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Abstract—Physical topology is a major determinant of the 
system performance of optical backbone networks, and it is 
important to understand the relationships between physical 
topology features and system performance for better system 
design. For application in elastic optical backbone network 
systems, we propose a framework of correlation analysis to 
examine these relationships comprehensively, and we use the 
framework to investigate the relationships between various 
physical topology features and system performance. The results of 
numerical experiments suggest that four important physical 
topology features are strongly correlated with the system 
performance. Specifically, the average number of hops and the 
algebraic connectivity are strongly correlated with only the 
communication capacity, whereas the average path length and the 
geodesic distance Laplacian spectral radius are strongly correlated 
with both the capacity and the cost. The geodesic distance 
Laplacian spectral radius is a newly defined quantity that is 
expected to expand the possibilities of physical topology design in 
the future. Through combinations of these features, we classify 
physical topology designs and examine the relationships between 
the classification, real networks, and graph generation algorithms. 

Keywords—physical topology, graph feature, system 
performance, optical backbone network 

I. INTRODUCTION 
The number of devices connected to the Internet continues 

to increase, and it is expected that the network capacity must 
continue to increase with the development of new applications 
[1]. Elastic optical networks (EONs) have been proposed as a 
means of using the frequency space more efficiently for optical 
backbone networks to support higher capacity. The capacity of 
this network system largely depends on the routing and spectrum 
allocation (RSA) algorithm and the physical topology. 
Regarding the former aspect, various algorithms have been 
proposed to improve the frequency utilization efficiency. The 
latter aspect has been shown to have an impact on the upper limit 
of capacity, and also to have a significant impact on EONs [2]. 
From a long-term perspective, the impact of the physical 
topology, which is difficult to install because of its cost, is 
particularly significant. For this reason, we focus on the physical 
topology in this paper. 

A physical topology is generally represented as a graph, in 
which the nodes are communication buildings and the edges are 
optical fibers connecting the nodes. There are two main types of 
algorithms for generating such a graph: non-geometric graph 
models and geometric graph models. Erdos-Rényi (ER) random 
graph model [3] and Barabasi-Albert (BA) model, which is 
based on the "rich get richer" principle [4], are well-known non-
geometric graph models. However, they do not include 

information such as the physical distances between nodes other 
than the topology, and no such model has been successfully 
applied to describe optical backbone networks. In contrast, 
geometric graph models consider not only the topology but also 
the physical distances between nodes, and they are known to 
generate physical topologies that are close to those of real optical 
backbone networks. For example, the Waxman model is well 
known [5], and an improved version generates physical 
topologies that reproduce real networks [6]. Reference [7] 
compared several geometric graph models and suggested that 
the Gabriel graph model [8] achieves the smallest cost. Recently, 
the SNR-BA model, which takes into account the propagation 
characteristics of the optical signal in the BA model, was 
proposed [9]. This model rapidly generates graphs that are close 
to real networks and have excellent capacity and cost. 

These physical topology design methods are based on 
accumulated knowledge of the relationship between physical 
topology features and system performance. For example, Baroni 
and Bayvel found a relationship between the topology and the 
number of required wavelengths [10]. Later, a relationship was 
found with the algebraic connectivity [11], a graph spectral 
quantity that is also closely related to the graph robustness. In 
addition, optimization methods that link high capacity and 
reliability have been proposed by using abstract graph metrics 
[12]. There was also an analysis on the relation between the 
average path length and the communication capacity [13], and 
from those findings, a better model was proposed [14]. 

Given the above background, this paper investigates the 
relationship between the physical topology features and system 
performance more comprehensively, with the aim of presenting 
new insights that will support future physical topology design. 
Our contribution is three-fold. First, we present a framework for 
correlation analysis to add the impact of cost to the previous 
findings between graph metrics and communication capacity 
[10, 11, 13]. Second, we classified physical topology design on 
the basis of the combination of key indicators extracted from the 
correlation analysis, and made the connection with real networks 
and conventional graph generation models more systematically. 
Third, by exploring graph features that have not been 
investigated in previous studies, including recent advances in 
spectral graph theory, we have shown a new graph feature 
quantity (geodesic distance Laplacian spectral radius) suitable 
for multi-objective optimization of communication capacity and 
cost. 

