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Abstract—The current increase in bandwidth-hungry applica-
tions and the progressively evolving concept of connected “smart”
devices through the internet have increased internet traffic expo-
nentially. To hold this expansion of internet traffic, the network
operators insist on the full capacity utilization of already deployed
hardware infrastructure. In this context, accurate and earlier
calculation of the quality of transmission (QoT) of the lightpaths
(LPs) is critical for minimizing the required margins that arise due
to the uncertainty in the operating point of network elements. This
article proposes a novel framework in which a transfer learning
assisted QoT-Estimation (QoT-E) is made. The transfer learning
agent acquired the knowledge from a traditional fully operational
network operating on C-band and utilized this knowledge to assist
the operator in estimating the LP QoT on a state-of-the-art newly
functioning network on an extended C-band operating with 400ZR
standards. The measurement parameter considered to estimate the
QoT of LP is the generalized signal-to-noise ratio (GSNR). The
dataset used in this analysis is generated synthetically by utilizing
well tested GNPy platform. Promising results are achieved in terms
of reducing the overall required margin and better utilization of
the residual network capacity.

Index Terms—Transfer learning, Quality of transmission, Gen-
eralized signal-to-noise ratio , Wide-band networking

I. INTRODUCTION

In the current telecommunication scenario, the rapid increase
in global IP traffic, driven by the introduction of revolutionary
technologies such as 5G, the Internet of Things (IoT), and
cloud services, has increased the pressure on the core optical
networks for capacity enhancement [1]. Generally, two possible
solutions can be implemented to address this issue; installing
new infrastructure or increasing the capacity utilization of al-
ready implemented optical networks. The first solution requires
a significant CAPEX and is not suitable from an operator’s
point of view. However, the other solution is more feasible as
it can increase the returns on the already deployed network
infrastructure.

Most of the traditional optical transport system has been
implemented uses Wavelength Division Multiplexing (WDM)
in the C-band around a spectral window of ≈ 4THz. To
optimize the existing WDM systems, it is necessary to enhance
the capacity utilization along with network disaggregation. To
exploit this, the capacity can be increased by the deployment of
new technologies, such as Band Division Multiplexing (BDM),
which enables the use of multi-band systems (extended C-
band) on the existing WDM transport systems over the optical
fibers (ITU G.652.D). This extended C-band increases the
transmission capacity of the state-of-the-art optical network
up to ≈ 4.8THz. This capacity enhancement and the latest
technologies such as coherent transmission systems, Elastic
Optical Networks (EONs), and Software-Defined Networking
(SDN) paradigm empower the current state-of-the-art optical
network with high data rate, good degree of flexibility, and
better network control.

The EONs give the network controller the flexibility to
upscale or downscale the resources based on traffic demands
to efficiently use the available spectrum. At the same time, the
SDN implementation allows each Network Element (NE) to be
managed within a virtualized environment. SDN can facilitate
the automation of complex network operations and give users
greater control over the network, resulting in flexibility in
implementing new services, optimized network resource utiliza-
tion, lower power consumption, and more return on the CAPEX.
Both attributes allow for a disaggregated approach of an optical
network that allows the virtual network to be opened and
sliced. The primary step towards the disaggregated and flexible
optical network is to abstract the WDM optical transport as
the weighted graph of LPs traversed through each NE in terms
of GSNR obtained mainly from Optical Line Systems (OLS),
including amplifiers and fibers [2]. The OLS controller, which
runs in the control plane, determines the amplifier operating
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Fig. 1: Transfer learning schematic utilizing traditional C-band knowledge to assist QoT-E engine of extended C-band network.

point and eventually determines the GSNR degradation. In
order to better rely on the GSNR degradation, the nominal
operating point must be accurately defined. The more accurate
these parameters are, the less margin is set in LP deployment,
which allows better exploit the installed equipment’s capacity.
In addition, reliable QoT or GSNR estimation also helps with
automatic recovery from network faults by reducing downtime.

