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Abstract—Currently, we observe a high popularity of the
traffic-aware network management and optimization approaches,
which benefit from the traffic modeling and prediction tools.
The efficiency of these approaches depends on the accuracy of
the applied modeling and prediction methods, which might be
significantly decreased by exceptional events and anomalies, like
for instance a long-lasting node failure. After such cases, the
modeling and prediction tools may provide low-accuracy and mis-
leading data, which used as an input to management/optimization
methods might significantly decrease the network performance.
Therefore, it is crucial to evaluate the approaches after such
events, draw conclusions regarding their reliability and define
application instructions for some special cases. The presented
study answers that problem and evaluates how much we can rely
on the traffic modeling and prediction approaches when a node
failure occurs in a network. It compares a number of approaches
and tries to select the most reliable one. The main comparison
criterion relates to the time necessary to detect a change in the
traffic pattern, adapt models to that event and restore a system
convergence.

Index Terms—network traffic, network traffic prediction, su-
pervised learning, network survivability, network failure

I. INTRODUCTION

The telecommunication networks have become an indis-
pensable part of society’s everyday life, supporting such vital
areas as business, education, health care, finances, social life,
to enumerate a few. Their significant role in society was
especially noticeable during the COVID-19 pandemic when
a number of activities could be realized only remotely [1]. The
networks’ importance and increasing popularity result in the
continuous growth of the number of users, connected devices,
as well as users’ interest in bandwidth-intensive services
[2]. These trends are extremely crucial for transport (core)
networks, where the traffic aggregated from thousands or even
millions of users is transmitted over long distances. Cisco
company forecasts that there will be 5.3 billion total Internet
users (66% of the global population) by 2023, up from 3.9
billion in 2018. The company estimates also the number of
devices connected to IP networks to be more than 3-times
the global population by 2023 [2]. To meet these growing
requirements, the networks have to continuously evolve.

The proper networks’ development incorporates research in
two important domains – (i) proposals and implementation of
advanced physical architectures and technologies, (ii) design
of highly-efficient software tools dedicated to plan, optimize
and control the network infrastructure. In the former area,

one of the currently most promising technologies for optical
transport networks is the idea of spectrally-spatially flexible
optical networks (SS-FONs), which benefits from the architec-
ture of elastic optical networks and the technology of spatial
division multiplexing [3], [4]. Taking into account software
innovations, the recent studies have shown a high potential
of the traffic-aware approaches [5]. They make use of the
gathered historical data (for instance observed traffic flows and
their structure) and artificial intelligence algorithms to model
and predict the network traffic and users’ behavior. The models
and forecasts are then used to efficiently plan and optimize
networks’ infrastructures and operations [5]–[7].

The networks’ important role and increasing popularity
result also in the necessity to provide their uninterrupted work
and continuous availability. However, the networks consist
of devices that are prone to failures. Moreover, as a crucial
infrastructure, they might be a potential target of an attack [8].
It is worth-mentioning that a failure/attack event disrupts
a typical network traffic pattern. That change can affect the
performance of traffic-aware methods applied to control and
optimize network operations, which may make decisions based
on incorrect models/predictions. In turn, a network may suffer
connectivity problems caused directly by a failure/attack event
and, additionally, worsen by an incorrect output of traffic-
aware approaches. To avoid such a scenario, it is necessary
to implement some network survivability mechanisms [8], [9],
design reliable traffic-aware approaches (i.e., able to quickly
adapt models to the traffic changes), implement additional
methods to verify the credibility of their decisions and (if
necessary) correcting them.

