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Abstract—Machine Learning (ML) is being widely investigated
to automate safety-critical tasks in optical-network management.
However, in some cases, decisions taken by ML models are hard
to interpret, motivate and trust, and this lack of explainability
complicates ML adoption in network management. The rising
field of Explainable Artificial Intelligence (XAI) tries to uncover
the reasoning behind the decision-making of complex ML mod-
els, offering end-users a stronger sense of trust towards ML-
automated decisions. In this paper we showcase an application
of XAI, focusing on fault localization, and analyze the reasoning
of the ML model, trained on real Optical Signal-to-Noise Ratio
measurements, in two scenarios. In the first scenario we use
measurements from a single monitor at the receiver, while in
the second we also use measurements from multiple monitors
along the path. With XAI, we show that additional monitors
allow network operators to better understand model’s behavior,
making ML model more trustable and, hence, more practically
adoptable.

Index Terms—Optical networks, network management, fault
localization, ML, XAI, SHAP

I. INTRODUCTION

Automated fault management is a key objective for op-
erators willing to improve network reliability and reduce
operational expenses. Hence, Machine Learning (ML), in
recent years, has been intensively investigated to automate
fault-management tasks, as failure detection, identification
and localization in optical networks [1]–[4], by observing
behavioral patterns of Quality of Transmission metrics, as the
Signal-to-Noise Ratio (SNR).

However, accuracy of complex ML models cannot be proven
theoretically, but only evaluated experimentally on a selected
dataset, and the reasoning behind the decisions of these models
cannot be overseen by human experts. Thus, it is very hard
to control whether decision-making of the ML model is
flawed and/or influenced by the specific dataset used, and the
decisions are perceived as coming from “black boxes” with
scarce explainability. As network operators are unwilling to
trust decisions carried out by “black boxes” [5], [6], novel
approaches are being investigated to make ML-based decisions
explainable and be sure that correct decisions are taken based
on correct logic.

Explainable AI (XAI) refers to a set of techniques that allow
to uncover the reasoning of a ML model to a human expert
in an easy-to-understand format, e.g., by visualizing learned
data dependencies, hence making ML models more trustable
and more likely to be adopted practically.

In this paper, we apply XAI to investigate the reasoning
of ML models in the failure localization problem. Multiple
ML models solving several fault-management problems in
optical networks exist, but, to the best of our knowledge,
the underlying reasoning of those models has not been in-
vestigated using XAI. In particular, we use SHAP [7] (a well
known XAI framework) to find correlations between the input
data and model decisions and compare explanations in two
scenarios with different amount of telemetry: 1) Optical SNR
(OSNR) measurements from a single monitor at the receiver
and 2) OSNR measurements from multiple monitors along
the lightpath. We show that additional telemetry along the
lightpath can improve model explainability, increasing trust
in its predictions.

II. PROBLEM STATEMENT AND DATA

We model the failure-localization problem as a supervised
multi-class classification problem. We use real telemetry data
obtained on a testbed of the National Institute of Information
and Communications Technology (NICT) in Sendai, Japan
(see Fig. 1). ROADMs, identified as Node A, B, C and D
are equipped with an optical amplifier (OA) at their input
and output ports. Links between ROADMs are emulated by
attenuators with loss equivalent to 80 km long optical fiber. We
consider a single lightpath traversing all 3 links and carrying
an OOK modulated 10G signal. A fault (11 dB additional
attenuation) can occur at any one of the three links, and our
objective is to determine the faulty link.

OSNR is measured every second by monitors at the input
ports of three traversed nodes (B, C and D). To make our ML-
based classifier independent from the specific OSNR values,
that may vary according to system settings (e.g., OA gain,
span length, central frequency, etc.), we normalize OSNR
sequences from every monitor to zero mean and unit standard
deviation. Classification is performed for OSNR windows
of W seconds. For each window we consider the following

Fig. 1. NICT’s Sendai testbed setup
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5 features: average (av), standard deviation (std), minimum
(min), maximum (max) and peak-to-peak (p2p) OSNR values.

We consider two scenarios: 1) single monitor (SM), where
we use OSNR telemetry only from the receiver node D,
and, hence, ML model makes a prediction based on 5 input
features, and 2) multiple monitors (MM), where we use OSNR
telemetry from all three traversed nodes B, C, D, with a total
of 15 features (5 features from each monitor) as input to the
ML model. Second scenario represents the highly automated
approach to network management characterized by having
many sources of telemetry across the network, as in Ref. [4].

In both scenarios, we train XGBoost (XGB) classifier based
on a gradient boosting model, optimizing hyperparameters
for different window sizes and fixing a window size of 100
samples (seconds), as it guarantees localization accuracy close
to 1 in both SM and MM scenarios. For each fault we consider
10000 windows from each monitor during training and testing,
and to obtain global explanations. We apply SHAP to explain
model predictions towards each of the three classes (three
faulty links) to understand how the features from different
monitors drive the decisions of the localization model.

III. EXPLAINING MODEL BEHAVIOR FOR AUTOMATED
FAULT LOCALIZATION

XAI techniques can provide explanations to justify why
and how the model arrived to a certain decision. These
explanations can be either local, i.e., they explain a decision
for a specific data instance, or global, i.e., they explain model’s
decisions towards a particular class. In our work, we are
interested in explaining model’s decisions towards each class
(i.e., the different fault locations), in other words, global
explanations. To this end, we apply the SHAP framework,
that is based on Shapley value, a concept from game theory
that quantifies contributions of different players to the total
payoff [7]. In the context of explainability, Shapley values
are computed by perturbing input features and by monitoring
how they influence model predictions, while iterating through
all permutations of the input feature vector. A Shapley value
is computed for each feature towards each of the classes for
each explained data sample. While XGB models can only
rank input features by their importance, SHAP provides an
understanding of how specific values of input features drive the
ML model towards particular decisions, by correlating feature
importance (Shapley value) with feature original value and
model’s predictions.