The structure of this paper is as follows. In II.A, we explain 
the framework for correlation analysis with a higher-level view 
of the relationship between the physical topology and system 
performance. Then, II.B briefly describes the physical topology 
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features examined in this paper. In III.A, based on the results of 
the correlation analysis, we classify the features that are strongly 
correlated with only the communication capacity and those that 
are strongly correlated with both the communication capacity 
and the cost. We also investigate the effect of network size and 
extract more universally important topological features. In III.B, 
we classify physical topology designs on the basis of the 
extracted features, discuss the relationship with real networks 
and conventional graph generation methods, and discuss the 
applicability of the newly discovered metrics. 

II. SIMULATION MODEL 

A. Model for correlation analysis 
 Figure 1 shows an overview of the model that we use to 
study the relationship between physical topology features and 
system performance. In this paper, the optical backbone network 
system is assumed to have a simple model consisting of a 
physical topology 𝐺𝐺𝑚𝑚(𝑉𝑉,𝐸𝐸)  (𝑚𝑚 ∈ ℵ ; the index for different 
physical topologies) and an RSA algorithm. The inputs to the 
system are the traffic matrix, which is a requirement for RSA, 
and the network size (|𝑉𝑉|, |𝐸𝐸|) and node locations, which are 
requirements for the physical topology. The outputs are the 
communication capacity and cost. The communication capacity 
is considered to be the traffic load of the entire network when 
the request blocking rate is 10−3, and is defined as the traffic 
load tolerance 𝜉𝜉𝑚𝑚 . (For practical purposes, it is desirable to 
define 𝜉𝜉𝑚𝑚 based on a lower blocking rate. However, considering 
the accuracy of the evaluation of 𝜉𝜉𝑚𝑚 and the computation time, 
10−3 is used as the criterion. The results for the lower blocking 
rate show the same trend and do not affect the discussion in this 
paper.) Cost(𝐺𝐺𝑚𝑚) is defined in terms of total fiber length, as in 
previous studies of physical topologies [7]. (The cost model 
applied in this study is a simplified one assuming long-distance 
optical backbone fiber networks, and more detailed models need 
to be considered, especially in the case of metro networks with 
shorter distances [15].)  

 

Fig. 1. Schematic view of the simulation model. 

To obtain a high-level view of the relationship between 
physical topology features and system performance (traffic load 
tolerance and cost), we use an evaluation approach that includes 
graph analysis (right side of Figure 1) and correlation analysis 
(bottom of the figure). Here, the number of degrees of freedom 
is the number of topologies, 𝑛𝑛𝐺𝐺. For example, to evaluate the 
system response of the traffic load tolerance 𝜉𝜉 =
{𝜉𝜉1,⋯ , 𝜉𝜉𝑚𝑚 ,⋯ , 𝜉𝜉𝑛𝑛𝐺𝐺}  to the physical topology set 𝒢𝒢 =

{𝐺𝐺1,⋯ ,𝐺𝐺𝑚𝑚 ,⋯ ,𝐺𝐺𝑛𝑛𝐺𝐺} , we calculate the following correlation 
coefficient: 

   𝜌𝜌(𝜉𝜉,𝜓𝜓) = 𝜀𝜀��𝜉𝜉 − 𝜉𝜉�̅(𝜓𝜓 − 𝜓𝜓�)� ⋅ �𝜎𝜎𝜉𝜉𝜎𝜎𝜓𝜓�
−1

. (1) 

Here, for a variable 𝑥𝑥 , 𝜀𝜀[𝑥𝑥]  is the expected value, �̅�𝑥  is the 
ensemble mean, and 𝜎𝜎𝑥𝑥 is the standard deviation. 

For RSA, we apply the routing, modulation, and spectrum 
allocation (RMSA) algorithm, which adaptively changes the 
modulation format according to the transmission distance [16]. 
For each candidate path calculated by the k-shortest paths 
method ( 𝑘𝑘max = 8 ), the optimal modulation format is 
determined for each path length, and the frequency slot size is 
determined according to the modulation scheme. Frequency 
slots are allocated by the first-fit method. The traffic matrix is 
assumed to be uniform, and the capacity requirement of each 
request is uniformly distributed within 10 -100 Gbps.  