In this paper, we focus on the problem of a network traffic
prediction after a node failure and the design of a reliable
forecasting method. We firstly consider a number of supervised
learning algorithms, train them and evaluate their performance
in a normal (a failure free) state. Then, we simulate a node
failure, model the following change in the traffic pattern,
and examine the algorithms’ behaviour. We compare them
according to their reliability measured by the excessive pre-
diction errors and the time required to adapt models to the
new patterns and restore the convergence (i.e., to restore
predictions of acceptable accuracy). Based on the results, we
give recommendations on how to design a reliable prediction
approach and how much we can rely on that method in case
of a single node failure.
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The rest of paper is organized as follows. Section II reviews
the related works. Section III introduces the network and traffic
models. Section IV describes the traffic prediction algorithms
and their configuration. Section V presents the investigation
while Section VI concludes whole study.

II. RELATED WORKS

The topic of network traffic prediction has been getting the
attention of researchers over the last few years. A number
of new methods was recently proposed, utilizing statistical,
machine learning (ML), and other approaches [10].

The authors of [11] focused on modeling and prediction
of daily traffic. They proposed a lightweight modeling-based
technique and a more complex ML-based approach. They
showed that on an aggregated traffic dataset without many
fluctuations, the simple modeling-based technique achieves
great prediction quality and outperforms more complex ML-
based approaches. However, on complex traffic data, a neural
network model was necessary. A study of both statistical
and deep learning methods for daily traffic prediction was
performed by the authors of [12]. They used the Fourier
transform to perform a seasonality analysis of the data from
different network links. Their experiments showed that data-
driven ML approaches achieve more accurate predictions when
compared to statistical methods. The authors of [13] proposed
a hybrid prediction method, combining a linear model Au-
toregressive Integrated Moving Average (ARIMA), non-linear
Back Propagation Neural Network (BPNN), and Simulated
Annealing (SA). The combination of diverse approaches en-
abled significant improvements in traffic prediction accuracy
compared to single models.

Network traffic prediction methods aided by historical fea-
tures have recently been proposed in a few works in recent
times. In [14] and [15], additional autocorrelation information
was used to aid a traffic prediction model combining Long
Short Term Memory networks (LSTM) with Deep Neural
Networks (DNN), resulting in low prediction errors on a real-
world dataset. Narejo et al. [16] proposed three different ar-
chitectures of Deep Belief Network (DBN), taking information
about the traffic in past points in time as inputs, achieving
good prediction accuracy for network traffic in the next hour.
Finally, the authors of [17] focused on temporal features choice
for efficient prediction of multiple traffic types in a network
with simple regression algorithms, namely, Linear Regression
(LR), k Nearest Neighbors (KNN), and Random Forest (RF).

Furthermore, the information about future network traffic
has also been applied to network optimization algorithms in
several recent works. For instance, the authors of [7] proposed
a virtual network topologies reconfiguration approach based
on current and near-future traffic matrices to reduce expenses
while ensuring the required grade of service. In [6], the
traffic matrix prediction is applied to proactive optimization of
resource allocations in optical backbone networks. Valkanis et
al. [18] proposed a traffic prediction-assisted routing algorithm
for elastic optical networks, which improves their overall
performance.

Note that, to the best of the authors’ knowledge, all existing
studies take into account a forecasting in a normal network
state and do not consider a potential reliability of a forecasting
method. Therefore, the presented paper fills the literature gap
and investigates for the first time the traffic forecasting after
a failure event and a reliable prediction approach design.

III. NETWORK AND TRAFFIC MODEL

We focus on Euro28 topology, which models the European
core network consisting of 28 nodes and 82 links [19]. R nodes
host a data center (DC), which is able to provide a number of
specific services. Thanks to the continuous synchronization,
each DC offers exactly the same content and can serve any of
DC-related service requests. However, we assume that each re-
quest (given by a client node) is served by the currently closest
working DC node (according to the distance in kilometers).

Each network node can communicate with any other node,
wherein four transmission types are considered:

• city to city – a general-purpose traffic observed between
each pair of network nodes,

• DC to DC – an inter-DC synchronisation and data ex-
change, observed between each pair of DC nodes,

• city to DC – a DC-related service request and control
information exchanged between each city node and the
assigned (the closest working) DC,

• DC to city – a service provision and control information
exchange observed between each pair of a DC node and
an assigned client node.