In the following, we discuss model explanations relative to
the MM and the SM scenarios.

A. Multiple Monitors

Figure 2(a), (b) and (c) show the summary plots produced by
SHAP in the MM scenario to explain the decision of localizing
a fault on link L = 1, L = 2 and L = 3, respectively.

The summary plot combines feature importance with feature
values to explain model’s behavior. Horizontal axis represents
the Shapley value scale. Each point of the summary plot is
a Shapley value for a given feature in a given data sample.

The vertical axis represents features ranked according to their
importance. Features that play highest role in localizing a
particular faulty link L have many points with high absolute
Shapley values and are placed at the top of the list. Summary
plots in Fig. 2 visualize correlations between values of a
feature and the impact on the prediction towards each class.
Red (or blue) dots mean that high (or low) values of some
feature F contribute towards predicting that fault is at link L
(positive Shapley values) or not at link L (negative Shapley
values). In the figure, prefixes B, C and D define the location
of the monitor (see Fig. 1).

Looking at Fig. 2(a), we can observe that B p2p OSNR and
B std OSNR are the two most significant features to locate
fault at link 1, as there are many data points with high absolute
Shapley values for those features. As intuition would suggest,
the most impacting features are related to OSNR measured by
the monitor located at the end of the faulty link. In particular,
explanations towards predicting that fault location is at link 1
are based on strictly polarized values of the features: low for
B p2p OSNR and high for B std OSNR, making it easy for a
domain expert to verify.

Similar observation can be drawn looking at Fig. 2(c); in
this case the most important features used to localize fault
at link 3 are D av OSNR, D min OSNR, C av OSNR and
D max OSNR. Three of these features are again related to
OSNR measured by the monitor at the end of the faulty link. In
particular, we see that the model correlated medium values of
D av OSNR, high values of D min OSNR and medium values
of D max OSNR with a failure at link 3. On the contrary, C av
OSNR is based on OSNR measured before the fault, and is
used by the ML model to build a proof by contradiction, as
high value of this feature contributes towards locating a fault
at link 3, while low value of this feature contributes towards
locating a fault at other 2 links (check Fig. 2(a) and (b)).

More insightful (and less intuitive) observations arise by
looking at the summary plot in Fig. 2(b). Here, the most im-
portant features to localize fault at link 2 are B p2p OSNR and
D av OSNR. This is an important insight in the reasoning of
the model: to classify failure at link 2, the model relies mostly
on measurements from monitors deployed at the previous and
next link from the fault. In fact, the values of these two features
distinguish this fault location from the other two: a high value
of B p2p OSNR contributes towards locating a fault at link 2,
while low value at Fig. 2(a) contributes towards locating a fault
at link 1; similarly a high value of D av OSNR contributes
towards locating a fault at link 2, while medium value at Fig.
2(c) contributes towards locating a fault at link 3. Finally, we
note that only the third most important feature is related to
the next monitor after the fault. If C min OSNR is high, it
contributes to failure at link 2, while if low or medium, it
suggests otherwise.

Summarizing, the ML algorithm reasons in two different
ways to localize the faulty link. For two fault locations it
makes a decision using clearly polarized (strictly high or low)
statistics of OSNR measured at the same link, after the fault.
Such reasoning should be easily confirmed or questioned by
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Fig. 2. SHAP summary plots for Multiple Monitors scenario and fault at (a) link 1, (b) link 2, (c) link 3

Fig. 3. SHAP summary plot for Single Monitor scenario and fault at (a) link 1, (b) link 2, (c) link 3

a domain expert. And sometimes ML algorithm uses proof
by contradiction, looking for most distinctive differences in
OSNR behaviour with respect to other cases. Reasoning of
this second type is also easy to verify.

B. Single Monitor

Figures 3(a), (b) and (c) show the summary plot produced
by SHAP in the SM scenario for the fault on link L = 1,
L = 2 and L = 3, respectively. In this case, we have only
one monitor and, hence, only 5 features. The summary plots
show that all features have similar absolute Shapley values,
and hence approximately equivalent importance.

Faults at links 2 and 3 (Fig. 3(b) and Fig. 3(c)) are
distinguished by the value of D min OSNR; it is, respectively,
low and high. However, for the fault at link 1, no single feature
at Fig. 3(a) is strictly positive or negative based on its value. In
fact, we see blue and red dots distributed similarly for positive
and negative Shapley values, meaning that classifier relies on
more complex interactions among different features. Even in
a small network with 3 fiber spans it is hard to verify if the
reasoning used to localize fault at link 1 is reasonable and
general, or overtuned to the training dataset.

IV. CONCLUSION

We have shown that a ML model, trained to solve fault
localization using multi-monitor OSNR telemetry, reasons
using features that have strictly low or high value depending on
the fault location, and its decisions can be clearly explained.
On the other hand, ML model that considers telemetry at a
single monitor at the receiver also successfully distinguishes
faults at different links, but by learning complex interactions
of OSNR statistics, making its reasoning hard to explain even

in our simple network setup. Deploying monitors in every
node, as considered in our multi-monitor results, is probably
too costly for a large network, but this study suggests that
deploying at least some additional monitors not only improves
fault-localization accuracy, but it also significantly improves
explainability of the ML model reasoning, increasing the sense
of trust towards the model and fostering adoption of these ML
tools for fault management. In future work we will investigate
if this conclusion remains true for practical deployments, by
analyzing ML reasoning in larger mesh networks.
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