 
Fig. 2. (a) Distributions of real optical networks (black dots), ideal networks 
with uniform node locations, as studied in III.A (red circles), and a realistic 
network with NSFNET node locations (blue circle). The data for real optical 
networks are adopted from the Table 1 in [6, 9] for |𝑉𝑉| < 40. (b) Example of 
a physical topology, 𝐺𝐺𝑚𝑚 ∈ 𝒢𝒢14,21. (c) NSFNET topology. 

For another system element, the physical topology, we 
consider a physical topology set 𝒢𝒢|𝑉𝑉|,|𝐸𝐸| that is defined for each 
network size, in order to examine the network size dependency 
in III.A. In Figure 2(a), the black dots show the distribution of 
real networks. In this paper, we investigate the eight network 
scales indicated by the red circles in the figure: 𝒢𝒢6,9 , 𝒢𝒢7,11 , 
𝒢𝒢10,16 , 𝒢𝒢14,21 , 𝒢𝒢17,26 , 𝒢𝒢20,32 , 𝒢𝒢24,38 , and 𝒢𝒢28,41 . For each 
physical topology set 𝒢𝒢|𝑉𝑉|,|𝐸𝐸| , the edges of each physical 
topology 𝐺𝐺𝑚𝑚  are randomly chosen from the edges of the 
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complete graph. Because redundancy is an essential requirement 
for a real network, an edge connectivity constraint of 𝜅𝜅𝐸𝐸 ≥ 2 is 
imposed on the selection process. The size 𝑛𝑛𝐺𝐺 of each set 𝒢𝒢|𝑉𝑉|,|𝐸𝐸| 
(i.e., the number of topologies) is set to 𝑛𝑛𝐺𝐺 = 500, as we found 
that the correlation coefficient almost converged for 𝑛𝑛𝐺𝐺 ≥ 400. 

As for the node locations, we use evenly spaced locations, as 
shown in Figure 2(b), for the discussion in III.A. The reason for 
this choice is that the spatial nonuniformity of node locations 
differs greatly from one real network to another; accordingly, 
the effects of the network size and the spatial nonuniformity 
cannot be treated separately when comparing multiple real 
networks of different sizes.  In a future work, we will examine 
the effect of the spatial nonuniformity of node locations, but in 
this paper, we limit the discussion to the scale dependency at 
spatially uniform node locations. For consistency with the 
discussion in III.A., III.B will show results based on a physical 
topology set 𝒢𝒢14,21

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁  that was generated from node locations 
similar to those of the National Science Foundation Network 
(NSFNET), as shown in Figure 2(c). 

B. Topological features 
Physical topology features can be broadly classified into 

spectral and nonspectral quantities. The former are considered 
in terms of spectral graph theory, while the latter are widely 
considered in the context of complex network analysis. 

First, for spectral quantities, the spectra are the eigenvalues 
of a graph's matrix representation, which can be the graph's 
Laplacian or distance Laplacian, for example. Table I lists the 
matrices studied in this paper. The spectra of Laplacians have 
been examined from various points of view, such as coloring 
problems and connectivity [17], while the distance Laplacian 
has been studied relatively recently [18]. Among the various 
spectral quantities, one of particular note is the second 
eigenvalue of the Laplacian, the algebraic connectivity 𝑎𝑎𝐺𝐺 . The 
maximum eigenvalue of the distance Laplacian is called the 
distance Laplacian spectral radius, which has been pointed out 
to be related to graph coloring [19]. In this paper, we examine 
the maximum eigenvalue of the geodesic distance Laplacian, 
which we call the geodesic distance Laplacian spectral radius 
𝑧𝑧𝐺𝐺. Through correlation analysis, we have found that it has an 
important relation to the optical backbone network.  

TABLE I.  SPECTRAL QUANTITIES 

symbol Definition 

ℒ 
Laplacian, ℒ ≔ 𝒟𝒟 −𝒜𝒜, where 𝒜𝒜 and 𝒟𝒟 respectively denote 
an adjacency matrix and a degree matrix. 

ℒ𝑔𝑔 Geodesic Laplacian, i.e., the weighted Laplacian, where the 
weights are geodesic distances between nodes. 