To describe each of the traffic types for a particular pair
of nodes, we apply the model proposed in [20]. It makes
use of sine functions to describe the entire traffic volume
(between a pair of nodes) as a time process (see Eq. 1). The
signal parameters (amplitude, pulsation, and initial phase) are
determined by the economical, demographic, and topological
characteristics of the communicating cities (including the dis-
tance, gross domestic product, and population). The value of
constant A (i.e., the maximum signal amplitude) is dynamically
assessed to guarantee that the average bit-rate in the network
is equal to B (Gbps) in the T-iterations simulation. For more
detail regarding traffic modeling, we refer to [20].

f(t, v1, v2) = A · a · [sin (ω · t+ ϕ) + 1] (1)

• t – a time stamp.
• v1, v2 – a pair of communicating nodes.
• f – data flow (bit-rate) in Gbps.
• A – maximum signal amplitude in Gbps.
• a, ω, ϕ – current signal amplitude, pulsation, initial phase.
When a node failure occurs, the traffic pattern changes. In

our study, we assume the following modifications:
• the broken node stops to transmit data. So all outgoing

flows are set to zero,
• the broken node stops to respond to other nodes, so they

retransmit all data and in turn the amplitude of all flows
directed to the broken node doubles,

• if the broken node hosts a DC, then all assigned clients
are relocated to their closets and currently working DC.
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IV. TRAFFIC PREDICTION ALGORITHMS

In this section, we present the traffic prediction models and
algorithms. We approach this problem as a regression task. In
more detail, the methods aim to predict exact traffic volumes
at future points in time.

An essential issue in ML-based traffic forecasting is a proper
feature selection [17]. In other words, the resulting prediction
quality is dependent on a suitable choice of the model re-
garding the algorithm’s inputs. To this end, we propose five
models differing in the length of the used traffic history – P1,
P3, P5, P10 and P30. The integers in models’ names specify
the number of considered previous samples.

To broadly explore the impact of a model selection in the
event of a node failure, we apply all models to three supervised
learning algorithms, namely, Linear Regression (LR), k Nearest
Neighbors (KNN), and Multilayer Perceptron (MLP). In turn,
we investigate fifteen different methods of traffic prediction.
To cope with the changing traffic around a node failure, we
use the moving window technique. That means the model is
updated every iteration using n past samples, depending on
chosen window size. That way, after every change, the model
has the opportunity to fit new traffic characteristics.

As in our investigation we consider a backbone optical
network, the time scale of the experiments is expressed in
iterations. In turn, the traffic forecasts outputted by the algo-
rithms describe the traffic in the next iteration, which implies
a short-term or real-time prediction.

V. NUMERICAL EXPERIMENTS

In this section, we present the results of our investigation,
which is divided into two parts. In the first one, we evaluate
the prediction efficiency in a normal network state. That
step gives us reference values (achievable upper bounds of
the prediction accuracy), which might be used to evaluate
forecasting performance after a failure. In the second part, we
simulate a single node failure and observe behaviour of the
prediction algorithms. We monitor their prediction errors in
each subsequent timestamp and determine the time required
to adapt the models and re-achieve accuracy similar to that
from the normal network state.

We consider two failure scenarios, which result with
(i) a permanent and (ii) a temporal traffic change. In the former
case, a failure changes the traffic pattern permanently – till the
end of the simulation (the broken node is not fixed). In the
latter case, a broken node is unavailable only for a reparation
period and then returns to the operational phase. That scenario
includes two traffic changes – at a failure point and after
a reparation period. Please note that the most significant traffic
change occurs after a DC failure/reparation since it triggers
relocation of some requests (to meet the constraint of service
provision by the currently closest and working DC).

In all experiments, we measure the prediction accuracy
using the mean absolute percentage error (MAPE) metric,
which represents a relative error. For each predicted sample,
MAPE is calculated as the absolute error (a difference between
real and predicted value) divided by the real value.

