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Abstract—We propose joint QoT estimation and soft-failure lo-
calization leveraging the latent space of a variational autoencoder
trained on optical spectra. The framework shows F1-scores of
0.989 for soft-failure detection, 0.996 for identification and 0.908
for localization. The QoT estimator reaches an R2-score of 0.998
and a MAE of 0.17 dB.

Index Terms—Quality of transmission estimation, failure lo-
calization, variational autoencoder.

I. INTRODUCTION

In the present digital era, the demand for high-speed data
is growing drastically. In such an all-connected world, a
disruption of optical connections results in data losses as well
as financial loss due to service-level-agreements (SLAs) not
being met. Traditionally, optical networks ensure failure se-
curity with conservative design solutions based on guaranteed
redundancies [1]. With increasing complexity and dynamicity
of the networks, network assurance must be enhanced with
automated and dynamic techniques. Instead of relying on
threshold-based failure detection or probabilistic approaches,
using machine-learning algorithms is a promising way of
enabling possible self-management of future networks [2]. In
recent years, great efforts have been made by the research
community to realize reliable fault detection, fault identifi-
cation, and fault localization in optical networks (e.g. [3]).
However, most were focused on the management of hard
failures (i.e., disruption of the service) and only a few focused
on the handling of soft failures (i.e., events that progressively
degrade the quality of transmission (QoT)). Since soft failures
can potentially evolve into hard failures, handling the failures
is of great interest regarding early detection, identification, and
localization. To enable reliable failure management, optical
performance monitoring (OPM) is indispensable. Network-
wide OPM paves the way for tomorrow’s optical networks,
as the ingested data can be used for training and valida-
tion of machine learning algorithms. OPM may also include
optical spectrum analysers (OSAs) at key nodes to extract
information-rich spectra for further use. In our previous work
on quality of transmission (QoT) estimation, we showed that
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the usage of spectral data for generalised optical signal-to-
noise-ratio (GOSNR) prediction is beneficial (e.g. [4]). In this
work, we focus on combining QoT estimation and failure
detection, identification, and localization by leveraging auto-
matic feature extraction from the spectrum using a variational
autoencoder (VAE). The reconstruction probability of the VAE
is used as a semi-supervised failure detection mechanism.
Extensive simulations with heuristically varying input param-
eters based on realistic assumptions and margins to obtain a
comprehensive data set for the training of the machine learning
algorithms are the basis for a reliable machine learning based
soft-failure management (SFM). The framework is then tested
on an unseen dataset extracted from the COST266 European
network [5]. Moreover, the failure detection is compared to
an autoencoder-based failure detection mechanism. We show
that the variational autoencoder based framework trained on
optical spectra from sparsely deployed OSAs in combination
with light-weight support vector machines (SVM) can detect,
identify and localize laser dependent failures in an optical
transmission. Also, the framework shows a high accuracy in
the simultaneous QoT estimation based on the latent space
from the VAE.

II. DATASET GENERATION

A set of nine WDM channels with fixed grid spacing and
equal launch power per channel is to be transmitted over a cer-
tain link consisting of several spans. The missing knowledge of
the component parameters (due to unreliable information on
fiber parameters, noise figures etc.) is represented following
a heuristic approach with certain mean values and standard
deviations based on realistic assumptions and margins [4].
The links are analyzed for various modulation formats, i.e.,
QPSK, 8-QAM and 16-QAM with coherent detection. The
symbol rate is changed between 32, 64 and 69 Gbaud, while
the channel spacing set to 37.5 GHz for 32 Gbaud and 100
GHz for 64 and 69 Gbaud. As for the launch power per channel
PL, values between -3 and +3 dBm are assumed. As for the un-
certain parameters for example, the span length LS is chosen
as a random length with a mean LS of 80 km and a standard
deviation σ of 5 km. The EDFA output power PEDFA = PL,Total;
σ: 0.5 dB and its noise figure NF : 5 dB; σ: 0.5 dB are
chosen for each EDFA in the link accordingly. The linear fiber
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Fig. 1. a) QoT estimation and soft-failure detection, identification and localization framework based on a variational autoencoder; SVM: Support vector
machine; GOSNR: Generalized optical signal-to-noise-ratio; b) COST266 European network topology.