The NEs are mainly suffer with some uncertainty in the
operating point with respect to the nominal values due to
various factors (aging effect, variation in the spectral load
and effects of in-field operation). These offset values create
a difference between the actual and the nominal GSNR values
computed by the QoT estimator engine [3]. These offset values
from the nominal point of the GSNR are mainly due to the
amplifier’s gain ripple and noise figure. In order to cater these
uncertainties, a system margin is deployed to avoid network
Out-of-service (OOS). In order to minimize the deployed sys-
tem margin to better utilize the network resources, an accurate
GSNR estimation is required.

In this work, we use the ML framework, which assists the
QoT-E by reducing the margin required due to the uncertainty
that arises by amplifier’s gain ripple and noise figure. The ML
paradigm has already been well analyzed for QoT-E such as; a
Cognitive-case-based-reasoning (CBR) method is demonstrated
in [4]. In [3], the ML-based approach is used to control OLS in
an open environment. Random forest (RF) is utilized to exploit
the already accumulated database in [5] to decrease uncertainty
in design margins and network parameters. Numerous ML-
based approaches are proposed in [6]–[8] for QoT-E of LP.
In [9], a binary classifier based on RF is presented to estimate
the bit-error-ratio (BER) of LPs before their establishment.

In [10], the authors evaluated the performance of two Domain
adaption (DA) approaches for ML-assisted QoT-E of an optical
LP for a fixed/variable number of available training samples
from the source/target domain. In [11], a Convolutional-neural-
network (CNN)-based QoT estimator is proposed in the context
of DA scenarios. Finally, the authors in [12] analyzed the QoT-
E accuracy delivered by a few Active Learning (AL) and DA
methods on two different network topologies.

The significant distinction of this work is that we proposed a
novel framework in which we exploit the dataset originating
from the in-service C-band network and use it to train a
transfer learning agent to work in conjunction with the QoT-
E engine of the network controller of another sister network
which is operating on the extended C-band network with 400ZR
standards (see Fig. 1). The purpose of the transfer learning agent
is to correct the GSNR estimation of LPs of an extended C-
band network and consequently reduce the margin to utilize the
network resources better.

II. SIMULATION MODEL AND DATASET GENERATION

In this work, a software-defined open optical network is
considered, in which OLS is modeled as the edges, and the
nodes are characterized as Reconfigurable-optical-add-drop-
multiplexers (ROADMs) [13]. The OLS considered are sup-
posed to work on the optimum operating point, and only the
ripple gain of the amplifier accounts for the perturbed behavior
of the physical layer. These gain ripples fluctuate with the
variation of the spectral load. Therefore, OLS controllers can
guarantee that they are operating at the nominal operating point
with some degree of uncertainty in the operating point. On the
lower layer, the LPs are transparently deployed on the WDM
flexible grid system, connecting the transceivers and supporting
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TABLE I

Topology Details [15]

Parameters EU: Training USA : Testing
Number of Nodes 28 100
Number of Links 41 171
Average path distance (km) 2014.06 2541.75
Maximum path distance (km) 3051.10 5481.07
Minimum path distance (km) 669.30 568.33
Average number of spans per Link 19.75 27.49

dual-polarization multilevel modulation formats [14]. The LPs,
during its propagation, suffer from several kinds of impair-
ments, mainly Amplified spontaneous noise (ASE) and Non-
linear impairments (NLI). The ASE noise introduced by each
In-line amplifier (ILA) is statistically independent and adds
up in the propagation. In contrast, the NLI of every span is
statistically correlated with each other [2]. The overall GSNR
of each LP crossing through the OLS is given by:

1

GSNR
=

∑
n

1

GSNRn
(1)

where n represents the number of OLSs traversed by the LP
during certain path. The GSNR metric accounts for both the
ASE and NLI over the given path.The simulation framework considers two sisters network;
traditional C-band network (EU network) and extended C-band
(USA network). The two networks under consideration have
different topologies but the same hardware; fiber types and
amplifiers. The details related to network topologies for both the
considered networks are described in Table I. The traditional C-
band has a total bandwidth of ≈ 4THz, which allows carrying
80 channels over a standard 50 GHz grid and extended C-
band having a total bandwidth of ≈ 4.8THz which allows
carrying of 64 channels over 75 GHz grid. The transceivers of
traditional C-band and extended C-band operate at 32 Gbaud
and 64 Gbaud, respectively, shaped with a Raised-root-cosine
filter. The Erbium-doped-fiber-amplifiers (EDFAs) considered
for both networks are configured to operate in a constant output
power mode with 0 dBm/channel. The connections of both
networks are assumed to work with Standard single-mode fiber
(SMF) with a span of 80 km. The ILAs in both networks are
considered to have a randomly selected noise figure for each
amplifier in the 3.5 to 4.5 dB range, along with a random gain
ripple with a 1 dB variation. The details of network simulation
parameters are reported in Table II.

The discussed scenario is simulated using an open-source
GNPy library to create synthetic datasets that abstract the phys-
ical layer. The GNPy library created an end-to-end simulation
environment that generates network models for the physical
layer. The datasets are generated for the C-band network (EU
network) and extended C-band (USA network). The generated
dataset for the traditional C-band network is the subset of 280,
with 80 channels as the total possible realization of the spectral
load, while for an extended C-band network, it is 264, with

TABLE II

Simulation Parameters
Launch Power/ Channel 0 dBm
Dispersion (D) 16.0 ps/nm/km
Attenuation coefficient (α) 0.2 dB/km
Channel Spacing (C-Band) 50 GHz
Channel Spacing (Extended C-Band) 75 GHz
Span Length 80 km
WDM Comb (C-Band) 80
WDM Comb (Extended C-Band) 64
Baud Rate (C-Band) 32 Gbaud
Baud Rate (Extended C-Band) 64 Gbaud
Amplifier Noise Figure [3.5 - 4.5] dB [16]
Nominal Amplifier Noise Figure 4 dB
Amplifier Gain Ripple Variation of 1 dB
Nominal Amplifier Gain Ripple Flat
Fiber Type Standard SMF

overall 64 operating channels. The variation in traffic load of
total bandwidth utilization for both networks ranges from 34%
to 100%.

The proposed architecture exploits the knowledge of EU
network to train the transfer learning agent application program
interface (API) integrated along with the core QoT estimator
engine in the USA network controller. The core QoT estimator
engine estimates the LPs GSNR using the nominal parameters.
Typically, the working point of NE changes during its oper-
ational phase causes an uncertainty in the GSNR estimation
calculated by the central QoT estimator engine using these
nominal parameters provided by the vendors. The presence of
this uncertainty in GSNR estimation arises a demand for putting
some margin, which subsequently reduces the deployable traffic
rate and causes underutilization of network resources. In the
proposed scenario, the transfer learning agent trained on the
dataset of already operating network (EU network) is used to
assists the core QoT estimator engine of other agnostic newly
deploying (USA network in this case). The main focus of this
work is to target the uncertainty that arises due to amplifier
ripple gain and noise figure.

III. TRANSFER LEARNING AGENT

This work introduces a transfer learning module capable
of supporting the core QoT estimator engine to correct the
estimated GSNR of a particular LP of the newly deployed ex-
tended C-band network using the acquired knowledge from the
already operating C-band network. The transfer learning agent
proposed in the SDN controller is based on a homogeneous
regression model of an Artificial-neural-network (ANN). The
input feature space is comprised of power, ASE noise, NLI,
span numbers, and total distance. Conventionally, optimizing
the ANN model parameters by minimizing the Mean-square-
error (MSE) is not difficult but the case is different for transfer
learning since only a few datasets from the sister network are
available; the structure of the previously trained model may
affect the performance of the transfer learning agent. Therefore,
we perform extensive simulations to determine the appropriate
settings for the ANN model.
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TABLE III: Statistics of GSNR margin

