
Deploying PolKA Source Routing in P4 Switches
(Invited Paper)

Cristina Dominicini, Rafael Guimarães, Diego Mafioletti, Magnos Martinello, Moises R. N. Ribeiro,
Rodolfo Villaça, Frédéric Loui, Jordi Ortiz, Frank Slyne, Marco Ruffini, and Eoin Kenny

Abstract—One great challenge of modern networks is how
to select paths and react to highly variable and demanding
traffic patterns. In recent years, emerging networking languages
and architectures, such as P4/PISA, have created unprecedented
opportunities for rapidly prototyping disruptive solutions in
programmable data planes. In this direction, source routing (SR)
is a prominent alternative to conventional table-based routing,
since it reduces the convergence time of building distributed
routing tables. In particular, PolKA explores the polynomial
residue number system (RNS) for a fully stateless SR, i.e., no state
update on packet headers needs to be conveyed along the route.
This paper reports the deployment of PolKA in a continental
testbed composed of P4 programmable switches. Results for
end-to-end throughput and forwarding latency show that PolKA
matches the data plane performance of traditional approaches,
while paving the way for further innovative applications by
exploring RNS properties in dynamic scenarios.

I. INTRODUCTION

In recent years, the advances in software defined networking
(SDN) have enabled the emergence of programmable network
devices that allow the packet processing behaviour in the data
plane to be reconfigured on the fly in a systematic fashion [1].
This unleashed the development of custom protocols for the
next generation of network applications.

To ensure maximum performance and resiliency of these
network applications, traffic engineering should be able to
select among all possible paths in the underlay network ac-
cording to dynamic demands [2]. However, traditional routing
approaches are limited by the size of forwarding tables and
restrict the number of paths that can be represented. Moreover,
as modern traffic engineering is based on logically centralised
decision making for path selection (e.g., MPLS and SDN),
novel routing proposals have the potential to reduce the
management burden of building up distributed routing tables.

In this context, the source routing (SR) paradigm has been
gaining momentum [3], [2], [4]. In SR, the responsibility of
defining the route belongs to the source of packets (or edge
nodes), which can specify all the elements of the path. Then,
the route can be inserted in the packet header, and used by each
node to define the output port, without executing table lookup
or communicating with controllers. Thus, it reduces control
signalling and latency for path setup as well as exploits all
existing paths to achieve maximum throughput [2].

Cristina Dominicini, Rafael Guimarães, Diego Mafioletti are with Federal
Institute of Espı́rito Santo; Magnos Martinello, Moises Ribeiro, and Rodolfo
Villaça are with Federal University of Espı́rito Santo; Frédéric Loui is with
RENATER; Jordi Ortiz is with University of Murcia; Frank Slyne and Marco
Ruffini are with Trinity College Dublin; and Eoin Kenny is with HEAnet.

In particular, some SR solutions explore the Residue Num-
ber System (RNS) [5], where the output port is given by the
remainder of the division (i.e., a modulo operation) of a route
label by the node identifier [5]. A fundamental property of this
approach is a fully stateless forwarding without any header
modification [6]. However, the modulo operation with non-
constant operands is not supported by current programmable
switches. To solve this problem, in a previous work, the
authors proposed PolKA [6], a RNS-based SR scheme that
replaces the integer arithmetic used by the original scheme
[5] with the binary polynomial arithmetic (Galois field (GF) of
order 2 or GF(2) [7]). The immediate benefit was to enable the
reuse of commodity network functions based on polynomial
arithmetic. In fact, PolKA proposed to explore the Cyclic
Redundancy Check (CRC) hardware to execute the modulo,
and evaluated it in an emulated environment.

In this paper, we propose an implementation that suits com-
mercial programmable switches to prove PolKA’s effectiveness
in a real-world environment. The contributions are: (i) we im-
plement PolKA using the P4 language in the high-performance
switching ASIC Tofino [8]; (ii) we discuss the potential appli-
cations and some deployment guidelines; and (iii) we deploy
our implementation in the continental RARE/GÉANT P4 Lab
testbed [9] and conduct the first hardware-based comparison
of PolKA with traditional approaches.

This paper is structured as follows. Section II discusses the
background, the potential applications, and the deployment
guidelines, followed by the evaluation of the prototype in
Section III. Finally, Section IV discusses our conclusions.

II. POLKA SR

PolKA [6] is a RNS-based SR scheme that explores the
Chinese remainder theorem (CRT) for polynomials [7]. As
shown in Fig. 1, the architecture is composed of: (i) edge
nodes, (ii) core nodes, and (iii) an SDN Controller, responsible
for configuring the nodes. The SR relies on three polynomials
over GF(2): (i) nodeID: a fixed identifier assigned to core
nodes by the Controller in a network configuration phase; (ii)
portID: an identifier assigned to the output ports of each core
node; and (iii) routeID: a route identifier, calculated by the
Controller and embedded into the packets by the edge nodes.