A. Simulation setup

We focus on Euro28 network topology with R=7
DCs located according to the real data available at
http://www.datacentermap.com. The distances between net-
work nodes are calculated according to the geographical
distance between them, while the values of the economical
and demographic parameters (required to traffic model) are as
of December 2021. We use the traffic model proposed in [20]
assuming the average traffic in each timestamp to be B = 60
Tbps and the observation horizon T = 12000 time points.

Since the traffic pattern varies for each pair of network
nodes, we perform our analysis separately for each of them
and (due to the limited space of the paper) present results only
for selected (most interesting) ones:

• (12, 13) – a representative of the city to city transmission,
• (8, 5) – a representative of the DC to DC transmission,
• (5, 12) and (12, 5) – representatives of the city to DC and

DC to city transmissions (note: node 12 is served by DC
located in node 5 in a normal network state),

• (8, 12) and (12, 8) – additional representatives of the city
to DC and DC to city transmissions (node 12 is relocated
to DC located in node 8 when DC 5 stops to operate).

The traffic prediction was implemented in Python, using
the SCIKIT-LEARN versions of the ML algorithms. Parame-
ters’ tuning was performed in preliminary experiments. Fitted
hyperparameter values are presented in Table I. In all exper-
iments, we use the moving window size of n=100 samples.
Every iteration, the models are fit using past 100 traffic
measurements with corresponding features. Then, a prediction
is made for the next sample.

TABLE I
FITTED HYPERPARAMETERS

Algorithm Parameter name Value

KNN
n. neighbors 8

weights uniform

MLP

activation identity

solver adam

hidden layer sizes 4∗

max iter 5000

warm start True

∗1 hidden layer with 4 hidden neurons.

B. Traffic prediction in a normal network state

In Table II we present the prediction quality of investigated
approaches in a normal network state (before a failure). The
mean MAPE values were calculated for four different pairs of
nodes representing diverse types of traffic.

Within cases, the most accurate predictions were obtained
by the LR algorithm. Furthermore, in city-city, DC-DC and
DC-city, KNN was the least accurate, and in city-DC that was
the case for MLP. Comparing the models within algorithms,
different trends can be observed. For LR, prediction errors
were the highest in model P1 and decreased with the increase

2022 International Conference on Optical Network Design and Modelling (ONDM)



TABLE II
MEAN MAPE VALUES FOR CONSIDERED MODELS AND ALGORITHMS IN

A NORMAL NETWORK STATE

P1 P3 P5 P10 P30

city-city (13-12)

LR 0.441007 0.000034 0.000026 0.000044 0.000051

KNN 0.352422 0.357438 0.361119 0.363422 0.364014

MLP 0.713567 0.363951 0.114090 0.147244 0.190198

city-DC (12-8)

LR 0.625822 0.000078 0.000038 0.000017 0.000050

KNN 0.445086 0.448173 0.450307 0.451730 0.454730

MLP 1.083295 2.999605 1.363453 3.768926 3.164757

DC-city (8-12)

LR 0.591868 0.000571 0.000306 0.000206 0.000049

KNN 0.579419 0.256306 0.276517 0.290797 0.235921

MLP 0.614521 0.026218 0.034908 0.069144 0.204050

DC-DC (8-5)

LR 0.043064 0.000013 0.000016 0.000020 0.000004

KNN 0.099613 0.121611 0.134180 0.140687 0.169810

MLP 0.044362 0.011408 0.009584 0.020410 0.050466

of traffic history fed to the algorithm as input. However, the
biggest quality jump was noted between models P1 and P3,
with no such notable improvements afterward. On contrary,
KNN performed the best for model P1 and the worst for
model P30 when applied to DC-DC, city-city and city-DC
traffic. For DC-city we observed the opposite behaviour – the
best performance for P30 and the worst for P1. Finally, MLP
worked the best with relatively short history length (up to 5
samples) and did not follow a common trend for all traffic
types. Overall, the prediction quality of considered algorithms
in proposed models was very high. For each traffic type, the
errors noted for the best algorithm and model were fractions
of a percent.

