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Universidad Técnica Federico Santa Marı́a

Valparaı́so, Chile
patricia.morales@sansano.usm.cl

Felipe Calderón, Juan Pinto-Rı́os, Ariel Leiva
School of Electrical Engineering,

Pontificia Universidad Católica de Valparaı́so,
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Abstract—The use of additional fiber bands for optical com-
munications -known as Multi-band or Band-division multiplexing
(BDM) - allows to increase the traffic served in transparent
optical networks. In recent years, many proposals have emerged
as a solution for resource allocation in such multi-band ar-
chitectures. This work presents a novel approach based on
reinforcement learning (RL) techniques to accommodate multi-
band elastic optical network resources. Two new environments
were implemented and added to the Optical-RL-Gym toolkit
considering four scenarios with different band availability. Six
agents were tested in four real network topologies, contrasting
their episode rewards on a large number of training steps. Results
show Trust Region Policy Optimization (TRPO) as the best
performing agent, with consistent output across all the scenarios
and network topologies considered. In addition, we illustrate the
blocking probability behavior in relation to the traffic load, and
band usage distribution, allowing further discussions.

Index Terms—multi-band optical networks, resource alloca-
tion, reinforcement learning

I. INTRODUCTION

Due to the ever-growing Internet traffic, the maximum
capacity of individual fibers will soon be reached, leading
to what is commonly referred to as capacity crunch [1].
As a consequence, the business model of communication
systems worldwide claims for new solutions to eke out the
fiber capacity [2]. Flexibility on optical spectrum allocations
in Elastic Optical Networks (EONs) architectures [3] and
the expansion of C-band communications to C+L+S+E bands
in Band-Division Multiplexing (BDM) technologies [4] offer
complementary solutions to this impending problem, which in
turn leads to new challenges to solve. Among them, solving the
optical connection (lightpath) establishment problem in optical
networks has aroused the interest of the scientific community
to a large extent. In elastic optical networks, the resource
assignment involves solving the routing, modulation level, and
spectrum allocation (RMLSA) problems [3]. In this regard,
to add a new dimension that corresponds with the band, the
well-known RMLSA problem becomes the Routing, Band,
Modulation Format, and Spectrum Allocation (RBMLSA)
problem in multi-band EONs.

Recent proposals [5], [6] solve the RBMLSA problem
through heuristics approaches, using an algorithm based on
the degradation of Generalized optical Signal-to-Noise-Ratio
(GSNR). Authors consider a set of available bands where
these are used sequentially. They compile several scenarios
considering C, L, S, E, and O bands to validate the results.
Furthermore, [7] investigates the practical benefits of multi-
band optical networks leveraging distance-adaptive resource
allocation. Results show that the S+C+L-band scenario can
successfully accommodate three times more traffic than a
single-band scenario, even on a large-scale network. In the
case of [8], [9] authors analyzed multi-core and multi-band
solutions, concluding that both multiply the network capacity
by the number of cores or bands available, making the perfor-
mances of the two solutions both comparable and compatible.

On another note, Artificial Intelligence (AI) techniques
have brought a fresh and potential vision when facing opti-
cal network-related issues [10]. In that sense, Reinforcement
Learning (RL) techniques have shown cutting-edge perfor-
mance in large-scale control tasks. As a result, the use
of RL for solving different resource allocation problems in
optical networks has started to attract significant research
efforts [11]. In this context, Chen et.al. [12], [13] implemented
an RL-based framework for Routing, Modulation Level, and
Spectrum Assignment (RMSA) in EONs achieving blocking
reduction compared to the commonly used KSP-FF (k-Shortest
Path for routing, First-Fit allocation policy for spectrum slots)
heuristic approach. This work was extended and included in
an open-source toolkit published by Natalino and Monti [14],
known as Optical RL-Gym. The toolkit, among its many
capabilities, allows the application of RL techniques to solve
optical network resource allocation by providing EON and
wavelength-routed environments. However, none of these envi-
ronments implement multi-band EON architectures, refraining
to solve the Routing, Band, Modulation Level, and Spectrum
Assignment (RBMLSA) problem under dynamic operation.