Without Transfer learning Transfer learning

Paths Nominal GSNR
mean (dB)

+ve Error
∆GSNR > 0 (dB)

-ve Error
∆GSNR < 0 (dB)

WCS Margin
GSNRmax − GSNRmin (dB)

Prediction Error
MSE (dB)

Birmingham → Bismarck 11.17 0.58 -0.6 1.20 0.079
Bismarck → Boston 10.53 0.58 -0.5 1.07 0.079
Boston → Buffalo 15.84 0.38 -0.53 1.0 0.085

Charlotte → Chicago 13.49 0.54 -0.72 1.26 0.098
Cleveland → Columbus 22.14 0.51 -0.94 1.45 0.083

Dallas → Denver 14.19 0.6 -0.9 1.49 0.083
Detroit → ElPaso 10.48 0.6 -0.54 1.13 0.083
ElPaso → Fresno 14.27 0.63 -0.96 1.58 0.065

Greensboro → Hartford 14.45 0.42 -0.56 1.0 0.094

The proposed ANN model consists of an input layer, two
hidden layers, both with the same number of neurons (96), a
dropout layer, and an output layer. For all neurons, a ReLU-
based activation function is used to overlook vanishing gradient
problems. Adaptive Moment Estimation (Adam) and MSE
(Eq. 2) are used as an optimizer and loss function, respectively.

MSE =
1

n

n∑
i

(
∆GSNRpredicted

i −∆GSNRactual
i

)2

(2)

To avoid overfitting, a dropout layer is added at a rate of 0.20,
dropping 20% of the random neurons to eliminate co-adaptive
learning in each iteration. The model ANN is trained with 500
epochs. To determine the optimal number of epochs, an early
stopping approach is used. The features data of 80 channels and
the ∆GSNR of the target channel are fed into the input layer.
The transfer learning agent is trained on the EU network (C-
band) data of 12000 samples. For validation purposes, the agent
uses 6000 samples in order to estimate the QoT (∆GSNR) error
in the channel, and for testing purposes, the remaining 6000
samples are used. Transfer learning depends on the similarity of
the marginal distribution probability in two different networks
and the variety of samples available for retraining.

After obtaining the well-trained and tested model from the
C-band (EU network) dataset this model is then used to run
the transfer learning system with the small additional dataset
obtained from the extended C-band network (US network) to
adjust the weights of the hidden layers. To achieve a more
reliable transfer learning performance, we randomly selected
the re-training samples. As the number of input features is
smaller in the extended C-band network (64 channels of 75
GHz) than the C-band network (80 channels of 50 GHz), a
new input layer is added. We adjusted the weights of the hidden
layers of the C-band network and held the current knowledge
from the C-band network to the remaining layers of the model.
Once the accuracy of the model predictions is achieved, the
trained transfer learning module can be used together with the
core QoT estimator engine to improve the accuracy in GSNR
estimation of the LP for its deployment in an extended C-band
network.

IV. RESULTS AND DISCUSSION

During the initial deployment of the (USA network - ex-
tended C-band), the network controller relies only on the
nominal description of the system parameters (see Table II) to
estimate the GSNR. This estimated nominal GSNR is subjected
to some degree of uncertainty due to the variation in the
operating points of the NEs. This section describes results
related to the transfer learning agent to cater to this induced
uncertainty. In Fig. 2, the top three plots of each set show the
GSNR statistics of the three paths of the newly established
(USA network - extended C-band) network. In this figure, the
GSNR statistics for all 64 channels and all samples of all USA
test paths, i.e., Birmingham → Bismarck, Bismarck → Boston,
and Boston → Buffalo from the first set, Charlotte → Chicago,
Cleveland → Columbus, and Dallas → Denver from the second
set, Detroit → ElPaso, ElPaso → Fresno, and Greensboro →
Hartford from the third set are plotted in the frequency domain.