ℒ𝐷𝐷 

Distance Laplacian, ℒ𝐷𝐷 ≔ 𝒟𝒟𝐷𝐷 −𝒜𝒜𝐷𝐷. 𝒜𝒜𝐷𝐷 is a distance 
matrix, where 𝒜𝒜𝑠𝑠,𝑑𝑑

𝐷𝐷  denotes the minimum number of hops 
between source and destination nodes, and 𝒟𝒟𝐷𝐷 is a 
transmission matrix. 

ℒ𝑔𝑔𝐷𝐷 

Geodesic distance Laplacian, ℒ𝑔𝑔𝐷𝐷 ≔ 𝒟𝒟𝑔𝑔𝐷𝐷 −𝒜𝒜𝑔𝑔
𝐷𝐷, i.e., the 

weighted distance Laplacian, where the weights are geodesic 
distances between nodes, and 𝒜𝒜𝑔𝑔

𝐷𝐷
𝑠𝑠,𝑑𝑑

 denotes the shortest path 
length between source and destination nodes. 

 

Second, the nonspectral quantities are listed in Table II. The 
average number of hops, ℎ�, and the cluster coefficient 𝐶𝐶̅ are the 
most commonly used indices in complex network analysis. The 
global efficiency �̅�𝜂 and the geodesic global efficiency �̅�𝜂g, which 

includes the information on physical distance, correspond to the 
quantities to ℎ� and ℎ�𝑔𝑔, respectively. They are used in complex 
network analysis as more stable features [20]. 

TABLE II.  NONSPECTRAL QUANTITIES 

symbol Definition 

ℎ�  Average minimum number of hops. 

ℎ�𝑔𝑔 Average shortest path length. 

𝐶𝐶̅ Clustering coefficient, 𝐶𝐶̅ ≔ |𝑉𝑉|−1 ∑ [2𝑁𝑁𝑖𝑖/(𝑑𝑑𝑖𝑖2 − 𝑑𝑑𝑖𝑖)]∀𝑖𝑖 , 
where 𝑁𝑁𝑖𝑖 is the local triplets, and 𝑑𝑑𝑖𝑖 is the node’s degree. 

𝛿𝛿 Graph diameter. 

𝛿𝛿𝑔𝑔 Weighted graph diameter, i.e., the maximum shortest path 
length. 

�̅�𝜂 Global efficiency, �̅�𝜂 ≔ [|𝑉𝑉|(|𝑉𝑉|− 1)]−1 ∑ (𝒜𝒜𝑠𝑠,𝑑𝑑
𝐷𝐷 )−1∀𝑠𝑠,𝑑𝑑  

�̅�𝜂𝑔𝑔 

Geodesic global efficiency, i.e., the weighted global 
efficiency, defined by using the 𝒜𝒜𝑔𝑔

𝐷𝐷 of 𝐺𝐺𝑚𝑚 and that of the 
complete graph, 𝐾𝐾: 
 �̅�𝜂𝑔𝑔 ≔ ∑ [𝒜𝒜𝑔𝑔

𝐷𝐷(𝐺𝐺𝑚𝑚)𝑠𝑠,𝑑𝑑]−1∀𝑠𝑠,𝑑𝑑 /∑ [𝒜𝒜𝑔𝑔
𝐷𝐷(𝐾𝐾)𝑠𝑠,𝑑𝑑]−1∀𝑠𝑠,𝑑𝑑 . 

III. RESULTS AND DISCUSSIONS 

A. Important topology features and dependence on network 
size 
To illustrate a typical relationship between the physical 

topology features and system performance, Figure 3 shows the 
relationship between the algebraic connectivity 𝑎𝑎𝐺𝐺  and the 
traffic load tolerance 𝜉𝜉𝑚𝑚 for 𝒢𝒢14,21. There is a strong correlation 
of 0.84 (≥ 0.7), and the total network capacity increases in 
proportion to the algebraic connectivity. Reference [2] does not 
explain why the total throughput greatly depends on the physical 
topology, but it clearly can be explained largely by the 
difference in algebraic connectivity. The dynamic frequency 
assignment problem for EONs and the static wavelength 
assignment problem on the basis of graph coloring are dual 
problems; accordingly, we can see that the problem here is a 
rephrasing of the relationship between the number of required 
wavelengths and the algebraic connectivity, as mentioned in 
[11].  

 

Fig. 3. Relation between algebraic connectivity and the traffic load tolerance 
for 𝒢𝒢14,21. The error bars were calculated from the standard deviation of the 
request blocking probability. 