In this paper, we report two new environments developed
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Fig. 1. Schematic of the developed RL framework. Left: the main components and their interactions. Right: a breakdown of the new two environments and
their principal entities.

for Optical RL-Gym: RBMLSAEnv and DeepRBMLSAEnv 1,
proposed to solve the RBMLSA problem. The system com-
prises scenarios with a different number of available bands.
To demonstrate our new environments’ potential, we contrast
the performance of six agents working in the scenario with
the higher number of bands (C+L+S+E bands available). We
perform this experiment in four real network topologies. Using
the best performing agent, we analyze the blocking probability
behavior for a set of traffic loads with a large number of
training steps for the implemented scenarios. Also, the band
usage distribution is shown for the four topologies considered.
Therefore, we expect this implementation helps the research
community widen the range of techniques to successfully solve
the resource allocation problem in dynamic elastic optical
networks.

II. MULTI-BAND ENVIRONMENTS

The Optical-RL-Gym [14] is a four-level hierarchy of
environments following the principles established by the Ope-
nAI Gym [15], the de-facto standard for RL environments.
Analogously to the RMSAEnv and DeepRMSAEnv environ-
ments already included in Optical RL-Gym, we incorporate
RBMLSAEnv, which includes the functionalities related to
the RBMLSA problem, and DeepRBMLSAEnv, which im-
plements the specific use-case to solve the RBMLSA problem
in dynamic multi-band EONs. Figure 1 shows an overview of
the system functionalities. The left side shows the two main
components (agent and environment) and their interaction. The
agent is the central axis of an RL model since it is in charge
of the decision-making process, sending commands to the
environment in the form of actions. Thus, we can find two
classes or types of RL algorithms:

1) Q learning: the network learns the Q function, refraining
to pass it as ground truth. Thus, the highest Q value is
chosen and the corresponding action is executed.

2) Policy learning: the algorithm directly learns a policy,
avoiding the use of the Q function as intermediary.

1The new environments presented in this paper are available at:
https://gitlab.com/IRO-Team/optical-rl-gym-multiband/

An agent takes as input the different states “s” returning the
Q values (in Q learning) or a probability distribution (in case
of policy learning), for each possible action “a” to be executed
on a given state. Thus, the action with the highest Q value or
probability is chosen.

On the other hand, we encapsulate an event-driven simulator
in the environments. Two events are essential: the request ar-
rival and the departure of provisioned demands. However, the
agent only decides in the first event: the request arrival. Upon
request reception, the agent selects an action defined by a path,
selected out of k possible pre-computed routes, the band, and
the identification of the first j available slots-block to allocate
the request. Such selection is then sent to the environment.
When the environment receives the agent’s action, it selects
the best modulation format, and the corresponding number
of slots required. Next, it checks whether the request can be
established and - based on the request establishment’s success
- sends back an observation on the new system state and a
reward. If the request is accepted, the reward is equal to 1.
Otherwise, it is equal to -1. Requests are rejected if there are
no enough spectrum resources in the path and band selected
by the agent, i.e., if the request can only be established using
slots from two contiguous bands, it is also rejected.

The observation sent back to the agent uses the same
structure proposed in [12], extended to include information of
the different bands. The number of available bands ranges from
1 (C band only) to 4 (C, L, S, and E bands), represented by
Scenario input variable, as shown on the right side of Figure 1.
The observation method is therefore responsible for building
the representation of the current state of the network. Such rep-
resentation is the one that will be presented to the agent. In our
environments, the representation is usually composed of how
the resources are currently allocated (free/used) in the network,
e. g, source/destination/bitrate of the request. Although each
of these different components is created following their own
shape (usually a matrix), in the end, these are concatenated
together and reshaped as a vector, following neural networks
common input structure.