C. Traffic prediction after a node failure

In the event of a node failure, the traffic incoming into or
outgoing from it changes rapidly and significantly. This shift
cannot be forecasted based on the historical traffic of a normal
network state and poses a challenge for the prediction methods.

In Figs. 1-3 we present the MAPE per iteration in different
models around the failure point for the LR, MLP and KNN
algorithms. We present results for three selected pairs of nodes
representing different post-failure traffic changes:

• Pair (12, 5) in case of node 12 failure – illustrates a traffic
break-off (node 12 stops to transmit after a failure).

• Pair (13, 12) in case of node 12 failure – represents
a traffic doubling caused by the re-transmissions from
node 13 to broken node 12.

• Pair (8, 12) in case of node 5 failure – is an example of
an anycast request relocation – node 12 is relocated to
DC 8 after the failure of node 5. It is the most complex
traffic change where two signals are summed up.

In the discussed plots, the failure occurs in the 1900th
iteration of the test set and is not repaired. Before the failure,
the prediction errors of all approaches are close to 0. In
iterations just after the failure, they rapidly increase. After
that, the algorithms slowly converge to achieve their prior
efficiency. However, the process varies between algorithms,
models, and traffic change.

In the case of simple traffic changes (its doubling (Fig. 1)
or break-off (Fig. 2)), the LR and MLP algorithms converged
in a time given by the model history size. During the model
update, their prediction accuracy was significantly lower (the
MAPE value for LR reached up to 6000 and up to 6 MLP) and
non-acceptable. Similar behaviour was also observed for the
KNN algorithm and the case of the traffic break-off (Fig. 2).
For the traffic doubling (Fig. 1), KNN rebuilt all models in
10 iterations. Interestingly, each of the discussed algorithms
demonstrated a slightly different behaviour around the failure
point. For KNN, the errors decreased steadily with subsequent
iterations, whereas for LR and MLP, there were noticeably
more fluctuations before the model convergence.

In the case of a complex traffic change (anycast request
relocation, Fig. 3), the LR algorithm performed the best. It
fully converged in the time given by the model history size.
On the contrary, the MLP and KNN algorithms needed much
more time to achieve an acceptable level of forecasting (error
less than 10% for selected models after 200 iterations for MLP
and after 100 iterations for KNN) and did not converge to the
previous efficiency within 2000 iterations.

In Fig. 4, we present the real and predicted traffic for a se-
lected pair of nodes in different models around the failure point
for the LR, MLP and KNN algorithms. Individual regressors
coped with the failure differently. The smallest impact was
visible for KNN, which regained its previous accuracy levels
quickly. On the contrary, both LR and MLP got more fooled by
the unexpected traffic changes. The errors made by LR were
tremendous, however, the method quickly adapted the model
and adjusted predictions to the real traffic. The MLP algorithm
struggled the most with convergence and did not restore its
previous efficiency in a reasonable time.

Finally, we investigate how a failure reparation (which
introduces another traffic change) influences the prediction
accuracy. In Fig. 5 we present the MAPE per iteration for
selected pairs of nodes in different models around the fail-
ure point for the LR algorithm. In the described plots, the
failure occurs in the 1900th iteration and is repaired in 10
iterations. Similar to the previously discussed case, before
the node failure, the prediction errors of most of models and
algorithms were close to 0. The errors spiked in the iteration
when the failure occurred and then started decreasing, at a
pace dependent on the number of the model’s input features.
However, in this scenario, the reparation time was short, and
the traffic returned to normal after just 10 iterations. In turn,
for the ML, there were two unpredictable events fairly close
to each other (a node failure and its reparation) wherein the
second disrupted the model update after the first event. As
a result, for selected traffic patterns, in the iteration when the
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Fig. 1. MAPE per iteration in different models around the failure, traffic
from node 13 to node 12 with failure of node 12 in 1900th iteration and no
reparation, zoomed-in fragment. (a) LR, (b) MLP, (c) KNN
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Fig. 2. MAPE per iteration in different models around the failure, traffic
from node 12 to node 5 with failure of node 12 in 1900th iteration and no
reparation, zoomed-in fragment. (a) LR, (b) MLP, (c) KNN