Let S = ts1ptq, s2ptq, . . . , sN ptqu be the multiset of the
irreducible polynomials representing the nodeIDs of the nodes
in a given path, and O = to1ptq, o2ptq, . . . , oN ptqu be the
multiset of N polynomials, where oiptq represents the output
port for the packet at the core node siptq, for i “ 1, 2, . . . N ,

978-3-903176-33-1 © 2021 IFIP



Edge Edge

SRC DST

11 111 1011

CONTROLLER

Core Fabric

10 1101

001 010
011

100

101110
111

000

0

1

011 100
101

110
111000

001

010
00 01

10
110 1

10000

Fig. 1. Example of PolKA SR.

satisfying the condition that degpsiq ą degpoiq. For instance,
if oiptq “ 1 ¨ t2 ` 1 ¨ t, it maps the port 110 (or label 6).

Using the polynomial CRT, the Controller calculates the
routeID as the polynomial Rptq that satisfies the condition
Rptq ” oiptq pmod siptqq, for i “ 1, 2, ..., N , where [6]:
Rptq “ă R̃ptq ąMptq, R̃ptq “

řN
i“1 oiptq ¨miptq ¨ niptq,

Mptq “
śN

i“1 siptq, niptq ¨ miptq ” 1 pmod siptqq, and
miptq “Mptq{siptq. The Controller may proactively compute
Rptq or calculate it when the first packet of a flow arrives, with
an algorithm complexity of O

`

lenpMq2
˘

[7]. On the other
hand, core nodes only execute a remainder of the euclidean
division of the routeID by its nodeID: oiptq = ă Rptq ąsiptq

Fig. 1 shows an example of PolKA SR for a path composed
of three nodes, which received their nodeIDs from the Con-
troller: s1ptq “ t ` 1 (or 11), s2ptq “ t2 ` t ` 1 (or 111),
s3ptq “ t3 ` t ` 1 (or 1011). For this path, the portIDs are:
o1ptq “ 1, o2ptq “ t (or 10), o3ptq “ t2 ` t (or 110). The
routeID calculated by the Controller is Rptq “ t4 (or 10000)
[6]. Thus, each node can calculate the portID using a modulo
operation. For example: at s3, o3ptq = ă 10000 ą1011“ 110.

A. Properties and Applications

SR presents several advantages over table-based methods,
such as: fast path configuration, optimised network usage,
smaller control overhead, and reduced TCAM usage [2]. List-
based SR (LSR), a traditional way for executing SR, represents
the routeID as a list of ports or addresses and the forwarding
operation as a pop [3], [4]. Nevertheless, RNS-based SR
presents additional properties, not present in LSR, such as:

1) Forwarding without header modification: The forward-
ing is the direct result of the modulo operation. In contrast,
LSR rewrites the route label to update the position in the list.

2) The node order is irrelevant to derive the routeID: In the
CRT, data from each node (nodeID and portID) belongs to its
own addend of the summation and does not influence the other
summation addends, as the finite summation is commutative.

3) The path information is not transmitted in the clear:
To derive the output port, it is necessary to know both the
routeID of the packet and the nodeID of the node.

Therefore, RNS-based SR can explore these properties to
provide innovative networking functionalities, such as: (i)
convergent switches in scenarios where header modification
can be hardly implementable (e.g., all-optical switches) [5];
(ii) intrinsic fast failure recovery by adding redundant nodes
in the routeID [10], [11]; (iii) agile path reconfiguration [12],
and traffic differentiation with Quality of Service (QoS) [13];
(iv) simultaneous operation with table-based forwarding in a
hybrid approach to save TCAM for specific flows; (v) multi-
domain Service Function Chaining (SFC), by using gateways

that rewrite the SFC labels across domains [12]; (vi) multipath
routing by extending the original scheme, if the coefficients
of oiptq are used to represent the transmitting state of the
ports; (vii) hardware synthesis with reduced costs and Network
on Chip by exploring the polynomial arithmetic in hardware
description languages [14]; (viii) systems based on Chaum’s
Mix-Net design [15] could be implemented by PolKA nodes
to support onion routing and anonymity; (ix) since the header
does not change throughout the path, the source can sign
the routeID to provide route authenticity; and (x) modern
homomorphic encryption systems with RNS [16] by using
PolKA nodes to natively implement RNS operations.

