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Abstract—The high bandwidth and low latency requirements
of modern computing applications with their dynamic and non-
uniform traffic patterns impose severe challenges to current data
center (DC) and high performance computing (HPC) networks.
Therefore, we present a dynamic network reconfiguration mecha-
nism that could satisfy the time-varying applications’ demands in
an optical DC/HPC network. We propose a direct and an indirect
topology extraction methods based on a machine learning-aided
traffic prediction approach under multi-application scenario. The
traffic prediction for topology extraction and bandwidth reconfig-
uration (PredicTER) method could lead to frequent topology and
bandwidth reconfiguration. In contrast, the indirect approach,
namely traffic prediction with clustering for topology extraction
and bandwidth reconfiguration (PrediCLUSTER), utilizes an
unsupervised learning-based clustering model to first associate
the predicted traffic to one of possible traffic clusters, and then
extracts a common topology for the cluster. This restricts the
reconfigured topology set to the number of traffic clusters. Our
simulation results show that the time-average of mean packet
latencies (and total dropped packets) over 60 seconds of time-
varying traffic under the PredicTER, PrediCLUSTER and a
static topology are 37.7μs, 41.2μs, and 50.2μs (and 37, 967,
12, 305, and 36, 836), respectively. Overall, the PredicTER (and
PrediCLUSTER) method(s) can improve the end-to-end packet
latency by 24.9% (and 17.8%), and the packet loss rate by −3.1%
(and 66.6%), as compared to the static flat Hyper-X-like topology.

I. INTRODUCTION

Modern high performance computing (HPC) and data center

(DC) workloads, including distributed machine learning and

graph analytics, exhibit dynamic change in communication

patterns with non-uniform spatial and temporal distributions

[1]. Thus, these heterogeneous applications exhibit traffic

profiles that might not match with fixed multi-stage electrical

DC/HPC architectures, resulting in low resource utilization

and performance bottleneck [2]. To overcome this, the switch-

ing and computing systems should reconfigure themselves to

adapt to the changes in data flow patterns for a given set of

workloads. Recently, there have been a few proposals and stud-

ies looking at the benefits of using silicon photonic switches

to enable topology and bandwidth reconfiguration of direct

optical interconnect topologies in both spectral and spatial

domains upon demand [3], [4]. By allocating interconnection

resources where and when is needed and eliminating inter-

mediate electronic switches and optical TRXs, it is possible

to deliver superior performance at a fraction of the cost and

energy required in legacy architectures [5].

In reconfigurable optical DC/HPC networks, a critical aspect

is the codesign of control and management plane architecture

to orchestrate when, where and how to perform the recon-

figuration operation to adapt the interconnection topology

and links’ bandwidth to the traffic characteristics. Machine

learning (ML) techniques, especially neural networks, have

been applied in various stages (i.e., when, where and how)

of the reconfiguration process for traffic engineering, resource

allocation, and service provisioning tasks in DC/HPC networks

[6]. These ML-based approaches can provide, in general, better

scalability, adaptability, and performance when compared to

optimal and heuristic methodologies.

Recurrent neural network (RNN) architectures, in particular

long short-term memory (LSTM), with their ability to learn

long-term spatio-temporal correlation of traffic data have been

widely investigated for traffic prediction in order to know

when is time to perform certain resource allocation tasks

[7]–[9]. The deep reinforcement learning can learn instead

reconfiguration policies from repeated trials and errors [10].

The use of supervised learning, e.g., neural networks [11]

together with a traffic clustering approach is also promising as

the traffic characteristics can be learned without being labeled

manually to generate the topology needed [12]. Additionally,

deep neural networks (DNN) are useful in the estimation or

prediction of network performance metrics, such as packet

loss rate, latency, and job completion time, which can be

used to trigger the network reconfiguration operation [13].

Nevertheless, the labeling and training of the DNN models

require some sort of efforts and collecting a large amount

of performance data. Meanwhile, these approaches mostly

use a fixed-threshold-based policy applied to the performance

estimations. While the reconfiguration operation can lead to

performance gain under skewed and non-uniform traffic, it is

important not to reconfigure electrical and optical switches

frequently, as these operations involve updating routing tables

and can cause traffic disruption [14]. Hence, it is desirable to

implement effective reconfiguration policies.