In this work, the impact of physical impairments on the



TABLE I
MAXIMUM ACHIEVABLE REACH (MAR) PER MODULATION FORMAT, FOR A BERTH VALUE EQUAL TO 4.7 · 10−3 .

Modulation Net Bit-rate [Gb/s]
Maximum achievable reach [# spans]

Scenario 1 Scenario 2 Scenario 3 Scenario 4
C C L C L S C L S E

BPSK 23 199 197 167 174 167 148 130 144 102 31
QPSK 46 99 99 84 87 84 74 65 72 51 15

8-QAM 69 54 54 46 47 46 41 35 39 29 9
16-QAM 92 27 14 22 23 22 20 17 19 14 4
32-QAM 115 13 13 11 12 11 10 8 9 7 2
64-QAM 140 7 7 6 6 6 5 4 5 3 1

256-QAM 186 1 1 1 1 1 1 1 1 0 0

quality-of-transmission of an optical route is taken into ac-
count by determining the maximum reach of optical signals
as a function of the modulation format for a given bit-error-
rate threshold (BERth), as proposed in [16]. Tables I and II
shows the parameters considered in this work based on [16].
In the first column of table I are listed the modulation formats
available for each optical communication. The second column
of this table refers to the bit-rate capacity available on a
single slot for each modulation format (net Bit-rate). The rest
of table I shows the maximum achievable reach (MAR) in
number of spans (1 span = 100 km) for the available bands in
the four possible scenarios considered. Consequently, based
on this table, a modulation format assigned will be the one
that best accommodates the request’s maximum achievable
distance. In the case of table II, it shows the total number
of slots per band considered.

TABLE II
TOTAL SLOTS PER BAND

Band Frequency (THz) Bandwidth (BW) Slots (BW/12.5 GHz)
L 185.7 -191.7 6 480
C 191.7 - 196 4.3 344
S 196 - 205.5 9.5 760
E 205.5 - 219.7 14.2 1136

Total 185.7 - 219.7 34 2720

III. AGENT TRAINING AND PERFORMANCE EVALUATION

Six different agents from stable_baselines li-
brary [17] were studied: Proximal Policy Optimization version
2 (PPO2), Trust Region Policy Optimization (TRPO), Syn-
chronous Advantage Actor-Critic (A2C), Actor Critic using
Kronecker-Factored Trust Region (ACKTR), Deep Q Learning
(DQN) and Actor-Critic with Experience Replay (ACER). For
every agent, 2 · 103 training steps were configured with an
episode length of 50. Thus, a total of 105 time steps were
carried out. The learning rate and discount factor were set to
10−5 and 0.95, respectively. This parameters allow computing
the discounted reward which reflects the agents’ behavior
through learning curves. The discounted reward is obtained
after completing an episode as the summation of multiplying
the discount factor and the action reward in each time step.

TABLE III
NETWORK TOPOLOGIES PARAMETERS USED IN THIS WORK

Topology Nodes Links node-pairs
NSFNet 14 42 82
UKNet 21 78 420
USNet 46 152 2070

Eurocore 11 50 110

We execute our environmnents for the NSFNet, Eurocore,
USNet and UKNet networks. Table III contains the number of
nodes, links and node-pairs requesting communication for each
topology. In case of the NSFNet the configuration corresponds
to the one described in [12].

