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Abstract—One of the key performance metrics for optical
networks is the maximum achievable throughput. Determining
it however, is an NP-hard optimisation problem, often solved
via computationally expensive integer linear programming (ILP)
formulations. Heuristics, in conjunction with sequential loading,
are scalable but non-exact. There is, thus, a need for ultra-fast
performance evaluation of optical networks. For the first time, we
propose message passing neural networks (MPNN), to learn the
relationship between the structure and the maximum achievable
throughput of optical networks. We demonstrate that MPNNs
can accurately predict the maximum achievable throughput
while reducing the computational time by 5-orders of magnitude
compared to the ILP.
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I. INTRODUCTION

Multiwavelength optical networks underpin the global data
communication network infrastructure and use the wavelength
domain both for routing and the increase in point-to-point
data transmission. To operate these networks, a routing and
wavelength assignment (RWA) is solved to establish lightpaths
between the different node pairs. This problem has been shown
to be NP-hard and is, therefore, computationally difficult to
solve optimally [1].

The overarching goal of physical network design is to
maximise the performance, measured by throughput, latency
and resilience, whilst minimising the cost and/or resource
use, making them intelligent and adaptive [2]. This is an
evolution from the previous goals of minimising the number of
wavelengths needed to optically route data within the network
[3], where the relationship between wavelength requirements
and the physical topology is well understood [4]. However,
due to growing number of wavelengths in fibres and the
associated linear and nonlinear physical layer impairments,
physical properties play a significant role in determining both
routing and throughput, and must be taken into account in
network design [5].

To measure the maximum throughput achievable in any
given network, an optimal solution to the RWA problem needs
to be found. Integer linear programming (ILP) formulations
have been shown to solve the RWA problem optimally [6],
however are computationally infeasible for networks larger
than about 30 nodes, on average already taking 1000s of
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Fig. 1: Diagram demonstrating the process of message passing.

seconds for 15 node networks. Problem-agnostic optimisation
frameworks, that aim at efficiently exploring the solution
space, i.e. meta-heuristics, have been shown to give good
solutions in this area, however have no guarantee of achieving
a global optimum, whilst often still taking a long time to
solve [7]. Heuristics are handcrafted algorithms for specific
purposes, based on rules-of-thumb, which on the other hand
are highly-scalable, however have shown limited success com-
pared to ILP solutions [8]. The efficient and accurate mea-
surement of the maximum achievable throughput of optical
networks remains a considerable challenge.

To make this task more computationally efficient, machine
learning has been proposed to learn the relationship between
the topology and performance parameters based on previously
labelled datasets [9]. Traditional deep learning frameworks,
such as artificial neural networks (ANN), operate on grid-style
data, i.e. vector/matrix inputs. Therefore, when applying them
to graph structured problems, suitable graph features need
to be chosen, however the graph structure, i.e. how nodes
are connected in the graph, is not utilised, thereby losing
valuable features. Geometric deep learning, a collection of
deep-learning frameworks designed for graph structured data,
on the other hand incorporates the graph structure within
the learning process. A collection of supervised learning
methodologies, within geometric deep learning, are referred
to as graph neural networks (GNN), where message passing
neural networks (MPNN) are a specific formulation, shown to
perform well for regression tasks [10].

In this paper we propose to use an MPNN architecture
and apply it to model the throughput performance of optical
networks, by learning the relationship between the topology,
demand and the maximum achievable throughput. Initially
this work focused on core networks. It uses a large dataset
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(about 80000 graphs) to train an MPNN model to generalise
the relationship between the topology and the performance of
optical networks. We demonstrate significant computational
time gains (5 orders of magnitude less than ILP) made
when using MPNNs to estimate network performance, thus
enabling future topology optimisation including the maximum
achievable throughput,and thereby making topology design
more intelligent and efficient.

II. MESSAGE PASSING NEURAL NETWORKS

A set of digraphs, individually denoted as G(N,E), where
N and E represent the set of nodes and edges, respectively,
are used to represent the data. All nodes and edges have a
pre-determined set of node and edge features, xn and enu,
respectively, where n, u ∈ N and (n, u) ∈ E. These node
and edge features, are vectors with information relating to
either nodes, i.e. degree, traffic, or for the edges, i.e. distance,
signal-to-noise (SNR) ratio. In addition to these node and
edge features, MPNNs use abstract vectors. An abstract vector
is referred to as a node’s hidden state, and is represented
by htn or for an edge htnu, where t represents a message
passing iteration. These hidden states are vectors that hold
the embeddings for nodes and edges, i.e. for a specific node
or edge, they capture the structural information from the rest
of the graph. We define the set of node features as XN and
the set of hidden node states as HN .

The MPNN is made up of three stages: (i) message passing
(ii) update (iii) readout. In (i) each node in the graph requests
information from its neighbourhood (N (n)). This information
is given by feeding in node and edge information into a mes-
sage function (Mt(h

t
n, h

t
u, enu)). To form the message of node

n (mt+1
n ), the messages are summed from the neighbourhood

of n, each given by Mt(h
t
n, h

t
u, enu). This is then, in stage

(ii), fed to an update function defined as Ut(h
t
n,m

t+1
n ), which

updates the state (ht+1
n ) of each node. These two steps are

illustrated in the inner block of the diagram shown in figure
1, where one can see that the process is repeated for each
node (n) in nodeset (N ). This procedure iteratively distributes
the information of the graph to every node by collecting the
messages and using these to update the new hidden vectors.

