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Abstract—The manifold impacts of the current pandemic have
highlighted the importance of reliable communication networks
and services. As more and more people and services rely on this
critical infrastructure, single link failure resilience is not sufficient
anymore; networks must be disaster resilient. In this paper, we
analyze the effects of disasters from a connectivity perspective
and focus on reducing the likelihood of network disconnection
in the event of a disaster through targeted link upgrades.

In particular, we formalize the generalized Minimum Cost
Disaster Resilient Network Upgrade Problem (DNP) (based on
the previously published eFRADIR framework). We prove that
this problem is NP-hard and as hard to approximate as the
Knapsack Problem (KP). We present several methods for solving
the DNP, in particular an ILP and two heuristics. We evaluate
their performance on real networks and earthquake data and
show that the upgrade cost of our disconnection probability based
heuristic is only 3.5% higher than the optimum, while its resource
consumption is negligible compared to the ILP.

I. INTRODUCTION

The diverse impacts of the current - still raging - pandemic
have stressed the importance of reliable communication net-
works and services. In addition, the proliferation of mission-
critical services such as telesurgery, the stock market, AR/VR,
and the spread of concepts such as tactile internet and the
Internet of Everything (IoE) further underscore the need for
survivable networks. An important part of network manage-
ment is ensuring the required level of service availability
of network services. For optical backbone networks, this is
usually explicitly specified in a contract between the com-
munication service provider (CSP) and the customer, called a
service-level agreement (SLA). Violation of the agreed service
availability can result in a financial penalty for the CSP.
Therefore, CSPs must accurately estimate the availability of
their services and, if necessary, reserve protection resources,
implement recovery schemes, and upgrade infrastructure to
meet availability requirements.

Despite the increased requirements, today’s communication
networks are still designed only to protect against single
link or link-pair failures and are not prepared for disaster
scenarios [1]. The problem of correlated failures of network
elements has become a concern in recent decades due to the
increased use of virtual environments whose physical structure
is usually hidden from the user. Nonetheless, the network
elements remained the same and consists of optical cross-
connects and fibers that are susceptible to physical failures.
Some of these failures are isolated, but in many cases, multiple
nodes and links in a geographic area fail simultaneously, e.g.,
due to a natural disaster such as an earthquake, hurricane, or
tsunami. Such geographically correlated failure events are also

referred to as regional failures and are attracting increasing
attention due to their significant impact.

It has been shown in [2] that most networks are easily
disconnected by disasters. Survivable routing algorithms can
ensure uninterrupted communication even in case of regional
failures, but only if the network remains connected upon
a failure. Therefore, we analyze the effects of disasters in
a connectivity point of view and focus on decreasing the
disconnection probability of the network in case of a disaster
through targeted link upgrades.

In particular, in Section III we generalize our earlier work
(presented in [3]) and formalize the Minimum Cost Disaster
Resilient Network Upgrade Problem (DNP), which supports
any type of disaster, intensity functions, link tolerance models,
and upgrade cost functions. In Section IV we prove that
this problem is NP-hard and as hard to approximate as the
Knapsack Problem (KP), and we present several methods for
solving the DNP. Finally, in Section V we evaluate our meth-
ods using data from real disasters, in particular earthquakes.

II. RELATED WORK

Disaster resilience of communication networks is a widely
researched topic [4]–[6]. Numerous works investigate the
impact of natural disasters on terrestrial [7]–[10] and on
underwater links [11], [12]. In general, the following methods
can be considered to improve the resilience of links against
disasters: more robust outside cabinets, longer power backup
supplies, underground cabling instead of above ground, or the
use of strong shielding to protect cables [13]. Although net-
work failure modeling does not directly contribute to disaster
resilience, it is a vital aspect because it is essential to properly
model the environment and the network, and therefore it is a
well-studied topic [7], [9], [14], [15].

To cope with multiple link failures, the concept of Shared
Risk Link Groups (SRLGs) was introduced. An SRLG consists
of a set of links that are assumed to have a high probability
of failing simultaneously. Regional failures, by definition,
correspond to a joint failure of nodes/links located in the
affected geographic area [7], [14], [15], forming different sets
of SRLGs. Most of these failure modeling approaches attempt
to find the right trade-off between the accuracy and the state
space explosion (i.e., the number of SRLGs).