parameters α and D are set to be α: 0.2 dB/km; σ: 0.02 dB/km
and D: 17 ps/(nm·km); σ: 0.2 ps/(nm·km), respectively. The
nonlinear coefficient γ is assumed to be 1.295 (W·km)−1.
Therefore, the parameters differ for each transmission, for
each link and for each span. To generate the most balanced
dataset possible for training the framework, simulations were
performed over 1000 links with lengths drawn from a normal
distribution with a maximum length of 3000 km. Each span
in these links consists of a standard single-mode fiber (SSMF)
followed by an EDFA with a flat gain characteristic in the C-
band and an optical spectrum analyzer (OSA) with a resolution
of 13 pm (according to the specifications of commercially
available OSAs) at each intermediate node. Also, the number
of intermediate nodes in each link is drawn from a normal
distribution with up to 8 intermediate nodes. The propagation
of the light through the links is calculated using the split-
step Fourier method to achieve the most accurate values for
OSNR and for the spectrum. The QoT is calculated over
GOSNR = PR/(PASE + PNLI) with the received power PR,
the linear noise power, i.e., the ASE noise power PASE, and the
NLI noise power PNLI of the channel under test (at 1550 nm)
at the receiver. A total of 11 different channel scenarios are
simulated, ranging from single channel transmission over the
entire 9 channels to free adjacent channels. For the data gen-
eration, we have set up the mentioned scenario in our Matlab-
based simulation tool. The extracted data from the simulations
are the modulation format, launch power per channel, channel
spacing, symbol rate, link length and the length between the
intermediate nodes as well as the optical spectrum at each
intermediate node. The created dataset for the QoT estimation
and the non-failure case consists of approx. 6.5 · 105 feature
sets. To extract as much information as possible from the
spectra of intermediate nodes while maintaining a reasonable
size for saving, they are reduced to 10,000 sampling points.
However, this makes them only marginally usable as features,
because the number of trainable parameters in the first layer
of artificial neural networks depends directly on the number
of features. Therefore, the dimensionality of the input data
is reduced using an VAE leading to smaller sized classifiers
and QoT estimation structures. In addition, the VAE is used
for the semi-supervised anomaly detection. Since soft-failures
per definition can result in hard failures over time, we are

focusing on laser aging dependent failures in this work. For
this purpose, we emulate failures of the transmit laser by
reducing the launch power of one randomly selected channel
by a random distribution with the mean value PL − 1 dBm
and σ: 2 dBm. Moreover, a failure in an EDFA is emulated
by increasing its noise figure artificially, since a degradation in
the pump laser in output power controlled mode would only
show in higher output noise. The flawed noise figure is drawn
from a Gaussian random distribution with the mean value 6
dB and σ: 2 dB. The failure related dataset contains around
12,600 feature sets

A. Joint QoT estimation and soft-failure localization frame-
work

Autoencoders (AE) have already been used for semi-
supervised anomaly detection based on its reconstruction error
in previous work (e.g. [6]). In this work, however, we are using
a variational autoencoder which differs from a conventional
autoencoder in mainly two ways: First, the latent variables are
stochastic variables instead of deterministic mappings due to
the probabilistic encoder that the VAE is using to generate
the latent space. This extends the explanatory power of VAE
compared to autoencoders, since normal and anomalous data
may have the same mean values, but the variance may be dif-
ferent. Presumably, anomalous data have greater variance and
have lower reconstruction probability [7], but autoencoders
lack the ability to account for variance differences because the
deterministic mappings of autoencoders are mappings to the
mean of the input data. Second, the usage of the reconstruc-
tion probability of the VAE improves the anomaly detection
compared to the autoencoder’s reconstruction errors when
the input data is heterogeneous, since no unique threshold
is required to detect the anomaly. This is due to the fact
that the probability distribution of each variable allows to be
calculated separately according to its own variability. Thus, the
decision on the threshold of the reconstruction error is much
more objective, reasonable and understandable than that of
the reconstruction error [7]. Furthermore, the threshold is not
depending on the input data since probabilities are independent
of the input data values. All of these points improve the
handling of failures in optical networks when using spectral
data obtained from OSAs. The developed framework for soft-
failure detection, identification and localization as well as QoT

2023 International Conference on Optical Network Design and Modeling (ONDM)



a) b) c)

