGD) aiming at minimizing softmax cross-entropy
as the classification loss function. Specifically, the network
performs 16,000 training steps (each step uses 400 training
samples as batch size) with a learning rate of 0.02. This DNN
architecture has been trained and tested with the ABILENE
dataset, leading to the results of Table I.

The results show that the trained DNN provides a feasible
class in about 95% of the cases or above (i.e. a feasible
RWC is that which satisfies the RWA constraints, although it
may not optimize the fitness function of the ILP), and further
provides a balance precision/recall tradeoff (i.e. F-score) of
about 0.7 and above. In addition, the resulting network metrics
after solving the RWA problem using our trained DNN shows
network related metrics (link load, hop count and wavelength-
link resources) very similar to those provided by the ILP
solutions.

6SNDLib public repository, available at http://sndlib.zib.de/, last access
March 2020.

Alg Fscore Fscore link hop Feasibility
train test load count test

Dataset 1: 20 lambdas at 400Gb/s; 1470 RWC classes
ILP - - 0.025 2.64 100%

DNN 0.886 0.884 0.025 2.64 97.77%
Dataset 2: 40 lambdas at 100Gb/s; 1775 RWC classes

ILP - - 0.06 3.06 100%
DNN 0.748 0.712 0.06 3.05 94.65%

TABLE I
RWA AS A MULTI-CLASS CLASSIFICATION TASK: RESULTS

In addition, once the DNN is trained, which takes around
15 minutes, the time taken to query the DNN for the optical
RWA config is about 10 ms (solving the ILP from scratch
requires 1-2 seconds). In this sense, a DNN can be trained
offline with real data and then can solve the RWA problem in
two orders of magnitude smaller than the ILP. In fact, running
a heuristic to solve the same problem requires 200 ms, one
order of magnitude larger than a well-trained DNN.

B. Regression use case: Learning PON delay models
Previous work [17]–[20] have found closed-form equations

for the average delay experienced by packets in the upstream
channel of a Passive Optical Network (PON) employing the
classical IPACT Dynamic Bandwidth Allocation (DBA) algo-
rithm [21]. Although the equation for the average delay is well
known and quite accurate to the simulations, there is no closed-
form solution for other interesting delay-based performance
metrics like delay percentiles, i.e. the delay experienced by
a percentage of packets. Delay percentiles are of paramount
importance in evaluating the suitability of PONs for certain
types of traffic, like real-time (i.e. video, etc) or C-RAN based
fronthaul traffic like CPRI [22]–[27].

In this light, finding models that can accurately characterise,
for instance, the 99th delay percentile (i.e. the maximum
delay threshold such that 99% of the packets suffer a delay
below that threshold) are of interest in the design of certain
scenarios [28]. In this light, we have simulated a 1 Gb/s
EPON with 16 ONUs, 20 km distance between ONU-OLT
and different traffic loads, and further collected the resulting
simulated packet delay data. From this dataset, we can obtain
different packet delay percentiles and use a non-linear regres-
sion model to accurately characterise packet delay percentiles
with a closed-form equation derived from data.

As shown in Fig. 2, the ML model derived from the
simulated 90th percentile packet delay data is visually very
accurate (with coefficient of determination R2 = 0.99, 1 is
the maximum). The ML model finds the best values of the
betaj parameters from the data in the following equation:

Delay perc =
β1 + β2ρ

β3 + ρ
+ β4 (2)

as a function of network load ρ.
The different βj parameters have been fit from the simulated

dataset using library nls from open-source R programming
language. Table II shows the βj coefficients for the 90% and
99% delay percentiles, along with the R2 metric.
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Fig. 2. 90th delay percentile: simulation and ML regression model.

Metric Model β1 β2 β3 β4 R2

90th delay ML model 374 243 1.05 12 99.8%
99th delay ML model 386 349 1.05 12 99.8%

TABLE II
PARAMETER FIT: AVERAGE DELAY AND PERCENTILES (βj VALUES IN µs)

IV. SUMMARY AND CONCLUSIONS

This article has overviewed the fundamentals of supervised
Machine Learning and their applications in building models
in different scenarios of optical networks. Indeed ML models
provide powerful methods to build models from data, either
real or simulated when this is not possible. In particular, two
classical applications in Routing and Wavelength Assignment
in core networks (classification task) and delay modelling for
Passive Optical Networks (regression task) have been shown.
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