In addition to the improved topology, the end-user’s per-
ceived disaster preparedness can also be improved by thorough
connection design i.e., proper routing [16]–[18]. In particular,
General Dedicated Protection (GDP [17], [18]) is a family
of survivable routing algorithms which is able to ensure the
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TABLE I
NOTATIONS USED IN THIS PAPER.

Notation Description

G(V, E) Input graph, its node set and link set, respectively
t The tolerance of the network
t(e) Tolerance of link e

ce(t) Upgrade cost function of link e

M Set of minimum cuts
S Set of links in a minimum cut
D Set of disasters
pd Probability of disaster d ∈ D

Id(e) The intensity of disaster d at link e

D∗(t) Set of disconnecting disasters at network tolerance t

PD(t)
Probability that the network with tolerance t

will fall apart because of the next disaster
TD Disconnection probability threshold

protection of the services even in case of regional failures
and elaborate SRLG lists, as long as the network remains
connected upon a failure.

In [2], the FRAmework for DIsaster Resilience (FRADIR)
was introduced, the first framework to jointly leverage failure
modeling, network planning, and survivable routing together to
provide disaster resilience. It was shown that it is not sufficient
to plan the network only for the steady state, since the network
is very frequently disconnected by disasters. The framework
was refined in several steps, but always using a specific family
of survivable routing algorithms (GDP [17], [18]), which
ensures instantaneous recovery from any protectable failure
pattern. In [19] independent random failures and regional
failures were jointly considered (Euclidean distance based
probabilistic regional failure model [20] was applied) to prop-
erly model the impact of disasters. Based on the SRLG list, a
link upgrade strategy was proposed to reduce the probability
that the regional failures in the list will disconnect the network.
Although FRADIR/FRADIR-II demonstrated the benefits of
jointly considering many protection mechanisms against disas-
ters, there was still room for further improvements. Most issues
were addressed by eFRADIR introduced in [3]. It improved
the FRADIR-II framework in several aspects (e.g., network
upgrade and routing costs or algorithm runtime) to obtain
more accurate disaster models and algorithms that help meet
the requirements of mission-critical communication services.
It utilized a novel earthquake model built on historical seismic
data for more realistic failure scenarios.

III. PROBLEM FORMULATION

In this section, we generalize the problem introduced in [3],
i.e., we formalize the so-called Minimum Cost Disaster Re-
silient Network Upgrade Problem (DNP). In particular, we first
introduce the network and disaster model, and then present the
Disaster Resilient Network Upgrade Problem.

A. The network model

The network is represented by a connected graph G(V, E),
where V is the set of nodes and E is the set of undirected

links. Each link e ∈ E has a tolerance value t(e) and a non-
negative tolerance-upgrade cost function ce(t). The tolerance
of the network is denoted as t where the tolerance of link e
can be accessed as t(e). The initial tolerance of the network is
t0 with t0(e) initial link tolerances. The tolerance of the link
shows the volume of the link’s protection against a certain
disaster-type (like earthquake), greater tolerance means better
protection i.e., lower probability of failure.

To increase the tolerance of e from t0(e) to t, ce(t) upgrade
cost must be paid. The assignment of new tolerance values
(tmax(e) ≥ t(e) ≥ t0(e)) to the links is called a network
upgrade and its result is a new network tolerance t. Therefore,
the cost of the network upgrade resulting in t is

C(t) =
∑
e∈E

ce(t(e)). (1)

B. The disaster model

The disasters are represented with a disaster list D which
consists disasters of the same type (e.g., earthquakes). Each
disaster d has a probability 0 ≤ pd ≤ 1 which is the probability
that it will be the next disaster. The sum of the probabilities of
all disasters is equal to 1. The strength/intensity of the disasters
at the links is determined by the intensity function I . The
intensity of disaster d at link e is Id(e), which usually depends
on the distance between the epicenter of the disaster and the
link. If t(e) < Id(e) then e fails if d occurs; otherwise it
remains functional.