In this paper we investigate the trade-off between the

network performance and reconfiguration using two differ-

ent ML-aided traffic-topology characterization methods. We

propose a traffic prediction for topology extraction and band-
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Fig. 1. (a) Software-Controlled Reconfigurable HPC/DC Network Architecture. (b) 2D Hyper-X interconnect architecture before reconfiguration, where clusters
are organized into rows with P ToRs per cluster. (c) 2D Hyper-X interconnect architecture after reconfiguration.

width reconfiguration method, in short PredicTER, under a

multi-application scenario. We use a long-short term memory

(LSTM)-based encoder-decoder RNN model to train time-

varying top-of-rack (ToR)-to-ToR traffic matrix, and utilize

it to extract topology and reconfigure the wavelengths over

fiber links connecting ToRs of reconfigurable flat DC/HPC

architecture [4]. We also propose a traffic prediction with clus-

tering for topology extraction and bandwidth reconfiguration

method (PrediCLUSTER), utilizing an unsupervised learning

approach. We evaluate these methods against an all-to-all

network without reconfiguration. Our simulation results show

that PrediCLUSTER reduces the number of reconfigurations

and packet loss rate at the cost of the increase in average

packet latency as compared to the PredicTER method.

The rest of the paper is organised as follows. Section II

briefly describes the software-controlled reconfigurable opti-

cal HPC/DC networks. Section III discusses the details of

reconfiguration algorithm. Section IV discusses the evaluation

results. Finally, Section V concludes the paper.

II. SOFTWARE-CONTROLLED RECONFIGURABLE HPC/DC

NETWORK ARCHITECTURE

Fig. 1(a) shows the architecture of the control and manage-

ment plane (CMP) that drives the reconfiguration operations.

Note that the codesign of the data plane (hardware) and

control and management plane (software and algorithms) is

key for using any optical switching paradigm. The CMP is

centralized at the cluster level but distributed between clus-

ters. For each cluster, a software-defined networking (SDN)

controller interfaces with a cluster-level photonic switch and

P interconnected ToRs.

The architecture comprises the user plane layer, CMP layer,

and data plane layer. The user plane layer communicates

about its job’s resource requirements, communication patterns,

etc. to a Job Manager of the CMP layer via an open-source

user interface, for example, simple Linux utility for resource

management (SLURM) [15]. Some examples of workloads are

scientific computing and distributed machine learning, partic-

ularly distributed ML jobs such as recommender, translator,

image processing, and map-reduce jobs. The distributed jobs

could share information and parameters among themselves

using the popular message passing interface (MPI) API.

The job manager places the workloads into the servers

and informs an Inter-Cluster Manager about the new job

mapping and its communication requirements over a request-

response protocol, for instance Google remote procedure calls

(gRPC). The Inter-cluster manager disseminates the job place-

ment information to relevant Cluster Managers through the

northbound API (e.g., gRPC) to reconfigure the underlining

network topology to suit the new and other existing jobs inside

relevant clusters. The SDN controller calls the cluster routing,

bandwidth and topology assignment (RBTA) provisioning

module to compute reconfiguration schemes, including the

target connectivity graph, routing schemes, stepwise reconfig-
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Fig. 2. Reconfiguration for RBTA triggering mechanism involving traffic
monitoring, estimation, and prediction with connectivity graph computation
without (PredicTER) and with clustering (PrediCLUSTER) methods.

uration operations (which device/routing tables to reconfigure

in each step), to minimize traffic disruption. The RBTA

provisioning calls the Path Manager to provide the current

topology and connectivity (paths) information, and uses the

traffic monitoring, estimation and data analytics to compute

the optimum topology for the given workloads. The controller

reconfigures the related ToRs (via, for instance, OpenFlow

[16], by distributing new flow entries) and Flex-LIONS (via,

for instance, OpenFlow with optical extension). Note that the

off-the-shelf ToR electrical switches can be controlled using

these standard protocols. However, the softwarized control

of optical switching would require implementing specialized

control flow programs and SDN agents [6].