Figure 4 shows the results of the correlation analysis 
between the spectral quantities other than the algebraic 
connectivity and the system performance, including the cost. In 
the figure, 𝑆𝑆(ℒ) represents the spectrum of ℒ. There are three 
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cases for evaluation: no correlation, |𝜌𝜌| < 0.4 ; correlation, 
0.4 ≤ |𝜌𝜌| < 0.7; and strong correlation, 0.7 ≤ |𝜌𝜌| . It can be 
seen that the strongest correlation with the traffic load tolerance 
is exhibited by the Laplacian's second eigenvalue, i.e., the 
algebraic connectivity. Moreover, among the quantities that are 
strongly correlated with the traffic load tolerance, the maximum 
value of 𝑆𝑆(ℒ𝑔𝑔𝐷𝐷), the geodesic distance Laplacian spectral radius 
𝑧𝑧𝐺𝐺, is also correlated with the cost. 

 
Fig. 4. Correlations between the graph's spectral quantities and the system 
performance indices for 𝒢𝒢14,21: (a) 𝜌𝜌(𝜉𝜉,𝜓𝜓) and (b) 𝜌𝜌(Cost,𝜓𝜓), where 𝜓𝜓 =
�𝑆𝑆(ℒ),𝑆𝑆�ℒ𝑔𝑔�,𝑆𝑆(ℒ𝐷𝐷),𝑆𝑆�ℒ𝑔𝑔𝐷𝐷��, and 𝑆𝑆(ℒ) represents the spectrum of ℒ. The 
eigenvalues of these spectra 𝜇𝜇𝑖𝑖  (𝑖𝑖 = 0, 1,⋯ , |𝑉𝑉| − 1) are listed in the order  
𝜇𝜇0 ≤ 𝜇𝜇1 ≤ 𝜇𝜇2 ≤ ⋯𝜇𝜇|𝑉𝑉|−1. 

Figure 5 shows the results for the nonspectral quantities, 
along with the spectral quantities {𝑎𝑎𝐺𝐺 , 𝑧𝑧𝐺𝐺} extracted through the 
discussion for Figure 4. The quantities can be generally 
classified into two groups: one group is correlated only with the 
traffic load tolerance 𝜉𝜉, whereas the other group is correlated 
with both the traffic load tolerance and the cost. A topology 
focused on the communication performance can be obtained by 
maximizing {𝑎𝑎𝐺𝐺 , �̅�𝜂}  or minimizing {𝛿𝛿, ℎ�,𝐶𝐶̅} . Among these 
quantities, the spectral quantity 𝑎𝑎𝐺𝐺  has the strongest correlation. 
On the other hand, a physical topology with good traffic load 
tolerance and cost can be obtained by minimizing {𝑧𝑧𝐺𝐺 , 𝛿𝛿𝑔𝑔,ℎ�𝑔𝑔} or 
maximizing �̅�𝜂𝑔𝑔. Among these quantities, the geodesic distance 
Laplacian spectral radius 𝑧𝑧𝐺𝐺 has the strongest correlation with 
the traffic load tolerance, while �̅�𝜂𝑔𝑔 has the strongest correlation 
with the cost. We exclude (𝛿𝛿, 𝛿𝛿𝑔𝑔) from the following discussion 
because (ℎ�, ℎ�𝑔𝑔) show better correlation. 

Next, Figure 6 shows the dependence of the correlation 
between the physical topology features and the system 
performance on the network size. The physical topology features 
{𝑎𝑎𝐺𝐺 , ℎ�, �̅�𝜂,𝐶𝐶̅, 𝑧𝑧𝐺𝐺 , ℎ�𝑔𝑔, �̅�𝜂𝑔𝑔}  were extracted through the discussion 
for Figure 5. First, we examine {𝑎𝑎𝐺𝐺 , ℎ�, �̅�𝜂,𝐶𝐶̅} , which are 
correlated only with the traffic load tolerance. From Figure 6(a), 
the correlations for {𝑎𝑎𝐺𝐺 , ℎ� , �̅�𝜂}  become stronger as the scale 
increases, with 𝑎𝑎𝐺𝐺  being the most suitable feature for optimizing 