To address the challenge of network disconnections, we
need to analyze the network from the point of view of
connectivity. In graph theory, a cut-set is a set of edges whose
removal from the graph would disconnect it. A cut-set is
minimum if the size or weight of the cut-set is not larger than
the size of any other cut-set. Since each cut-set is a superset
of at least one minimum cut-set, it is sufficient to examine the
effects of disasters on the minimum cut-sets. The set of the
minimum cut-sets is denoted as M and a minimum cut-set is
denoted as S.

We say that a disaster disconnects the network if its oc-
currence would cause the failure of each link of at least one
minimum cut-set. By this definition, the set of disconnecting
disasters (D∗) is a subset of D and can be defined as follows:

D∗ = {d ∈ D | ∃S ∈ M, ∀e ∈ S, Id(e) > t(e)}. (2)

The sum of the probabilities of the disconnecting dis-
asters is the disconnection probability of the network:
PD =

∑
d∈D∗ pd. In other words, it is the probability that the

next disaster will disconnect the network. It is trivial that D∗

and PD depend on the tolerance of the network. Therefore, for
a given network tolerance t, the set of disconnecting disasters
and the disconnection probability are denoted as D∗(t) and
PD(t).

C. Disaster Resilient Network Upgrade

The disconnection probability can be reduced by increasing
the tolerance of the links which may remove some disasters
from the set of disconnecting disasters. To remove disaster
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d from D∗, the tolerance of the links must be increased in
such a way that there is not a minimum cut-set where d
causes the failure of each link. To meet the SLA requirements
and manage the disconnection probability of the network we
introduce the disconnection probability threshold (TD). Our
goal is to find a network tolerance t for which PD(t) ≤ TD.
Since increasing the tolerance of the network is expensive,
the cost-effectiveness of the network upgrade is a top priority.
Therefore, we define the main problem investigated in this
paper as follows.

Problem 1. Minimum Cost Disaster Resilient Network
Upgrade Problem (DNP): Given G(V, E), set D, intensity
function I and disconnection probability threshold TD. Find a
network tolerance t where PD(t) ≤ TD and C(t) is minimal.

IV. MINIMUM COST DISASTER RESILIENT NETWORK
UPGRADE PROBLEM

In this section, we prove that the Minimum Cost Disaster
Resilient Network Upgrade Problem (DNP) is NP-hard and
as hard to approximate as the 0-1 Knapsack Problem (KP).
We then present the generalization of our network upgrade
methods from [3] to solve the DNP. In Section IV-A we
present the generalized Integer Linear Program (ILP), and in
Section IV-B we present the two heuristic methods.

Theorem 1. DNP is NP-hard and at least as hard to approx-
imate as KP.

Proof: In a nutshell, we prove the theorem by converting
an arbitrary instance of 0-1 knapsack problem (KP) into an
equivalent instance of DNP in polynomial-time whose optimal
solution appoints the optimal solution of the KP. Thus, any
approximation factor for our problem would imply a same
factor for KP as well.

Given an arbitrary instance of KP which consists a set of
n items where the i-th item has weight wi ≤ W and value
vi > 0, we want to select a subset of items with total weight
bounded by W while maximizing the total value. Let xi ∈
{0, 1} indicate the selection of the i-th variable where xi = 1
means that the i-th item is selected, otherwise not. Then the
problem can be expressed in the following form.

maximize
x

n∑
i=1

vixi, subject to
n∑

i=1

wixi ≤ W. (3)

In the corresponding instance of DNP the network is a tree
with n + 1 nodes and n links: E = {e1, e2, . . . , en}. The
initial tolerance of the links is zero: t0(e) = 0 ∀e ∈ E ; and
the tolerance values are restricted to be either 0 or 1: t(e) ∈
{0, 1} ∀e ∈ E . The upgrade cost of ei equals to the value of
the i-th item: cei(t) = vit i = 1, . . . , n.

The disaster list contains n disasters: D = {d1, d2, . . . , dn}.
The intensity function ensures that each disaster affects only
the corresponding link and enables that if a link is upgraded
(t(e) = 1) then it cannot fail:

Idi
(ej) =

{
0.5 if i = j

0 if i ̸= j
(4)

The probability of the i-th disaster is the normalized weight
of the i-th item in KP:

pdi
=

wi∑
i wi

i = 1, . . . , n. (5)

Since the network is a tree, therefore the failure of any link
disconnects it, meaning that each link is a minimum cut-set:

M = {S1, S2, . . . , Sn}, where Si = {ei}, i = 1, . . . , n.

