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Abstract—In this work, we will give an overview of some of
the most recent and successful applications of machine learning-
based inverse system designs in photonic systems. Then, we will
focus on our recent research on the Raman amplifier inverse
design. We will show how the machine learning framework is
optimized to generate on-demand arbitrary Raman gain profiles
in a controlled and fast way and how it can become a key feature
for future optical communication systems.

Index Terms—inverse design, machine learning, photonic sys-
tems, optical amplifiers

I. INTRODUCTION

The recent renewed interest in machine learning (ML)

has been motivated by the massive amount of information

generated in our modern society and the recent evolution of

high efficient computers. Based on the idea that the underlying

features in a given data set can be learned, ML is used to model

complex functions to make decisions/predictions for unseen

data. These ML models have been successfully applied to

address some of society’s biggest and most complex problems

in different fields such as business [1], healthcare [2], and

astronomy [3]. Recently, there has been an increasing amount

of research applying the concepts of ML in the field of optical

communications. Some examples are quality of transmission

estimation [4], modulation format recognition [5], optical per-

formance monitoring [6], and most recently the inverse system

design of photonic structures [7]–[11] and devices [12]–[17].

The inverse system design consists in finding the optimum

set of design parameters that provides a desirable system

response. The traditional procedure to design optical devices

starts with an initial set of parameters (normally based on

the designer’s previous knowledge) and performs some pa-

rameter sweep around this initial condition to find the desired

response. This human-controlled design approach has two key

drawbacks: it is time-consuming/work-intensive and tends to

ignore solutions that could have better performance, but are

far from the initial guess. A way to speed up this process is

by using simplified models for the function f(·) that relates

the system parameter to its response. This can be done by

using a ML model to learn f(·). Such a model can go inside
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an iterative optimization routine such as gradient descent [22],

[23] or an evolutionary strategy [24] to search the optimum

set of parameters.

Another interesting way of applying ML to solve the

inverse system design is to learn the inverse function f(·)−1

relating the system response to the design parameters. Such

an “inverse” system model provides the direct retrieval of the

optimum set of parameters for a target response. This idea

has been applied for the inverse design of photonic integrated

structures [7]–[11], optical fibers [25], and optical ampli-

fiers [12]–[17]. In these works, an artificial neural network

(NN) model receives the target device performance and pro-

vides an optimized set of parameters more straightforwardly

when compared to the iterative optimization routines.

In this work, we review the recent progress in ML-based

approaches for the inverse design and optimization of photonic

structures and devices. Then, we will discuss our recently

proposed ML framework for the Raman amplifier inverse

design and how it is applied to provide on-demand gain

profiles in a controlled way.

II. ML-ENABLED INVERSE DESIGN APPROACHES

Applying ML to the inverse system design is not a recent

idea. Since the 90’s it has been used to design bipolar junction

transistors [18], [19], microwave filters [20], and microstrip

antennas [21]. These works explore the versatility of NNs in

learning f(·) (forward models) and f(·)−1 (inverse models).

They show how forward models are very useful to reduce the

design time by replacing computational-expensive and time-

consuming numerical simulation tools [19], [21]. They also

show how inverse models can reduce even more the design

time by instantaneously providing the physical structure given

a target response [18], [20].

One of the first works applying the NN-based inverse

models to solve the design problem in photonic systems shows

that, when applied to the design of complex nanophotonic

structures that require large training data, the NN has problems

to learn the inverse mapping due to one-to-many mappings [7].

This is a fundamental challenge in problems where the same

system response can be created by different designs. To solve

this issue, the authors propose a cascaded network structure

with an inverse NN model followed by a pre-trained forward

NN. In this auto-encoder-like structure, the input and output

are the target and predicted system performances, respectively.
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The design parameter is retrieved between the NN models.

During the inverse NN training, the one-to-many mapping

problem is eliminated by minimizing the errors between target

and predicted system responses. Once trained, the authors in

[7] used the cascaded NN to design dielectric multilayers films

(SiO2 and Si3O4) to achieve a certain transmission response.

Following works have also explored the NN-based inverse

model idea. In [8], the authors use a deep NN to predict

the geometry of plasmonic nanostructures based on far-field

measurements. This deep NN is then used in a sensing

application to find the nanostructure configuration that best

interacts with a given molecule. In [9], the authors propose an

adaptive normalized NN for the inverse design of graphene-

based metamaterials. Finally, the authors in [25] applied the

inverse NN model to effectively and instantaneously optimize

the structural parameters of ring-assisted few-mode fibers with

weak coupling optimization. These are just a few examples of

how ML is revolutionizing the design process in photonics by

avoiding designer guesses and time-consuming computation

for Maxwell’s equations. A comprehensive state-of-the-art of

ML applied to design photonic structures and devices can be

found in [10], [11].

III. RAMAN AMPLIFIER INVERSE DESIGN

The ability to shape the gain profile in a controlled way is

an exclusive feature of Raman amplifiers [27]. This is done

by properly adjusting the Raman pump powers to achieve the

target gain profile. However, due to the complex interactions

between pumps and signals, this adjustment is not a trivial

task and has been referred to as the Raman amplifier design.