For the studies in this paper we consider an Hyper-X

network that can be built by interconnecting N servers in a

rack connected with a k port ToR switch (shown by a circle

in Fig. 1(b)), where N ≤ k/2. Multiple racks are organized

into clusters, and the ToR switches are interconnected in a

2D flat Hyper-x architecture as shown in Fig. 1(b). In each

row cluster, P ToRs are interconnected by a photonic switch,

shown as black links. These row clusters are connected using

additional layer of inter-cluster photonic switches, shown in

green links. Thus, these clusters are arranged into C rows

and P columns. Fig. 1(c) shows an example of reconfigured

topology and bandwidth assignment. Notice that some ToRs

are interconnected with multiple parallel links (in red) to meet

the applications’ traffic and communication patterns.

III. ML-AIDED RECONFIGURATION APPROACH

Fig. 2 shows the reconfiguration mechanism involving when,
where (i.e., which cluster), and how to trigger the reconfigu-

ration by the Inter-cluster manager. It periodically monitors,

estimates and predicts the traffic matrix for next time step and

invokes the cluster manager to determine whether a recon-

figuration is required. It uses the traditional graph and ML

tools to facilitate the decision making process. One approach

is to compare the estimated connectivity graph Gt+1 with the

current connectivity graph Gt, and when they are sufficiently

different, the reconfiguration could be triggered. However,

the frequent reconfiguration process might be disruptive and

costly due to live traffic flows. Therefore, a clustering method

is essential in limiting the traffic mapping to a fixed set of

Algorithm 1 Multi-cluster connectivity graph computation.

1: input: weight Wt+1 ← normalized predicted traffic D̂t+1,

connectivity graph G0

2: output: connectivity graph topology Gt+1

3: P ← a set of shortest paths from all-to-all source-

destination (s− d) pairs based on the graph G0

4: if PrediCLUSTER then
5: compute cluster id for D̂t+1, and the average cluster

traffic D̃t+1 ← 1
|Ci|

∑
Dt∈Ci

Dt, Wt+1 ← D̃t+1

6: end if
7: while ToRs’ port-pairs are free, or maxWt+1 �= −∞ do
8: select a s− d pair (i, j) which maximizes the product

of weight vector wi,: ∈ W and available ports

9: for each hop on a shortest path pi,j ∈ P do
10: if all hops have available port-pairs then
11: add a link between each ToR-pair on pi,j
12: update Gt+1, wi,j ← wi,j − C
13: else
14: assign wi,j ← −∞.

15: end if
16: end for
17: end while
18: Connect remaining available port-pairs in each cluster of

Gt+1 based on the decreasing order of traffic D̂t+1.

topology clusters using unsupervised learning. It can minimize

the reconfiguration frequency and achieve nearly the same

performance gain. We describe below four key modules of

the reconfiguration mechanism for RBTA.

A. Traffic Estimation and Prediction

Let Dt = {d}i,jt , i, j = 1, 2, . . . , N be an N ×N estimated

ToR-to-ToR traffic matrix at time t. The aim of a traffic

prediction (or regression) model is to forecast the subsequent

L N × N traffic instances, given the last T time instances

prior. Thus, a regression model estimates D̂t+T :t+T+L =
f
(
Xi

t:t+T ,W
)
, with D̂t+T :t+T+L the traffic forecast for

L time instances, W the model weights optimized during

the training process and f(·) the estimator per se. Among

the recurrent networks, the LSTM encoder-decoder is known

for its superior performance at temporal prediction and it

constitutes the traffic prediction algorithm for our work.

B. Traffic-Topology Mapping with Unsupervised Learning

An unsupervised learning approach for clustering discovers

the patterns of the traffic matrices in D by segregating them

into different clusters based on their spatial distance or density.

We adopt the density-based spatial clustering of applications

with noise (DBSCAN) algorithm [17] to cluster the data

points into an arbitrary number of clusters determined by

its parameters ε representing the neighbourhood of a core

point, and MinPts the minimum number of density-reachable

points. For the similar traffic matrices belonging to a cluster, a

common connectivity graph can be generated. In other words,

the reconfiguration will only be triggered when the predicted
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Fig. 3. Heatmaps of two applications showing the spatial distribution of traffic
among ToRs. Crystal Router (top), and MiniFE (bottom).

traffic matrix (D̂t+1) is clustered differently from the previ-

ous one (D̂t). Thus, by exploiting the inherent structure of

traffic data, we can largely avoid unnecessary reconfiguration

operations while sustaining the desired performance gains.