In this translated problem, D∗ will contain every disaster
where the tolerance of the corresponding link is 0, i.e., the
link is not upgraded. Initially no link is upgraded, therefore,
PD(t0) = 1. For a given t the disconnection probability:

PD(t) =
∑

di∈D∗(t)

pdi
=

∑
di∈D∗(t) wi∑

i wi
. (6)

In other words, the disconnection probability is the total nor-
malized weight of the items corresponding to the not upgraded
links. Accordingly, we define the disconnection probability
threshold:

TD =
W∑
i wi

(7)

These definitions already outline our reasoning. Let us make
two trivial observations that help us prove the theorem:

Lemma 1. In the constructed DNP instance, minimizing the
total upgrade cost of the upgraded links is the same as
maximizing the total upgrade cost of the not upgraded links.

Proof. It is clear, that the links can be partitioned into two
subsets based on the network tolerance t: upgraded and not
upgraded links. If the total upgrade cost of the links is V =∑

i vi and C(t) is the total upgrade cost of the upgraded links,
then necessarily the total upgrade cost of the not upgraded
links is V − C(t) proving our proposition.

Lemma 2. If the total weight of some items of KP is less
than W , then in the corresponding DNP, the total probability
of the disasters corresponding to these items is less than TD,
and vice versa.

Proof. Assume that set A contains the indexes of the selected
items, then

∑
i∈A wi ≤ W . Dividing this inequality by

∑
i wi

gives us the corresponding inequality in the DNP:∑
i∈A wi∑
i wi

=
∑
i∈A

pdi ≤
W∑
i wi

= TD (8)

The same logic can be applied the other way around.

In order to conclude our proof, we have to demonstrate
that in the optimal solution of the above DNP instance the
upgraded links correspond to the items not included in the
optimal solution for the KP instance. Therefore, the not
upgraded links determine the items in the optimal solution
for the KP instance.
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(DNP ⇒ KP) Assume that t is an optimal solution to DNP.
In this case, one can see that the i-th item is included in the
knapsack if the i-th link was not upgraded in DNP:

xi = 1− t(ei), i = 1, . . . , n (9)

Since t is a solution, the total probability of the disconnect-
ing disasters is bounded by TD, thus according to Lemma 2,
the total weight of the items in the knapsack is bounded by
W . Additionally, since t is optimal, the total upgrade cost of
the upgraded links is minimal. According to Lemma 1, that
also means that the total upgrade cost of the not upgraded
links is maximized. Hence the the total upgrade cost of the
not upgraded links equals the total value of the items in the
knapsack, that is maximal too. We showed that the constructed
solution of KP satisfies the weight constraint and the total
value of the selected items is maximal, therefore it is an
optimal solution.

(KP ⇒ DNP) Assume that x is an optimal solution for KP.
In this case, if the i-th item is included in the knapsack then
the i-th link is not upgraded in DNP:

t(ei) = 1− xi, i = 1, . . . , n (10)

The argument is the same as in the other case. Since the total
weight of the items in the knapsack is bounded by W , there-
fore PD(t) ≤ TD. Additionally, x is optimal meaning that
the total upgrade cost of the not upgraded links is maximized,
consequently the total upgrade cost of the upgraded links is
minimal.

A. Integer Linear Program for Network Upgrade
To ensure the connectivity of the network with a certain

probability level for the minimal total tolerance upgrade cost,
an ILP was implemented. The ILP has four types of variables:

1) x(e, d) is a binary variable, which indicates if link e fails
in the case of disaster d;

2) y(S, d) is a binary variable, which indicates if link group
S fails (x(e, d) = 1, ∀e ∈ S) in the case of disaster d;

3) z(d) is a binary variable, which indicates if disaster d
disconnects the network;

4) t(e) is an integer variable, it is the tolerance of link e.
tmax(e) ≥ t(e) ≥ t0(e) ∀e ∈ E

The ILP is formalized as follows:

min
∑
e∈E

ce(t(e)) (11)

subject to the following constraints.
1) Link Failure Constraints: Eq. (12) ensures that if the

intensity of disaster d at link e is higher than the tolerance of
the link (t(e)) then the link fails:

x(e, d) ≥ 1− t(e)

