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Abstract—Time-division-multiplexing passive optical networks
(TDM-PONs), with their massive deployment worldwide, are
considered a fundamental technology for supporting not only
traditional Internet broadband services, but also for new emerg-
ing 5G latency-sensitive services, such as Ultra-Reliable and
Low Latency Communications (URLLC). Traditional dynamic
bandwidth allocation (DBA) mechanisms, currently used to
allocate network resources in TDM-PONs, are not suited to
meet the requirements of these new services with strict latency
requirements, as they use a polling mechanism which can result
in a high queuing delay and ultimately violate URLLC latency
requirements. In this work, we propose a new predictive-based
DBA mechanism for Gigabit Symmetrical PON (XGS-PON) that
allows to reduce the latency to fulfill requirements of emerging
latency-sensitive services. Our solution employs reinforcement
learning (RL) to predict the ingress buffer occupancy of ONUs in
the next DBA cycle. Results show that the proposed RL method
outperforms traditional DBA approaches in terms of upstream
delay while maintaining similar frame loss ratio.

Index Terms—Passive Optical Network, Dynamic Bandwidth
Allocation, Reinforcement Learning

I. INTRODUCTION

URLLC services, such as vehicle-to-vehicle communica-
tions, health care and tactile Internet applications, feature
very strict low-latency requirements [1], which pose critical
challenges in the design of 5G, and beyond, networks. Time
division multiplexing passive optical networks (TDM-PONs)
(and in particular, the Gigabit Symmetrical PON (XGS-PON5)
considered in this work), given their massive deployment
worldwide, are being considered as a candidate solution for
cost-effectively providing traffic aggregation in low-latency 5G
networks [2]. In XGS-PON, an Optical Line Terminal (OLT)
is connected to multiple Optical Network Units (ONUs), and
an algorithm for dynamic bandwidth allocation (DBA) [3]-
[5] is run inside the OLT to allocate bandwidth resources
to upcoming service traffic requests from the ONUs. More
specifically, conventional DBA mechanisms adopt a polling-
based approach to gather information regarding the ONUs
service traffic requests stored in their buffer. First, the OLT
asks the ONU to report its buffer occupancy. After that, the
OLT makes use of the buffer occupancy reports to allocate
network bandwidth efficiently. However, polling-based DBA
mechanisms can incur in high queuing delay, especially for
service traffic bursts that may arrive just after the ONU report
is sent. As such, currently XGS-PONs cannot fully meet the
Quality of Service (QoS) of low-latency services.

In the literature, novel DBAs that feature advanced
reservation-based mechanisms to support low-latency traffic
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flows (e.g., flows associated to fronthaul traffic) [6] have
been discussed but they require redesigning the mobile radio
network. Moreover, other predictive-based DBAs mechanisms
have been proposed that are based on statistical modelling and
supervised learning based models [7], [8]. However, they rely
on historical data collection mechanisms to train the models.
The training method is offline, so they need to be validated
and tested before being used. In this work, we propose a
novel reinforcement learning (RL)-based DBA mechanism that
leverages ONU buffer occupation reports in an online fashion
to predict future traffic requests. The OLT utilizes these predic-
tions to run the DBA algorithm beforehand reducing the delay
experienced by conventional DBA approaches, thus meeting
the requirements of URLLC services. Our approach is based
on online training, i.e. our models learn while they operate
eliminating the need of offline training. Online training offers
a significant advantage in both speed and feasibility when
deploying real XGS-PON-based networks, as gathering large
training sets for offline training may not be viable. We compare
the proposed solution with 3 different DBA mechanisms for
XGS-PON: 1) GigaPON Access Network (GIANT) [3] DBA;
2) Improved Bandwidth Utilization (IBU) [4] DBA; and 3)
a custom predictive-based DBA based on Long Short-Term
Memory (LSTM) inspired by the method in [7]. To mimic
real-world traffic, we used a self-similar traffic generator. Our
preliminary results show that, when network capacity is not
fully saturated, the proposed RL-DBA mechanism outperforms
Traditional methods in terms of latency, while not significantly
increasing the frame loss ratio.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an XGS-PON consisting of an OLT and N
ONUs. We assume three types of Transmission Containers (T-
CONTs) (i.e., T-CONT 2, T-CONT 3, and T-CONT 4 traffic,
while we ignore T-CONT 1 as it has a static bandwidth
allocation regardless of network state) with different QoS
requirements including priority and data rate as defined in
the XGS-PON standard [9]. The upstream link is shared
among ONUs and traffic transmission is scheduled using
TDM. The goal of the DBA algorithm is to guarantee the
latency requirements defined in the service level agreements
(SLAs). Each ONU buffer stores the bursts of multiple end-
users belonging to the same T-CONT class. ONUs have a finite
buffer size to store incoming bursts. Arriving bursts to a full
buffer are dropped.
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Fig. 1: Architecture of the proposed RL-DBA mechanism