0 0.009

0.006 0.016 0.02 0.904

0.042 0.938

0.013

0

0.036

0.8710.0620.071 0.033

0.12 0.851 0.046 0.013

0.062 0.008

0 0 0 0

0 0 0 0

0 0

0 0 0 0

0 0

0.95 0.036 0

0.026 0 0

0 0 0

0 0 0

0 0 0.026

0 0.021

0.024 0.943 0.038

0.936

0 0 0.001 0.034

0 0 0.018 0.946

0.002 0.031 0.949 0.02

0 0 0

0 0 0

0.066 0.938 0.032 0

0.932 0.031 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0.014 0.003

0.947 0.048

0.039 0.949

True span number

P
re

di
ct

ed
 s

pa
n 

nu
m

be
r Span indicator

1

Channel indicator

True channel number
P

re
di

ct
ed

 c
ha

nn
el

 n
um

be
r

2 3 4 5

1

2

3

4

5

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

8 9

0.803

0.013

0.016

0.047

25

20

15

10

30

25201510 30

baseline

pr
ed

ic
te

d 
G

O
S

N
R

 [
dB

]

actual GOSNR [dB]

Fig. 2. a) Confusion matrix of failure localization of the EDFA failures in the spans, b) confusion matrix of failure localization of the transmitter laser
failure, c) predicted GOSNR over actual GOSNR for feature extraction with the VAE; GOSNR: Generalized optical signal-to-noise-ratio; VAE: Variational
autoencoder.

estimation is depicted in Fig. 1. The first stage is dedicated
to failure detection based on the reconstruction probability of
the spectrum by the VAE. The VAE is composed out of an
encoder with an input layer with a size equal to the 10,000
points of the spectrum, followed by a fully-connected layer
with 100 neurons, a batch normalization layer and another
fully-connected layer with an output size of 10. These outputs
are then processed in a sampling layer so that the output
represents a normal distribution on the one hand and the input
of the encoder on the other. A VAE in contrary to traditional
AEs gives a variation value for each mean value of the latent
space which can be used in further stages. The decoder is
built to reverse the functions of the encoder. Afterwards the
reconstruction probability is calculated. If the probability is
above the set threshold, the next stage of the framework, i.e.
the failure identification, is triggered. Failure identification
is performed by a support vector machine (SVM), which is
able to distinguish between an EDFA failure and a transmitter
laser failure based on the latent space of the VAE. The third
stage is divided into two parts: The first classifier is able to
determine in which span the error of the EDFA occurred,
while the second SVM determines which of the channels of
the WDM transmission is affected by a lower launch power.
Each of the three SVMs used in the framework has been
optimized for the kernel coefficient γK and the regularization
parameter C using a grid search algorithm with 250 steps
per variable. The features of the latent space are also used
for the QoT estimation. The estimator is a long-short term
memory (LSTM) and feed-forward neural network (FF-NN)
hybrid structure which is fed with sequential spectral data and
transmission related data of the different links. For further
information on the estimator, the reader is referred to our
previous work on QoT estimation [4].

B. Results

The framework is tested on 1000 failures randomly dis-
tributed in an unseen dataset from the COST266 European
network topology. The failure detection using the reconstruc-
tion probability of the VAE with an optimized threshold of
9 %, shows an F1-score of 0.989 whereas an AE failure
detection mechanism based on a fixed threshold reaches only
an F1-score of 0.913 [6]. The performances of the other stages

are summarized in Fig. 2 a) and b). It shows the confusion
matrices for failure identification and failure localization. The
failure identification stage reaches an F1-score of 0.996 with
a low false positive and false negative rate. However, since
a supervised learning method is used, only previously seen
classes can be labeled leading to other failures not being
classified correctly. The framework shows to be capable of
localizing the cause of the noise increase for an EDFA failure
with an F1-score of 0.871. Also, the power drop in one channel
is determined with an F1-score of 0.946. The performance of
the QoT estimator is shown in Fig. 2 c). It can be seen that
the predicted values are nearly on the actual GOSNR values.
This is also represented in the R2-score of 0.998 and a MAE
of only 0.17 dB, which is about the same as a QoT estimator
with manually selected features [4].

C. Conclusion

We show that the latent space of a spectral data-driven
VAE can be used for simultaneous QoT estimation and error
prediction, with VAE exhibiting better anomaly detection
performance than the standard AE. Furthermore, we show that
lightweight SVMs are able to classify causes and locations
of failures in the link with a high precision when they are
trained on the latent space of the VAE. On top of that, the
QoT estimation shows a similar performance with automated
feature extraction as for the manual selected feature case when
tested on an unseen topology dataset. The framework based
on spectral data and VAE shows the capability of exact and
reliable automated SFM.
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