Id(e)
∀e ∈ E , d ∈ D, (12)

while Eq. (13) says that if the intensity of a disaster at link
e is less than or equal to the tolerance of the link (t(e)) then
the link remains functional:

x(e, d) ≤ Id(e)

t(e)
∀e ∈ E , d ∈ D. (13)

2) Min-cut Failure Constraints: Eq. (14) grants that link
group S fails if every link in S fails:

y(S, d) ≥
∑
e∈S

x(e, d)− |S|+ 1 ∀S ∈ M,d ∈ D, (14)

while Eq. (14) says that if any link in S remains functional,
S does not fail:

y(S, d) ≤ x(e, d) ∀e ∈ E ,∀S ∈ M,d ∈ D. (15)

3) Network Disconnection Constraints: Eq. (16) ensures
that if a disaster does not hit any minimal cut, the network
remains connected:

z(d) ≤
∑
S∈M
d∈D

y(S, d), (16)

while Eq. (17) assures that if a disaster hits any minimal cut,
then it disconnects the network:

z(d) ≥ y(S, d) ∀S ∈ M,d ∈ D. (17)

4) Disconnection Probability Constraint: Eq. (18) enforces
the disconnection probability to be lower than or equal to the
disconnection probability threshold:∑

d∈D

pd · z(d) ≤ TD. (18)

B. Heuristics for network upgrade

Since the size of the network, the number of min-cuts
and the length of the disaster list heavily affect the number
of variables and constraints in the ILP, we devised heuristic
algorithms for finding feasible network upgrades in a subop-
timal way. Both algorithms were introduced in [3] where they
were applied in an earthquake specific scenario. To solve the
DNP, we made some modifications to the algorithms, however,
the logic remained the same therefore, we only give a short
summary regarding their operation.

1) Baseline Heuristic (BH): This method is our simplest
solution, which serves as a baseline and demonstrates that a
more complex method is necessary to approach the optimal
solution. The algorithm repeats three phases until PD(t) >
TD:

1) Calculate PD(t) and return the solution if PD(t) ≤ TD.
2) Rank the links according to their occurrence count in

the min-cuts.
3) Increase the tolerance of the link with the highest

occurrence count by 1. In case of tie, choose the one
with the lowest upgrade cost.

2) Disconnection Probability Aware Heuristic (DPH): This
method is also an iterative approach, but the selection is
based on the cost-effectiveness of the links’ tolerance upgrades
which are calculated from the probability decrease of PD that
the link’s upgrade would entail and the tolerance upgrade cost
of the link together. Similarly to BH, the algorithm repeats 3
phases:

1) Calculate PD(t) and return the solution if PD(t) ≤ TD.
2) Rank the links according to their cost-effectiveness.
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TABLE II
MAIN PARAMETERS OF THE DNP FOR THE INVESTIGATED NETWORKS.

Network |V| |E| |M | |D∗(t0)| PD(t0)

Italy [21] 25 35 26 4890 0.0245
Janos-US [22] 26 42 28 6344 0.0070
COST 266 [22] 37 57 59 24711 0.0022
Germany [22] 50 88 46 5325 0.0184

3) Increase the tolerance of the most cost-effective link by
1. In case of tie, choose the one with the lowest upgrade
cost.

V. EXPERIMENTAL RESULTS

In this section, we present our results using data from
real disasters, particularly earthquakes. First, we describe
the simulation settings and the methods we use to generate
the inputs required for our problem. Then, we compare the
upgrade methods based on the tolerance upgrade cost. Finally,
we analyze the runtime and scalability of the upgrade methods.

A. Simulation settings

Table II provides information concerning the main pa-
rameters affecting the size of the problem in case of the
used network topologies. The Italy network is obtained from
[21] while the Janos-US, COST 266, and Germany network
topologies are taken from [22]. Similarly to [3], the tolerance
values must be integers, and the initial and maximal tolerance
values of all links are 6 and 9, respectively. The upgrade cost
function of each link depends on the volume of the tolerance
upgrade and the length of the link: ce(t) = l(e)(t(e)− t0(e)),
where l(e) is the length of link e in kilometers.