traffic was restored (to the initial pattern), the errors spike
was higher than in the moment of the node failure. Finally,
the algorithms converged within the time given by the model’s
history size from the last traffic change.

The presented analysis allows us to give several recommen-
dations regarding the design and application of a reliable traffic
prediction approach. First of all, the selection of a supervised
learning algorithm should be performed separately for each
traffic pattern in order to keep a high accuracy in a normal
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Fig. 3. MAPE per iteration in different models around the failure, traffic from
node 8 to node 12 with failure of node 5 in 1900th iteration and no reparation,
zoomed-in fragment. (a) LR, (b) MLP, (c) KNN
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Fig. 4. Real vs predicted traffic in different models around the failure, traffic
from node 8 to node 12 with failure of node 5 in 1900th iteration and lasting
till the end, zoomed-in fragment. (a) LR, (b) MLP, (c) KNN

network state and fast model update after a failure. For the
majority of cases in of our study, LR performed the best.
Second, the length of the history (the number of features used
as an algorithm input) should be relatively short (in our case
– 3 and 5 were the most suitable). The results showed that
the selection of the history size is a compromise between
the forecasting accuracy (in a stable state) and reliability.
The majority of algorithms reveals higher accuracy when
applied with a longer history. However, they need then more
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time to converge after a failure. On the contrary, a shorter
history length allows to re-build the model faster but does
not provide such high forecasting efficiency. Third, due to the
high errors, we cannot rely on the predictions made during
the model update window (i.e., the time required to restore
high efficiency since the failure event). For the majority of
cases, the window size is approximately equal to the method’s
history length wherein it starts at the last traffic change. I.e.,
at the failure point (when it is not repaired) or the end of
a reparation (when a failure is repaired).
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Fig. 5. MAPE per iteration in different models of the LR algorithm around
the failure, failure of node 12 in 1900th iteration and lasting 10 iterations,
zoomed-in fragment. (a) from 12 to 5, (b) from 8 to 12, (c) from 13 to 12

VI. CONCLUSIONS

In this paper, we studied the problem of efficient network
traffic prediction after a node failure and the design of a reli-
able forecasting method. We firstly proposed a number of su-
pervised learning algorithms, trained them, and evaluated their
performance in a normal network state. In this part, the LR
regressor performed the best providing prediction errors lower
than 0.01%. Then, we introduced the model of a traffic change
after a node failure, simulated that failure, and observed the
algorithms’ behaviour and model update. The main conclusion
from the study is that the selection of a prediction approach is
a compromise between its forecasting accuracy and reliability.
Both characteristics are strongly determined by the length of
history vectors (the number of features) used as an algorithm’s
input. Regardless of the applied supervised learning algorithm,
longer sets provide lower prediction errors in a stable network
state while shorter sets entail faster model update (after
a failure) and higher reliability. Moreover, the history size
defines the time required for the model update. Before the
model is updated, the predictions may suffer extremely high
inaccuracy and should not be used for decision making. Thus,
to design a high-accuracy and reliable forecasting approach,

we recommend using relatively short history vectors (in our
study – the length of 3 or 5 was the most suitable), while
the selection of a prediction algorithm should be performed
separately for each traffic pattern. For the traffic pattern used
in our study, mostly LR performed the best.

In future work, we plan to extend our study with the design
of a reliable long-term traffic prediction and its application in
the routing and resource assignment algorithms.
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