TABLE IV: Traditional C-band (EU network) Paths used for
transfer learning agent cognition

Paths Number of Spans
Amsterdam → Berlin 8
Brussels → Bucharest 30
Frankfurt → Istanbul 34
Vienna → Warsaw 7
London → Madrid 19

Paris → Rome 34

The exact ranges of variation are shown in the top three
plots of each set in Fig. 2, where the dashed red (top) and
dashed blue (bottom) lines indicate the overall maximum and
minimum GSNR (GSNRmax and GSNRmin), respectively.
The red dots in the curve shape represent the mean (µ), and
the error bars show the standard deviation (σ) of the total
realizations for each channel. The black curve approximately
equal to the mean values represents the nominal GSNR values
for each path. The upper orange line (along with GSNRmax)
and lower green line (along with GSNRmin) represent the
maximum and minimum GSNR of each channel. Following the
GSNR variations in Fig. 2, it can be observed that the actual
GSNR values vary along with the nominal GSNR values. The
uncertainties experienced by the system in terms of GSNR is
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(a) First-set of three paths

(b) Second-set of three paths

(c) Third-set of three paths

Fig. 2: GSNR statistics (Istrow of each set), ∆GSNR actual/predicted distribution (2ndrow of each set), Prediction error (∆)
(3rdrow of each set): USA Network Paths
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given by Eq. 3:

∆GSNR = GSNRnominal −GSNRactual (3)

Concerning Eq. 3 two possible cases of ∆GSNR arise;
∆GSNR > 0, the actual GSNR value is less than the estimated
GSNR value, and the reliance on the QoT-E leads to the
undesirable OOS. Another is ∆GSNR < 0 where the nominal
GSNR value is less than the actual GSNR value leading to
the underutilization of the available capacity. Both the cases
are reported for all nine paths of the deployed (extended C-
band) considering the mean of nominal GSNR in Table. III.
Along with this, during the Worst Case Scenario (WCS) when
the operators do not have any specific knowledge of physical
parameters, a total margin required for all nine paths of the
deployed (extended C-band) is also reported.

A transfer learning agent is applied to predict GSNR accu-
rately and minimize the overall uncertainties in the GSNR esti-
mation of an extended C-band network. The agent retrieved data
of six paths of traditional C-band (EU network) and is trained
on four paths with 12000 (3000 samples/path) training samples,
validated on two paths with 6000 samples (see Table IV).
The agent’s performance and scalability are evaluated on nine
extended C-band network test paths (3000 samples/path). The
transfer learning agent’s performance on the nine paths of the
USA network is shown as a distribution plot in Fig. 2 (second
row of each set), where ∆GSNRactual is shown as the blue
curve and ∆GSNRpredicted is shown as the red curve. By
noticing the µ and σ values in Fig. 2 (second row), we observe
that the transfer learning agent performs well by reducing the
uncertainty in GSNR estimation; the values of MSE are listed
in Table. III for each path. The total error in GSNR estimation
of the extended C-band network is drastically reduced against
each path using a transfer learning agent (see Table. III) .

∆ = ∆GSNRactual −∆GSNRpredicted (4)

Furthermore, the error in predicting the error in GSNR by
transfer learning; ∆ between the ∆GSNRactual and the
∆GSNRpredicted (see Eq. 4) is also shown in the third row
of each set of Fig. 2. The µ and σ value of ∆ shows excellent
performance of the transfer learning agent in correcting the
GSNR values of the extended C-band network using the C-
band network dataset.

V. CONCLUSION

In this work, we proposed the use of a transfer learning
agent trained on a dataset of a traditional C-band network (EU
network) to correct GSNR estimation in an extended C-band
network (USA network). We created synthetic datasets for both
networks using the open-source GNPy library for training and
testing purposes.

It is evident by observing the obtained promising results that
the proposed transfer learning agent can reduce the uncertainties

in the estimation of LP QoT in the extended C-band network by
exploiting the knowledge of the traditional C-band operational
network. The proposed transfer learning agent API works
synergistically with the QoT estimator engine of extended C-
band to assist it in correcting the GSNR estimation in the
software-defined optical networks.
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