B. Data Plane Deployment

In our implementation, we inserted the PolKA header be-
tween the Ethernet and IP headers. For simple SR, the header
includes only a routeID field, but it can be extended to include
extra fields for QoS [13], SFC [12] and resilience [11]. The
length of these headers depend on [6], [12]: the number of
nodes, the number of ports, the network diameter, the number
of chain segments, and the number of traffic classes. PolKA
can be deployed in P4 switches [8], and explores a technique
that executes the polynomial modulo by using two SHIFT,
one CRC, and two XOR operations [6]. The Tofino Native
Architecture (TNA) supports CRC operations with custom
polynomials of degree up to 32 [8].

C. Control Plane Deployment

The Controller assigns unique nodeIDs to each core node
in a network configuration phase. It calculates the irreducible
polynomials for the nodeIDs, ensuring they support the num-
ber of ports: (degpsiq ě rlog2pnportsqs). When a new flow
reaches an edge switch (or proactively), the Controller calcu-
lates the routeID to define an end-to-end path across the core
network. Then, the Controller installs a new table entry in the
edge switch, which adds the routeID in the packet header. For
the RNS computation with GF(2) operations, we developed
and published a Python library1 to be installed via pip tool.

III. EVALUATION

The proof-of-concept (PoC) aims to prove that PolKA can
be: (i) deployed in commercial P4 programmable switches;
and (ii) implemented with similar performance to traditional
table-based and LSR approaches. To this end, we deployed
the forwarding methods using the P4-16 language in the
RARE/GÉANT P4 Lab [9]. The PoC comprises four Intel/
Barefoot Tofino WEDGE100BF32X switches that are geo-
graphically distributed and connected by a 10Gbps optical
link (see Fig. 2): Amsterdam (S4 AMS), Frankfurt (S1 FRA),
Budapest (S2 BUD), and Poznan (S3 POZ). Two edge nodes
generate traffic using the pktgen-dpdk tool version 19.12
(DPDK 19.11.5), capable of replaying packets from pcap files.
The tests explored the longest path (S1-S2-S3-S4), and Table I
details the configurations, as explained below.

1https://pypi.org/project/polka-routing/



S1 FRA
nodeID: 0x002d

S2 BUD
nodeID: 0x002b

S3 POZ
nodeID: 0x0039

S4 AMS
nodeID: 0x003f

H2

128

132

140

148

144 136 132

128

140

136

H1

BUD

AMS

FRA

POZ

Fig. 2. RARE/GÉANT P4 Lab European testbed [9].

TABLE I
END-TO-END CONFIGURATION.

Path PolKA
Key

List-based SR
bos / port

Table-based L2
Switch / Match / Port

H1 -S1 -S2 -S3 -S4 -H2 0x583585abfe73a523

0 / 136
0 / 132
0 / 136
1 / 148

S1 / 01:01:01:00:00:02 / 136
S2 / 01:01:01:00:00:02 / 132
S3 / 01:01:01:00:00:02 / 136
S4 / 01:01:01:00:00:02 / 148

H2 -S4 -S3 -S2 -S1 -H1 0x6b06b6a3544c62a6

0 / 140
0 / 128
0 / 140
1 / 144

S4 / 01:01:01:00:00:01 / 140
S3 / 01:01:01:00:00:01 / 128
S2 / 01:01:01:00:00:01 / 140
S1 / 01:01:01:00:00:01 / 144

64 128 256 512 1024 1500 9000

Packet Size

0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t 

(G
b
p
s
)

PolKA

List-based SR

Table-based L2

(a) Throughput.

64 1500 9000

Packet Size

0

250

500

750

1000

1250

L
a
te

n
c
y
 (

n
s
)

PolKA

List-based SR

Table-based L2

(b) Forwarding latency.

Fig. 3. Comparison PolKA vs. List-based SR vs. Table-based L2.

1) PolKA: Table I presents the routeIDs for the longest
path. In our PoC, we adopted polynomials of degree 16, but
it is possible to use smaller polynomials. For this network
diameter (4 hops), the size of the PolKA header was 64 bits.

2) LSR: We defined the header as: 1 bit for the bos (bottom
of stack) and 15 bits for the port number. Hence, for 4 hops,
the array of headers has 64 bits. In LSR, the output port is
directly available in the SR header. For the longest path, the
array is: rp0{136q, p0{132q, p0{136q, p1{148qs.

3) Table-based L2: We added 2000 random table entries in
the switches, including the entries to provide communication
between H1 and H2 for the longest path. Table I shows the
table entries to enable communication from H1 (MAC address
01:01:01:00:00:01) to H2 (MAC address 01:01:01:00:00:02).