the network capacity. Because �̅�𝜂 is slightly less correlated than 
ℎ� and behaves in almost the same way, we exclude it from the 
following discussion. The cluster coefficient 𝐶𝐶̅ remains weakly 
correlated independent of the network size. Next, we examine 
{𝑧𝑧𝐺𝐺 , ℎ�𝑔𝑔, �̅�𝜂𝑔𝑔} , which are correlated with both the traffic load 
tolerance and the cost. We exclude �̅�𝜂𝑔𝑔  from the following 
discussion, because it loses its correlation with the traffic load 
tolerance as the network size increases. In contrast, ℎ�𝑔𝑔 remains 
correlated with both, although the correlation weakens as the 
network size increases. 𝑧𝑧𝐺𝐺  behaves almost the same as ℎ�𝑔𝑔: in 
comparison to ℎ�𝑔𝑔, the cost correlation is weaker but the traffic 
load tolerance correlation is stronger. The choice of {𝑧𝑧𝐺𝐺 , ℎ�𝑔𝑔} 
thus depends on whether we emphasize the communication 
capacity or the cost. 

 

Fig. 5. Correlations between various graph quantities in 𝜓𝜓 and system 
performance indices for 𝒢𝒢14,21: (a) 𝜌𝜌(𝜉𝜉,𝜓𝜓) and (b) 𝜌𝜌(Cost,𝜓𝜓). 

 

Fig. 6. Dependence of correlations, (a) 𝜌𝜌(𝜉𝜉,𝜓𝜓) and (b) 𝜌𝜌(Cost,𝜓𝜓), on the 
network size, where 𝜓𝜓 = {𝑎𝑎𝐺𝐺 , ℎ�, �̅�𝜂,𝐶𝐶̅, 𝑧𝑧𝐺𝐺 , ℎ�𝑔𝑔, �̅�𝜂𝑔𝑔}. 

2022 International Conference on Optical Network Design and Modelling (ONDM)



B. Physical topology design classification and its relation to 
real networks and graph generation models 
In actual physical topology design, the weights of important 

factors such as the communication capacity, cost, and robustness 
may vary depending on the system. Accordingly, it is important 
to understand the nature of physical topology design models and 
to apply an appropriate model. In this section, we examine the 
relationship between real networks and graph generation models 
and the physical topology design classification in terms of 
combinations of the indices extracted in III.A. 

Figure 7 shows the physical topology design classification 
for four notable optimizations based on these combinations. The 
extracted indices are {𝑎𝑎𝐺𝐺 , ℎ�}, which are strongly correlated with 
the traffic load tolerance; {𝑧𝑧𝐺𝐺 , ℎ�𝑔𝑔}, which are strongly correlated 
with both the traffic load tolerance and the cost; and the cluster 
coefficient. By using the capacity, cost, and robustness as cutoffs, 
we specify the classification as (i, ii, iii, iv), which respectively 
correspond to optimizations that are  capacity-oriented, 
capacity- and cost-oriented, robustness-aware capacity- and 
cost-oriented, and robustness-oriented. Here, robustness means 
that the vertex connectivity 𝜅𝜅𝑉𝑉 and the edge connectivity 𝜅𝜅𝐸𝐸 are 
both large. For qualitative evaluation, we also consider a column 
vector 𝜃𝜃 = (capacity, cost, robustness)𝑁𝑁 . This vector is such 
that it gives +2 points for 𝜌𝜌 ∼ 0.7 and +1 point for 𝜌𝜌 ∼ 0.4. For 
example, to maximize the algebraic connectivity on the leftmost 
path in the figure, 𝜃𝜃 = (+2, +0, +1)𝑁𝑁. Note that the correlation 
between 𝑎𝑎𝐺𝐺  and ℎ� is as high as -0.83, as in the case of 𝒢𝒢14,21

NSFNET, 
and the same is true for maximizing −ℎ�. Because the algebraic 
connectivity is related to robustness by 𝑎𝑎𝐺𝐺 ≤ 𝜅𝜅𝑉𝑉 ≤ 𝜅𝜅𝐸𝐸 [21], we 
can say qualitatively that as the algebraic connectivity increases, 
the robustness becomes higher. Even when the algebraic 
connectivity is constant, the BA model with larger cluster 
coefficients becomes more robust than the ER model (e.g., as 
shown in Figure 8 in [22]); that is, larger cluster coefficients 
increase the robustness. 