The number of possible routes of node-pairs requesting
communication were set to 5 (k=5) and the j value equal to 1,
meaning that the agent will choose 1 of 5 routes and the first
suitable slots-block. The maximum achievable reach for each
modulation format and the spectrum capacity available on the
different bands were computed based on [16] using the param-
eters in Table I for a BERth of 4.7 · 10−3 and a slot spectral
width of 12.5 GHz. The modulation formats considered in this
study are binary phase-shift keying (BPSK), quadrature phase-
shift keying (QPSK), and Λ-quadrature amplitude modulation
(Λ-QAM), where Λ takes the values 8, 16, 32, and 64 (first
column of Table I). Bit rates are randomly selected among 10,
40, 100, 400, and 1000 Gbps, and the connection requests are
uniformly distributed among all node pairs. As an example,
if a request with 5000 km distance and 1000 Gbps bit-rate
arrives in scenario 2, the modulation formats that best suit the
request’s requirements will be 8-QAM (from 1400 to 5400 km)
in the C band and QPSK (from 4600 to 8400 km) in the L
band. The number of slots necessaries in the C band will be
given by the division of the Bit-rate and Net Bit-rate of the
corresponding modulation format: 1000

69 ≈ 15 slots in this case.
On the contrary, in the L band, the number of slots will be
1000
46 ≈ 22 slots.
The arrival requests are modeled as a Poisson process,

with a mean arrival rate equal to λ. Mean holding times
are exponentially distributed with an average of 1/µ = 200s.
Different traffic loads - equal to λ/µ - are obtained by varying
the arrival rate.
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(a) Episode Rewards vs Training Steps (NSFNet)

0 250 500 750 1000 1250 1500 1750 2000
Training steps

0.0

12.5

25.0

37.5

50.0

R
ew

ar
ds

PPO2
TRPO
A2C
ACKTR
DQN
ACER

(b) Episode Rewards vs Training Steps (Eurocore)
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(c) Episode Rewards vs Training Steps (USNet)
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(d) Episode Rewards vs Training Steps (UKNet)

Fig. 2. Reward accumulated by the six agents in Scenario 4 with a traffic load = 1000 Erlang.
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(b) Blocking Probability vs Traffic Load

Fig. 3. (a) Blocking ratio of episodes versus the number of training steps exhibited by the best performing agent (TRPO) for the four scenarios, (b) Blocking
probability obtained by TRPO in all scenarios as a function of the traffic load.



Figure 2 shows the learning curves obtained when training
six different agents in Scenario 4 (C+L+S+E bands). This
scenario corresponds to the largest action space. Therefore,
a high discounted reward is expected after completing all
training steps. The curves were obtained for a traffic load of
1000 Erlang. Although results show that almost all agents’
performance varies on the different topologies, consistently
TRPO maintains a more stable behavior, translating into a less
fluctuating reward. TRPO achieves the best results converging
faster than the five remaining agents to a value of reward
around 50. This performance can be related to the monotonic
improvement that TRPO guarantees, optimizing the policies
that the agent acquires in the environment [18]. We can also
highlight PPO2, which in some cases reaches the highest value
(50) of reward but with a fluctuating behavior. In opposition,
the ACKTR agent exhibits inferior performance in all network
topologies. Consequently, the best agent (TRPO) was then
used in the following experiments.

Figure 3.a shows the episode blocking ratio’s performance
of the TRPO agent as a function of the training steps for
the different scenarios under a traffic load of 1000 Erlang
in the NSFNet. Remark that the scenarios 1 to 4 are defined
in terms of band availability, thus Band C, Band C+L, Band
C+L+S, Band C+L+S+E respectively. As expected from the
results shown in Figure 2, the higher the reward, the lower
the blocking probability value. As the number of training
steps increases, the episode blocking probability diminishes,
converging to a low value, which is expected behavior for an
appropriate learning process. Furthermore, if the number of
available bands increases, the blocking probability decreases
due to the larger network capacity. The most significant
blocking reduction is obtained when migrating from the C-
band to the scenario C+L bands available.