In this work, we evaluate the model of [21] on the most
recent published earthquakes catalogs ( [23], [24]) that cover
long periods of time. Additionally, we use the intensity pre-
diction equations and the SRLG enumeration method of [25].
We conduct our simulations on a virtual machine with 8 cores
(Intel® Xeon® E5-2630 v3 @ 2.4GHz) and 32GB of RAM
running Ubuntu 18.04.1 LTS. The simulation environment and
the algorithms are implemented in Python 3.8.2. The ILP
instances are created with the Gurobi Python Interface and
solved with the Gurobi solver (version 9.5) [26].

B. Upgrade Cost Analysis

In this section, the performance of the disaster-resilient
upgrade methods is analyzed for the networks. The cost-
efficiency of the three network upgrade methods (two heuristic
methods and the ILP) were compared through several TD

values from the [0.0005, 0.01] range. Each method started
from the same initial state and it had to provide an upgraded
network with PD ≤ TD. Fig. 1 shows the tolerance upgrade
costs of the upgrade methods as a function of TD for the
Italy network. The same trends are observable for every other
network for which the data is accessible on GitHub1.

1https://github.com/mogyi006/DNP Results

As expected, the DPH and the optimal ILP solution outper-
form the BH by a large margin in every scenario in terms of
the cost efficiency of the tolerance upgrade. On average, the
solution of BH is 50% more expensive than the optimal. The
gap is much smaller between the DPH and the ILP and in
many cases the heuristic is able to find the optimal solution
even at low TD values. Concerning the cost efficiency of the
tolerance upgrade, DPH provides results within 3.5% of the
optimal one (i.e., returned by the ILP), on average.

C. Runtime and scalability analysis of the proposed methods
In this subsection, we analyze the runtime and scalability of

the upgrade methods. The computation times of the methods
for the Germany network are shown in Fig. 2. We can see
that the runtimes of the heuristic algorithms are negligible
compared to the ILP, which are over 10 hours in some cases.
As expected, the BH has the lowest runtime, always less than
5 seconds. The DPH takes more time, but even at the lower
TD values, it provides solutions in less than a minute. Note
that the resource consumption of the ILP does not scale well
with the size of the problem, as it increases rapidly as the size
of the network and the disaster list increases. Therefore, we
recommend the DPH upgrade method for larger networks.

Fig. 3 shows the runtimes of DPH for 10 TD values in each
network’s case. The first TD value is close to PD(t0) (e.g.,
for Italy: PD(t0) = 0.0245 and TD1 = 0.02) and the last
TD value is one tenth of the first one. It is clear that many
factors affect the runtime of the upgrade method: the network
characteristics, the disaster list, the number of minimal cuts
and disconnecting earthquakes. The runtime of DPH is in close
connection with the node and edge count of the networks.
The Italy and Janos-US networks have similar size which is
reflected in the DPH’s runtime (always less than a minute)
while in case of the two times bigger Germany network it is
always more than 80 seconds. The runtimes of the COST 266
network are higher than the runtimes of Italy and Janos-US
networks and slightly lower than the runtime of the Germany
network. To summarize, the DPH method provides close to
optimal results and scales much better than the ILP.

VI. CONCLUSION

In this paper, we investigated the network planning aspects
of disaster resilience. We formalized the generalized Minimum
Cost Disaster Resilient Network Upgrade Problem (DNP),
which aims to reduce the probability of network disconnection
through targeted link upgrades, and proved that this problem
is NP-hard. We presented an ILP and two heuristics to solve
it, and evaluated their performance on real networks and
earthquake data. The simulations proved that the upgrade cost
of DPH is only 3.5% higher than the optimum. Note that
ILP is not suitable for large networks and disaster lists due
to its runtime and resource consumption, so in these cases it
is recommended to use the DPH.
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[2] A. Pašić, R. Girão-Silva, B. Vass, T. Gomes, and P. Babarczi, “FRADIR:
A novel framework for disaster resilience,” in 10th International Work-
shop on Resilient Networks Design and Modeling (RNDM 2018),
Longyearbyen, Svalbard (Spitsbergen), Norway, Aug. 27-29 2018.
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