ITII. RL-BASED DYNAMIC BANDWIDTH ALLOCATION

Figure 1 shows the schematic of the proposed RL-DBA.
The RL agents are implemented as part of the OLT. The RL
state encodes information about the ONUs buffer occupancy.
At every step, buffer occupancy is used by the RL agents to
predict the subsequent buffer occupancy of each ONU. The
predicted occupancy value is then used by the algorithm to
generate the final allocation bandwidth map (BWmap). The
RL action represents the bandwidth allocation decision taken
by the OLT every DBA cycle. After taking an action, the agent
observe a reward that reflects the accuracy of the predicted
values of ONUs buffers occupancy.

As shown in Figure 1, we use a separate RL agent to predict
the traffic of each T-CONT. The state of the system (Siota1)
is composed of the state of three agents (i.e., Ss1, Ss2, and
Ss3), and the total action (asotq;) consists of actions taken
by each agent (i.e., aj, as, and asz). Three separate rewards
(i.e., r1, o, and r3) are received by the three agents. The
rationale behind using a separate RL agent for each T-CONT
is threefold. First, the traffic of each T-CONT is independent
of the other T-CONTSs. Second, multiple agents operating on
the same environment have a much shorter convergence time
on optimal solutions than using just one. Third, the quality
of the actions of the single agents is far superior to that of
the single agent because each of them has the sole objective
of optimizing the performance of the single T-CONT. This
work focuses on showing the performance of a RL solution
based on multiple agents, while comparisons against a single
centralized agent are left as future work.

Equation 1 defines the total state (S;,tq;) Of the RL model,
which comprises the states of each RL sub-agent used for
each T-CONT type, where Ss,, Ss,, and S, represent the
sub-state of T-CONT-2, T-CONT-3, and T-CONT-4 respec-
tively. Equation 2 shows the sub-state of each T-CONT. The
dimensionality of a sub-state is equal to the number of ONUs.
Equation 3 shows the state of ONU ¢ (Sony;,) at time step ¢,
where r,_1 is the buffer occupancy of ONU; at the previous
time step ¢,,—1, and b,,_1 is the size of the burst that arrived at
the ingress buffer of the ONU; during the previous timestep.
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Equation 4 defines the total action a;.,; taken by the RL
agent. The asyq; consists of the predicted buffer occupancy
of each ONU for various T-CONTSs. The a,¢q; i then used in
the DBA algorithm to make the final allocation decision and
generate the BWmap. g;; represents the predicted value for
the buffer occupancy of T-CONT j for ONU,.
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Each sub-agent receives a reward after taking an action. The
goal of our RL system is to reduce the delay of XGS-PON
traffic by predicting the ONUs buffer occupancy. Equation 5
shows the formula to compute the reward R; for T-CONT-
j. We adopt an exponential reward that varies between 0
and 1. The values of the base parameter and S are chosen
experimentally to enable both a gradual move toward the
objective reward and to give a relatively high reward value
when entering the terminal state, i.e., the state in which the
predicted value equals the actual buffer value. r; represents
the actual buffer occupancy of ONU; at time ¢, and g; is the
predicted occupancy for the same ONU at the same time. The
reward value observed by the agent depends on the accuracy
of the predicted value. The closer the predicted value g; to the
real buffer occupancy r;, the higher the reward.
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The RL model was trained using the Proximal Policy
Optimization (PPO) algorithm [10] with a recurrent policy
(i.e., LSTM). PPO is among the state-of-the-art learning
algorithms for environments with continuous action spaces and
continuous rewards. LSTM was adopted because of its ability
to capture long-range dependencies in the self-similar traffic
[11]. We trained the RL agent to predict the buffer occupancy
of a T-CONT in the next service interval (SI) by exploiting
the previously received buffer occupancy reports. Then, the
bandwidth map BWmap is generated based on the predicted
values. We trained the RL using traffic generated based on a
self-similar model. Then, the model was tested on self-similar
traffic with different burst sizes and inter-arrival rates.