 
Fig. 7. Physical topology design classification diagram for optical backbone 
networks. 

Figure 8 shows scatter plots for the physical topology set 
𝒢𝒢14,21
NSFNET, with the traffic load tolerance (left) and cost (right) as 

color bars. The diamonds represent the average ER graph, and 
the stars represent the NSFNET topology. First, we use Figures 
8(a) and (b) to examine the relationship between the non-
geometric graph generation model and the design classification. 
The ER model is classified as (i) in Figure 7. The BA model 
generally has ℎ�BA ∼ ℎ�ER and 𝐶𝐶B̅A > 𝐶𝐶E̅R, and it is classified as 
(iv) in Figure 7. As can be seen from Figure 8(a), the correlation 
between the cluster coefficient and the traffic load tolerance is 
weak and negative, which suggests that the communication 
capacity of the BA model is slightly lower than that of the ER 
model. In addition, Figure 8(b) clearly shows that the above 
graph generation method is independent of the cost. 

Next, we examine the relationship with the real network, as 
shown in Figures 8(c) and (d). The real network was designed to 
have a small ℎ�𝑔𝑔, and we can see that the topology is superior for 
EONs in terms of both the capacity and the cost. Note that this 
should be widely analyzed for networks besides the NSFNET, 
but it is at least true for networks in Germany and Europe. In 
addition, the cluster coefficients of real networks are widely 
distributed between 0 and 0.4 [6], which suggests that there is a 
range among categories (ii) and (iii) due to differences in design 
concepts. 

Finally, let us consider the relation to the geometric graph 
generation model. The cost of the Gabriel model is small, but it 
has been reported that the average number of hops is large and 
the cluster coefficient is about 0.1-0.3 (e.g., Table 9 in [7]). With 
this in mind, Figure 8(a) shows that the communication capacity 
of the Gabriel model should be considered low, and the model 
is not included in categories (i-iv) described above. On the other 
hand, the SNR-BA model has been shown to generate topologies 
close to those of real optical backbone networks and to have a 
particularly small ℎ�𝑔𝑔 as compared to the ER and BA models (see 
Figure 10 in [9]). With this in mind, Figures 7 and 8(c) and (d) 
show that the SNR-BA model can be categorized as either (ii) or 
(iii). 

 

Fig. 8. Scatter plots of {𝐶𝐶̅, ℎ�} and {𝐶𝐶̅,ℎ�𝑔𝑔} for 𝒢𝒢14,21
NSFNET, with color bars 

indicating the traffic load tolerance 𝜉𝜉 and the cost. The diamonds represent the 
average ER graph, and the stars represent the NSFNET topology. 
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In summary, {𝑧𝑧𝐺𝐺 , ℎ�𝑔𝑔} are important indices for designing a 
physical topology that is close to that of a real network and has 
excellent communication capacity and cost. The importance of 
ℎ�𝑔𝑔 for the capacity was previously pointed out in [13], while we 
have investigated not only the capacity but also the cost in this 
paper. The newly defined geodesic distance Laplacian spectral 
radius is also important for expanding the applicability of the 
spectral graph theory approach. For example, for the spectral 
quantity of the algebraic connectivity, an edge addition method 
was proposed to generate an efficient graph [23]. We also expect 
that the scope of physical topology design will be expanded if it 
is combined with techniques such as graph sparsification [24]. 

IV. CONCLUSION 
In designing a physical topology, it is important to 

understand the relationship between the physical topology 
features and system performance. In this paper, the correlation 
between various topology features and the system performance 
(communication capacity and cost) was comprehensively 
evaluated. From the correlation analysis results, we developed a 
classification of physical topology designs on the basis of 
combinations of highly correlated physical topology features. 
Moreover, we discussed the classification in terms of real 
networks and graph generation models. In conclusion, we have 
shown that the average path length and the geodesic distance 
Laplacian spectral radius are two important factors in physical 
topology design for optical backbone networks. In particular, the 
geodesic distance Laplacian spectral radius is a spectral 
quantity that has been newly defined in this paper for optical 
network research. We believe that it is an important finding that 
will enable systematical physical topology research through its 
connection with spectral graph theory. 

We are currently working on whether the correlation 
between physical topology features and system performance 
presented in this paper holds even in the presence of 
nonuniformity in node locations and traffic. 
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