C. Connectivity Graph Optimization

Given the predicted ToR-to-ToR traffic matrix (TM) D̂t+1,

the number of ports per ToR k for interconnecting kh (and

kv) ToRs in a horizontal (and vertical) cluster(s), where

kh + kv ≤ k/2, and the topology connectivity graph G0

with each cluster interconnected in an all-to-all fashion (See

Fig. 1(b)), Algorithm 1 summarizes how to compute the

connectivity graph at time t for the next time interval, i.e.,

Gt+1. The basic idea is to iteratively interconnect the largest

number of available ToR ports on the shortest paths between

ToR-pairs that potentially carry larger traffic.

In Algorithm 1, Step 3 precomputes the shortest paths

between all source-destination ToR pairs. In Step 4-6, if

the reconfiguration method is PrediCLUSTER, we assign the

average TM of a cluster (w.r.t. the number of TMs in the

cluster C), that the predicted TM D̂t+1 belongs, to the weight

Wt+1. In Step 7-17, we iteratively interconnect available ToR

ports on each hop of a shortest path between a ToR pair

with larger amounts of traffic pending to be provisioned and

larger number of ports not assigned yet. When all hops on

a path pi,j have available ports to connect, the connectivity

Fig. 4. Time-varying traffic matrix scaling for two different applications. The
overall TM(t) is the sum of scaled TMs of two applications.

graph Gt+1 is updated and the weight wi,j is decreased by a

wavelength capacity C (Steps 10-12). Otherwise, the weight

wi,j is updated to negative infinite (Steps 13-14). When all

weights are negative infinite and still some ports are available,

we connect ToR-pairs in decreasing order of the predicted TM

D̂t+1 in Step 18.

D. Reconfiguration process for RBTA

When the reconfiguration process for RBTA is triggered, by

comparing Gt+1 and Gt, we identify ports and corresponding

links to be added into or removed from the current network

topology. More importantly, during a reconfiguration period

we adopt an offload-before-reconfigure approach to stop ac-

cepting new packets to ports to be reconfigured to reduce

packet loss during the reconfiguration phase. Furthermore, we

apply the equal-cost multipath (ECMP) routing [18] with flow

splitting over parallel next hops for its capability of increasing

bandwidth utilization by load-balancing traffic over multiple

paths.

IV. PERFORMANCE EVALUATION

We evaluated the proposed reconfiguration design perfor-

mance using the Netbench packet simulator [19] with an

extension of the routing table update mechanism for the time-

varying traffic and reconfiguration evaluation. We consider

16 ToRs, where each ToR connects to 16 servers. The 16

ToRs are arranged into a 4 × 4 flat (horizontal and verti-

cal) architecture. The servers generate packets following the

Poisson processes. The upper bound of Alizadeh Web Search

distribution [20] was used to emulate the sizes of the flows

injected into the network. The source-destination pairs of the

packet flows were selected according to the traffic distributions

derived from the time-varying traffic traces. We consider two

real HPC applications, i.e., Crystal Router, and MiniFE [21],

with different scaling over time. Fig. 3 shows the heatmaps

of the traffic matrices. To emulate their time-varying traffic
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Fig. 5. True and predicted data are shown for the overall traffic flow rate (left), and some ToR-to-ToR traffic flow rate (right).

Fig. 6. Evaluation of the average end-to-end packet latency (left) and the average packet loss rate (right) in a fixed Hyper-X topology (i.e., no reconfiguration),
and two reconfiguration (PredicTER and PrediCLUSTER) design methods.

patterns, we combine them with different scaling over time,

as shown in Fig. 4. They reflect the changes in overall traffic

bandwidth utilization during the run-time of applications [9].

We assumed an identical wavelength/link capacity of 10 Gbps

and a link delay of 20 ns. We adopted data center TCP [22]

as the transport protocol responsible for the communications

between two specific network devices. We set the buffer size

of each ToR port as 300, 000 Bytes and congestion threshold

is 270, 000 bytes. ECMP routing was used to decide the

forwarding of packets. We also evaluate the algorithm under

fixed topology, i.e., no reconfiguration scenario.