After T , normally chosen to be in the order of the diameter
of the graphs, message passing rounds and update layers,
shown by the outer blocks in figure 1, the hidden states are
aggregated and used to create a graph level prediction y,
represented by stage (iii). This process of aggregation and
graph-level readout is summarised within the readout function
R(HN , XN ), where HN denotes the set of hidden states and
XN the set of node features. The readout function outputs
a scalar value used for prediction. An advantage of this
model is that the architecture is size agnostic, meaning that
the model can be applied to graphs of different sizes. The
message function consists of matrix and vector valued ANNs,
the update of a gated recurrent unit (GRU) and the readout
of an attention mechanism detailed in [11]. Using supervised
learning we can train these three functions, end-to-end, to
predict properties by learning on a large number of labelled

graphs. The next section lays out how we generated the dataset
of graphs and their maximum achievable throughput labels.

III. DATA GENERATION

A dataset of 80000 unique graphs, with 10 to 15 nodes,
were used to train the MPNN. The node locations were chosen
uniform randomly over a grid that represents the size of the
north-American continent, from which the graphs were then
generated via the SNR-BA model [5]. These were labelled
with their corresponding maximum achievable throughput.
This was done by finding the RWA that maximises the
throughput, using an ILP, given a uniform traffic distribution.∑

w∈W

∑
k∈K

δw,k,z = dM · T c
z e ∀z ∈ Z (1)

∑
z∈Z

∑
k∈K

δw,k,zI(j ∈ k) ≤ 1 ∀j ∈ E ∀w ∈W (2)

The ILP used for the labelling of the dataset, uses a decision
variable defined as δw,k,z , where w ∈ W , k ∈ K and
z ∈ Z, are the set of wavelengths, k-shortest paths and node-
pairs, respectively. It is constrained to assigning a lightpath,
subject to the normalised traffic matrix (T c

z ) and the objective
M , defined as in Eq.(1). For this work all the training data
was generated with uniform traffic. Here the objective is to
maximise M . The wavelength continuity and edge-disjoint
constraints of paths are defined in Eq.(2).

Using this ILP formulation, optimal RWAs were found for
each of the graphs in the dataset. Next, their total throughput
was calculated using a closed form Gaussian noise (GN)
physical layer impairments (PLI) model [12] to estimate
the SNR of the different lightpaths. A fully populated C-
band (1530-70 nm) and 32 GBd Nyquist spaced channels,
giving 156 possible wavelengths was assumed. All links were
modelled as multiples of 80km standard single mode fibre
spans, amplified with identical erbium-doped fibre amplifiers
(noise figure of 4dB). They were interfaced with colourless,
directionless and contentionless, reconfigurable optical add-
drop multiplexers. After finding the SNR of lightpaths, the
capacity was calculated with Shannon’s formula and summed
over all lightpaths. Using these throughput labels the MPNN
was trained in a supervised manner and tested over an unseen
dataset of graphs taken from the same distribution, the results
of which are analysed in the next section.

IV. RESULTS

For each of the 6000 graphs in the unseen test set, the
performance was evaluated via ILP (used for the labels),
MPNN, First-Fit k-Shortest-Path (FF-kSP), k-Shortest-Path
First-Fit (kSP-FF) and plotted in figure 2a. The latter two
are commonly used heuristics for the estimation of maximum
achievable throughput [8]. To evaluate the performance of
each method, the coefficient of determination (R2) and the
Pearson’s correlation coefficient (ρ) were used as metrics. It
can be seen that the kSP-FF and FF-kSP heuristics generally
underperformed compared to the ILP, giving R2 values of
0.10 and 0.74, respectively, compared to a value of 0.95 for
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Fig. 2: (a) Residual plot showing the predicted maximum achievable throughput values compared to the true ILP calculated values. (b) Comparison of the
computational time needed for ILP, FF-kSP, kSP-FF and MPNN.

the MPNN. This signifies poor predictive accuracy of the
labels. The MPNN in comparison has learnt on a variety of
graphs of these sizes and can more accurately predict the trend
for throughput. The other metric, the Pearson’s correlation
coefficient (ρ), indicates how linearly correlated two quantities
are, in this case the predicted throughput and the actual, with
higher ρ values indicating higher linear correlation. It can
be seen that the heuristics generally perform well, and the
FF-kSP has a high linear correlation (ρ = 0.96) between
the estimated throughput values and those calculated via the
ILP. The MPNN, has the highest correlation (ρ = 0.97),
meaning it predicts the relative throughput performance of
networks the best. To quantify the computational benefits of
using MPNNs to model optical networks, graphs with nodes
varying from 10 to 20, were used to evaluate the ILP, FF-kSP,
kSP-FF and MPNN time performance. For each graph, the
respective methodologies were used to calculate the maximum
achievable throughput and their computation times measured
and plotted in figure 2b. The reduction in computation time
for the MPNN model is clear and is in the range of 10s of
ms, compared to 10s, 100s and 1000s of seconds for kSP-FF,
FF-kSP and ILP respectively. The MPNN model is thus an
accurate and fast method for evaluating performance metrics
of graphs, which are generally computationally difficult to
evaluate. The widespread use of MPNN would allow for
the fast evaluation of a large number of graphs within any
topology design process, enabling its use in a host of more
complex optimisation algorithms.

V. CONCLUSION

We show that MPNNs can learn to predict with high
accuracy, computationally expensive performance parameters
such as the maximum achievable throughput of an optical net-
work, whilst massively reducing the computational complexity
(about 5 orders of magnitude less than ILP) of predicting
this property, enabling its inclusion in future optical network

design. Work is ongoing to expand the model to larger number
of nodes, traffic asymmetry and explore its generalisability.
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