The concept of inverse NN models was first applied to the

Raman amplifier design by [12]. This work evolved to reach

a comprehensive ML framework [26] and it is illustrated in

Fig. 1(a). The framework consists of two neural networks

NNfwd and NNinv , for the forward and inverse system

models, respectively. For the Raman amplifier case, NNfwd

learns the direct (forward) mapping for the Raman amplifier

relating the Raman pump parameters P to the Raman gain

profile response G, i.e., G = f(P). NNinv learns the inverse

mapping P = f−1(G). Here the function f(·) is a set

of non-linear ordinary differential equations describing the

Raman amplifier process. NNfwd and NNinv are trained

using supervised learning. Therefore, they need a data set with

uniformly distributed examples of P and their corresponding

G. A thorough description of the data set generation and the

NNs training can be found in [26].

The Raman amplifier design illustrated in Fig. 1(a) consists

in applying NNinv to provide the pump configuration P̃ given

a target gain profile GT at its input. As an optional step, P̃ can

be fine optimized. This fine design process applies NNfwd in

a gradient descent (GD) routine to minimize the mean squared

error (MSE) between predicted G̃ and target GT gain profiles.

This is possible because NNfwd is differentiable, which is not

the case for f(·). Moreover, the optimized pump parameters

Popt are obtained after a few iterations since the process

started from a close to optimum solution provided by P̃.

The robustness of the ML framework for different input

signal spectral profiles is covered by [29]. Its generalization

properties to different fiber types and lengths are experimen-

tally evaluated by [30], where a general model is proposed.

The proposed ML framework was also updated to consider

noise figure prediction during the design [28]. All these works

consider 4-pumps C-band distributed Raman amplifiers.

In this work, we will show the experimental validation for

the design of an ultra-wideband discrete Raman amplifier cov-

ering the S, C, and L bands [27]. The signal has 148 frequency

channels spaced by 100 GHz and covering 19.4 THz. Their

spectral allocation is shown on the top of Fig. 1(c). The gaps

in the spectrum are due to pump laser allocation overlap and

the lack of signal lasers on that region. In this example, the

Raman amplifier has 8 pumps equally spaced in frequency. The

gain is measured as the difference between the output optical

spectrum with the pump lasers turned on and off. Details about

the experimental setup, the neural networks training, and their

individual performance can be found in [27].

In the design stage, we consider three cases of target gain

profiles: flat, tilted, and arbitrary (illustrated in Fig. 1(a)).

Flat and tilted gain profiles range from 14 to 20 dB with

a 1 dB step (total of 7 cases). Tilted gain profiles con-

sider a -0.2-dB/THz slope coefficient. The arbitrary gains

are feasible gains, i.e. they are experimentally measured for

1025 uniformly distributed pump power configurations. The

experimental validation illustrated in Fig. 1(b) applies both

P̃ and Popt to the experimental Raman amplifier setup. The

measured gain GM is then compared to the target GT by

calculating the absolute error along the frequency channels

Error = |GT −GM |.
Fig. 1(c) and (d) show the absolute errors per frequency

for the flat and tilted gain profiles, respectively. To better

visualize the results, each box plot considers all channels in

a 600-GHz bandwidth (6 channel slots). These designs were

obtained by applying Popt. The following analysis excludes

the lowest frequency channel. Tilted and flat gain designs have

very similar performances, with a high design error for high

frequencies. This is because higher frequency channels have

contributions from a higher number of pump lasers due to the

pumps’ non-symmetric Raman gain spectrum. This makes the

design more complex in this region, especially for flat and

tilted gains [27].

Fig. 1(e) shows the absolute errors versus frequency over

1025 arbitrary gain profiles. These designs do not need the fine

design and are, therefore, obtained by applying just NNinv

outcome P̃. Since the error bars are too small, we plot the

mean error (Error) on a separate curve in the right y-axis

(also excluding the lowest frequency channel). In this case, the

absolute errors are almost constant along the frequencies. High

errors are again for the high-frequency channels, and may be

related to the complexity in learning f(·)−1 with more pump

contributions in high frequency.

The highest errors observed for the lowest frequency chan-

nel is due to instabilities observed after the amplification pro-

cess, which are consequence of the channel position isolated
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Fig. 1. (a) Full machine learning framework (i.e. inverse NNinv and forward NNfwd neural network models) for the design and gradient descent-based fine
design; (b) experimental design validation procedure applying the pump configurations from (fine) design to the experimental Raman amplifier, comparing the
corresponding measured gain (GM) to the target gain (GT), and the error (|GT −GM|) along the frequency for (c) flat, (d) tilted and (e) arbitrary gains.

on the edge of the spectra.

The ability of NN in learning the complex relations between

pump and signal as an inverse system model was also eval-

uated by other works considering different scenarios, such as

for hybrid amplifiers [13], [14] and few-mode Raman ampli-

fiers [15], [16]. Finally, in [17], they apply a convolutional

neural network to find the pump powers and wavelengths of a

distributed Raman amplifier required for a target signal power

evolution in both frequency and distance along the fiber.

IV. CONCLUSIONS

This work gave a brief overview of some recent works

applying machine learning to solve the inverse system design

problem in photonics. We focused on works applying neu-

ral networks to learn the inverse system function, mapping

the system response to design parameters. Such data-driven

models are highly accurate and can solve the design problem

almost instantaneously. This is a brand new field of research

that is totally transforming the way we engineer and with the

potential to have a high impact beyond optics and photonics.
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