A. End-to-end throughput comparison

Fig. 3(a) shows the throughput comparison at H2 for dif-
ferent packet sizes: (i) the throughput grows linearly with the
increase of the packet size in all forwarding methods, but when
the packet size is lower than 512 bytes, the NIC of the edge
node cannot provide line rate; and (ii) the average throughput
with its standard deviation is small, and they are in the same
order of magnitude for all methods for the different packet
sizes. Finally, PolKA supports high throughput (10Gbps) and
high packets per second rates (more than 2.5 ˚ 106).

B. Forwarding latency comparison

We compared the forwarding latency in the P4 pipeline at
the BUD node by exploring two 48-bit hardware timestamps
from the Tofino’s ASIC: (i) ingress global: timestamp (ns)
taken upon arrival at ingress; and (ii) egress global: timestamp
(ns) taken upon arrival at egress. To this end, the P4 code adds
these timestamps in the IPv4 options field when the packet

arrives at the ingress and egress control blocks. In this test,
we captured 10000 packets at the destination, and parsed them
offline to extract the forwarding latency by subtracting the
egress global timestamp from the ingress global timestamp.
We used the pktgen-dpdk tool to generate UDP traffic for
different packet sizes with a throughput of 10Gbps. As shown
in Fig. 3(b), the average for 64-byte packets is about 300ns,
whereas, for 1500-byte and 9000-byte packets, the average is
about 1300ns, as expected in a store-and-forward mode.

IV. CONCLUSIONS

In this work, we described PolKA’s implementation in a
high-performance P4 switching ASIC Tofino and deployment
at the continental RARE/GÉANT P4 Lab [9]. Experimental
results have shown that PolKA matches the performance of
traditional L2 table-based forwarding and LSR approaches.
As future works, we plan to explore RNS properties to enable
innovative networking applications, and propose deployment
guidelines for production use cases in dynamic scenarios.

ACKNOWLEDGMENT

This work was funded by FAPES, CAPES (Programa de
Desenvolvimento da Pós-Graduação - PDPG - Parcerias Es-
tratégicas nos Estados), and CNPq. We thank the GÉANT P4
Lab, which is funded by the GÉANT Grant Agreement No.
856726 (GN4-3), the Intel Connectivity Research Program,
and Vladimir Gurevich for the contributions.

REFERENCES

[1] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in IEEE International
Conference on High Performance Switching and Routing, 2018, pp. 1–7.

[2] S. A. Jyothi et al., “Towards a flexible data center fabric with source
routing,” in ACM SIGCOMM SOSR. ACM, 2015, pp. 10:1–10:8.

[3] C. Filsfils et al., “The Segment Routing Architecture,” in IEEE Global
Communications Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[4] X. Jin et al., “Your data center switch is trying too hard,” in ACM
SIGCOMM SOSR. ACM, 2016, pp. 12:1–12:6.

[5] M. Martinello et al., “KeyFlow: a prototype for evolving SDN toward
core network fabrics,” IEEE Network, vol. 28, no. 2, pp. 12–19, 2014.

[6] C. Dominicini et al., “Polka: Polynomial key-based architecture for
source routing in network fabrics,” in IEEE NetSoft, 2020, pp. 326–334.

[7] V. Shoup, A computational introduction to number theory and algebra.
Cambridge university press, 2009.

[8] Intel, “Open Tofino.” [Online]. Available: https://github.com/
barefootnetworks/Open-Tofino

[9] GÉANT, https://wiki.geant.org/pages/viewpage.action?pageId=
148085131, 2021, (Accessed on 02/03/2021).

[10] R. R. Gomes et al., “KAR: Key-for-any-route, a resilient routing
system,” in IEEE/IFIP DSN Workshop, June 2016, pp. 120–127.

[11] A. Liberato et al., “Rdna: Residue-defined networking architecture
enabling ultra-reliable low-latency datacenters,” IEEE Transactions on
Network and Service Management, vol. 15, no. 4, pp. 1473–1487, 2018.

[12] C. K. Dominicini et al., “KeySFC: Traffic steering using strict source
routing for dynamic and efficient network orchestration,” Computer
Networks, vol. 167, p. 106975, 2020.

[13] W. Froes et al., “Proglab: Programmable labels for qos provisioning on
software defined networks,” Computer Communications, vol. 161, pp.
99–108, 2020.

[14] M. Ruaro et al., “Software-defined networking architecture for noc-
based many-cores,” in 2018 IEEE ISCAS, May 2018, pp. 1–5.

[15] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, p. 84–90, Feb. 1981.

[16] M. Gomathisankaran et al., “Horns: A homomorphic encryption scheme
for cloud computing using residue number system,” in 2011 45th Annual
Conference on Information Sciences and Systems, 2011, pp. 1–5.