IV. ILLUSTRATIVE NUMERICAL RESULTS

We compare our proposed RL-DBA mechanism to other
three approaches, GIANT [3], IBU [4], and an offline super-
vised learning-based DBA using LSTM (henceforth LSTM)
inspired from [7]. GIANT serves as a baseline due to its
simple design. IBU is a refined version with more advanced
functions. LSTM is a predictive-based algorithm based on
offline supervised learning. Comparison is carried on in terms
of average upstream delay and frame loss ratio. We conducted
our experiments in a simulation environment that consists of
an OLT and 8 ONUs with a network capacity of 10 Gbps
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Fig. 2: Average upstream delay and frame loss ratio of all traffic classes

in upstream and downstream links. The traffic follows a self-
similar shape generated by a Poisson Pareto Burst Process
(PPBP). The simulation environment was built in Python using
SimPy which is a discrete event simulation package and the
RL environment was developed using OpenAl Gym toolkit.

Figures 2a, 2b, and 2c show the upstream delay for T-
CONTs 2, 3, and 4 respectively. RL and LSTM are both
predictive-based mechanisms and reach similar performance,
both outperforming GIANT and IBU. RL and LSTM reduce
T-CONT 2 delay by up to 67% and 88% compared to IBU
and GIANT when the load is below 100% of the network
capacity. RL and LSTM achieve this performance by bringing
the queuing delay near to zero values as both mechanisms
allocate bandwidth for packets beforehand (note that, for low
traffic, the delay of RL is dominated by the propagation
delay which is 250 us). For T-CONT 3, the proposed RL
method reduces the delay of IBU by 70% when the load is
below 80% of the network capacity. For T-CONT 4, RL and
LSTM methods reduces the delay by 32% compared to IBU.
However, as the average load increases above 75%, T-CONT
4’s excess bandwidth decreases as the network is used to serve
traffic from other, higher-priority, T-CONTs.

Figures 2d, 2e, 2f show the frame loss ratio for T-CONTs 2,
3, and 4 respectively. For T-CONT 2, we can see that all the
mechanisms have no frame loss when the load is below the
network bottleneck and similar frame loss ratio when the load
is higher than 150% of the network capacity. For T-CONT 3
and T-CONT 4, for higher upstream loads, our RL approach
(and, similarly, LSTM approach) results in slight increase of
3% and 9% in frame loss ratio compared to GIANT and IBU.
This is because RL overprovisioned bandwidth for T-CONT 2
traffic due to prediction errors, resulting in wasted bandwidth
that could have been allocated to T-CONT 3 and T-CONT 4.
Nonetheless, the significant reduction in the average upstream
delay outweighs this increase in frame loss ratio.

V. CONCLUSION

This paper investigates the use of RL-based predictive DBA
methods to reduce the latency in XGS-PON with the goal
of accommodating latency-sensitive services. Our solution
employs an RL-based DBA algorithm to predict the buffer
occupancy of ONUs in the next DBA cycle. Results show
that the proposed RL method outperforms other approaches
in terms of upstream delay while maintaining similar frame
loss ratio. Despite the similar performance of RL and LSTM
methods on the upstream delay, they differ on the principle
of operation. LSTM training is executed offline and requires
large training data set to train the model while RL training
operates online requiring no generation of training data set.
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