Parameters and Settings: A TM consists of 16× 16 data

entries. An input sample to train the LSTM encoder-decoder

model is formed by 10 consecutive TMs measured at every

time unit (second), and it learns to output an 11th TM. The

model is trained (90%) and validated (5%) with the first 1130

sequence of TMs to predict traffic for next timestamp. Each

encoder and decoder has 100 LSTM cells, and the model is

trained with an Adam optimizer with a learning rate 0.001. We

use the early stopping criteria to overcome the overfitting. The

test dataset is formed on the last 60 sequences of consecutive

TM instances (see Fig. 4). We monitor and predict traffic

every time unit, which is second, as each second of real

traffic takes several minutes in the discrete event simulation

depending on the load. The RBTA reconfiguration time is set

to 100 ms. For the PrediCLUSTER method, the DBSCAN

parameters are set as MinPts = 4 and ε = 2.5. Although the

individual traffic matrix of both applications has time-varying

spatial traffic distribution, the overall traffic matrix varies only

slightly. Thus, the DBSCAN results in only one cluster, which

leads to one topology extracted by the average TM of the

cluster irrespective of the traffic variation. We believe that a

larger variation in traffic distributions of multiple applications

would result in more clusters, which we leave as a future work.

Fig. 5 (left) shows the overall flow arrival rates and their

predicted values for the test dataset. The average mean square

error for the overall rate prediction is ∼ 0.04, and ToR-to-ToR

prediction is ∼ 0.001. Fig. 5 (right) shows the flow arrival

rate from ToR 0 to 1, and from ToR 3 to 4 and their predicted

values. Although the sum of prediction of TM as an overall
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rate shows an average of ∼ 0.04 deviation, the model is able to

predict the spatial traffic variation among ToR pairs with their

average values over time. Note that the accuracy of predicted

ToR-to-ToR traffic impacts the topology generation and the

network performance under the reconfiguration methods.
Fig. 6(left) shows network latency, i.e., average end-to-

end data packet latency for the time-varying test dataset. We

observe that both reconfiguration methods reduce the packet

latency. The percentage improvement in latency by the Pre-

dicTER and PrediCLUSTER schemes over the fixed topology

is 24.9% and 17.8%, respectively. Furthermore, the packet

latency increases when the load increases due to the queuing

latency. Fig. 6(right) shows the packet loss rate under the fixed

topology and reconfiguration methods. When the load is low or

medium, the PredicTER method exhibits momentarily higher

packet loss rate compared to other methods due to a larger

number (44) of the reconfiguration processes. Interestingly,

the PrediCLUSTER method exhibits no or lower loss than the

PredicTER method. The reason is that it reconfigures only

once in the beginning of the simulation in contrast to the

PredicTER method which reconfigures 44 times out of 60

possible instances. Thus, the PrediCLUSTER shows a trade-

off in reducing the packet loss at the cost of slightly higher

packet latency than the PredicTER. Nevertheless, both meth-

ods show better loss performance under the high load, at time

t ∼ 1185s. Notably, there are only 12,305 (37,967) dropped

packets under the PrediCLUSTER (PredicTER), which is

33.3% (103.1%) as compared to 36,836 dropped packets under

the no reconfiguration in a fixed topology scenario.

V. CONCLUSION

We presented an ML-aided software-defined control plane

architecture for dynamic network reconfiguration mechanism

in an optical DC/HPC network. We proposed two reconfigura-

tion methods utilizing the predicted traffic under time-varying

traffic scenarios. The traffic prediction with the topology

extraction and reconfiguration method, in short PredicTER,

leads to frequent topology and bandwidth reconfiguration. In

contrast, the traffic prediction with clustering for topology

extraction and reconfiguration (PrediCLUSTER) reduces the

number of reconfigurations at the cost of slightly higher

average packet latency. Both methods show that the network

reconfiguration is useful in the optical data center and comput-

ing networks. However, the reconfiguration does lead to packet

loss. As a future work, we plan to implement and investigate

the proposed reconfiguration mechanisms on an experimental

testbed running one or multiple distributed applications.
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