To test the robustness of the two proposed environments,
we studied the network blocking performance for different
traffic loads ranging from 500 to 5000 Erlang in steps of
500 in NSFNet network topology. The results are illustrated in
Figure 3.b as it can be seen, for the same traffic load, as the
number of available bands increases (i.e., network capacity
increases), the blocking probability decreases significantly.
For example, for 5000 Erlang, the blocking probability for
Scenario 1 (C band only), exceeds 0.66. This situation means
that more than half of the requests are being blocked. The
situation changes as the number of bands increases, reaching
a blocking probability of 0.32 in Scenario 4. On the other hand,
for the same scenario and the same amount of available bands,
the blocking probability increases with the traffic load. This
performance is also reasonable since higher traffic translates
into a higher system occupation and less available spectrum
resources for incoming connection requests. Current analysis
demonstrates that exploiting multi-band transmissions strongly
reduces the blocking probability, as shown by previous re-
searches [5], [6], [19].

Notice that both experiments shown in Figure 3 were
also performed in the three remaining topologies displayed
in Figure 2. However, these results only remark the facts

described above. Given this situation, in addition to the lack
of space, we prefer to keep the results out of the scope of this
paper.

Finally, Figure 4 shows the Band Usage Distribution (BUD)
for Scenario 4 on the four network topologies illustrated in
Figure 2, for a traffic load of 1000 Erlang. This figure indicates
how the agent distributes the use of each band along the
complete training process. The given percentage is computed
following Eq. 1. The numerator corresponds with the number
of times a given band is assigned over the total assigned
requests (denominator).

BUD (%) =
Request per Band

Total Assigned Requests
· 100 (1)

As we can see in Figure 4, the use of the bands is more
balanced in the USNet network topology. As an interesting
fact, this corresponds with the largest topology studied in
this work in terms of nodes, links and node-pairs requesting
communication.
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Fig. 4. Band Usage Distribution

IV. FINAL REMARKS AND FUTURE WORK

In this work, two new environments were implemented and
added to the Optical RL-Gym toolkit to solve the routing,
band, modulation level, and spectrum assignment problem in
dynamic EONs. Results show the environments’ feasibility, as
a significant blocking reduction was obtained with the number
of available bands represented by the scenario performed.
The results evidence TRPO as the agent with more stable
performance across the different network topologies tested.
The given analysis shows that RL techniques can achieve



good results in terms of blocking probability and become
an attractive solution to solve the RBMLSA problem. The
variability in the action space has always been a cause of
a problem in network-related RL. This happens since not
all actions are available, unlike other environments where all
actions are always available. Composing the observation vector
is challenging because it should be as simple as possible (i.e.,
have the lowest dimension possible) but still representing the
state of the network. Working with multiple bands expands the
observation space significantly. When the observation space
increases, this usually needs to be combined with more neu-
rons/layers in the neural network architecture. As discussed,
since some options are not available all the time, it is inter-
esting to define an action space that is as simple as possible
but still allows the RL agent to make “intelligent” decisions.
The neural network architecture (number of layers/neurons
at each layer) usually needs to follow the complexity of the
observation/action space. Therefore, if the observation/action
space increases, a more complex neural network structure is
likely to be needed.

Future work will explore optimizing the system perfor-
mance, expanding the number of training topologies, perform-
ing a sensitivity analysis on the training hyper-parameters, and
comparing the RL results with those obtained via different
heuristic algorithms [14], [20]–[22]. Since the objective of
this work was to present a novel tool for allocating resources
in EONs, the reward function remains unvaried with respect
to the environments presented in [14]. On going research
is studying a way of improving the reward function based
on not only rewarding the allocation or not of connection
requests, but instead prizing the allocation which result in the
most optimized allocations, based on whatever optimization
criterion is being pursued (e.g., resource utilization). This
way, the agent’s learning process will be also more efficient.
Another modification understudy is building a system at scale,
giving to the agent a shorter action space (i.e. reducing the
number of slots and the other parameters instead of using
the original values given by the physical layer model). A
system at scale will allow to establish a fair comparison
with the aforementioned state-of-the-art heuristic algorithms,
in addition to reflect in a clear manner the learning process.
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