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Abstract—Huge efforts have been paid lastly to study the 

application of Machine Learning techniques to optical transport 

networks. Applications include Quality of Transmission (QoT) 

estimation, failure and anomaly detection, and network 

automation, just to mention a few. In this regard, the development 

of Optical Layer Digital Twins able to accurately model the optical 

layer, reproduce scenarios, and generate expected signals are of 

paramount importance. In this paper, we introduce two 

applications of Optical Layer Digital Twins namely, 

misconfiguration detection and QoT estimation. Illustrative 

results show the accuracy and usefulness of the proposed 

applications. 

Keywords—Optical Digital Twin, Network Automation 

I. INTRODUCTION 

Digital twins have been proposed as a key tool for network 

automation, as they can provide a holistic representation of the 

network with high accuracy and, simultaneously, low 

computational complexity [1]. A digital twin should generate, 

among others, expected signals that can be compared with those 

obtained from the network. In that way, deviations between the 

observed and the expected signals can be detected and used for, 

e.g., soft-failure and anomaly detection [2], [3]. Several tools 

can be used to develop digital twins for optical 

communications, including the open-source project GNPy [4] 

that implements the Gaussian Noise (GN) model [5] to estimate 

signal’s Linear Interference (LI) noise and Non-Linear 

Interference (NLI) noise powers and thus, the Quality of 

Transmission (QoT) of optical signals. Based on GNPy, some 

works in the literature have proposed failure management 

solutions [6]. In parallel, Machine Learning (ML) has shown its 

potential application for network automation [7]. The low 

computational requirements of ML models for inference, once 

trained, make ML very attractive to solve hard computational 

problems. 

In our previous paper in [8], we proposed an optical time 

domain digital twin named OCATA based on Deep Neural 

Networks (DNN) to model how LI and NLI noise from network 

components (i.e., reconfigurable optical add/drop multiplexers 

(ROADMs) and optical links) impact in-phase and quadrature 

(IQ) optical constellations. OCATA can be used to discover 

network configuration; specifically, we explored its potential to 

find the most likely configuration of transparent intermediate 

network segments in mixed disaggregated-proprietary 

scenarios. OCATA has been applied also for degradation 

detection [9].  

In this paper, we explore two new applications of OCATA: 

i) lightpath length misconfiguration detection; and ii) QoT 

estimation. 

II. OCATA OPTICAL DIGITAL TWIN  

Discrete optical IQ constellation samples X are defined by a 

sequence of symbols x∈X, each of them represented by a 

complex number where the real and imaginary parts are the I 

and Q components of the optical signal, respectively. Such 

sequence can be represented as an IQ optical constellation, 

where every symbol belongs to one among m constellation 

points. 

Fig. 1 presents two input samples X from a m=16 quadrature 

amplitude modulated (QAM) optical signal when they are 

received after 400 km (Fig. 1a) and after 1200 km (Fig. 1b). We 

apply Gaussian Mixture Models (GMM) [10] to characterize a 

given optical constellation sample as a set of bivariate Gaussian 

distributions with one distribution per constellation point. For 

illustrative purposes, Fig. 1 includes the GMM fitting of the two 

optical constellation samples X.  

Then, for every input sample X, a set of semi-supervised 

constellation features Y that summarizes X is generated. We 

denote Yi the vector of features characterizing the constellation 

point i. In particular, GMM fitting is used to characterize every 

constellation point i by means of 5 features representing the real 

and imaginary mean position in the constellation (µ) and the 

real and imaginary variance and symmetric covariance terms 

(σ) that the symbols belonging to the constellation point i 

experience around the mean, i.e., Yi=[µI,µQ,σI,σQ,σIQ]i. Note that 

the higher the LI and NLI impairments affecting the optical  
 

(b) 1200 km

(a) 400 km
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Fig. 1. GMM fitting for optical IQ constellation features extraction 

978-3-903176-54-6 © 2023 IFIP 

2023 International Conference on Optical Network Design and Modeling (ONDM)



ROADM A 

SDN 

Controller

Tp

OSA

W
S

S

W
S

S

ROADM B 

OSA

W
S

S

W
S

S

OSA

TP A ROADM C 

W
S

S

W
S

S

OSA

Tp

TP B

Node 

Agent

Node 

Agent

Node 

Agent

Node 

Agent

Node 

Agent

OCATA

Algorithm Model DB
Sandbox domain

for lightpath l

ROADM

(drop)Tx Y

ROADM

(add)

Link

A-B

ROADM

(transit)

Link

B-CY Y Y Y

(b)

Const. 

Reconst.Y X

(a)

Link A-B Link B-C

Lightpath Length

 
Fig. 2. Architecture and lightpath example (a) and OCATA modeling (b). 

signal, the more dispersed the symbols are, which makes 

constellation characterization more challenging. 

Fig. 2 represents a lightpath in the optical data plane (a) and 

its OCATA digital twin (b). We assume that every optical node 

is controlled by a local node agent that configures the 

underlying optical devices and collates telemetry data from 

them. On top of the architecture, a software-defined networking 

(SDN) controller connects to the node agents and to a layer 

modeling the data plane that includes OCATA components: i) 

a model DB with DNN models for the different network 

components. Different component models are pre-trained for 

components with different characteristics, like fiber length and 

type, and number of spans in the case of optical links. 

Component models propagate input features after being 

impacted by the impairments of the specific network 

component being modeled, and produce output features. Such 

component models can be concatenated to represent end-to-end 

lightpaths, so the output features from one component model 

become the input of the next one. Then, creating a digital twin 

for a lightpath consists in concatenating models for the specific 

elements in the route of the lightpath; ii) a sandbox domain, that 

is used to compose the models for the end-to-end lightpaths; 

and iii) a set of algorithms that analyze the features of the 

signals received and compare to those generated by the models. 

As an example, Fig. 2 represents a lightpath in the optical data 

plane and its OCATA digital twin. To reduce complexity, only 

the features of a few selected constellation points are 

propagated. Then, a constellation reconstruction module 

generates the features of the non-propagated constellation 

points based on the received features to complete the IQ optical 

constellation. 

III. APPLICATIONS 

In this section, we extend the basic functionalities of 

OCATA by: i) training specific DNNs that use basic and/or new  
 

Algorithm 1. Misconfiguration Detection 

INPUT: Y, f, g 

OUTPUT: <misconf, dRx> 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

misconf ←False 

for each y in Y do 

<ly, hy>←getRange(f, y) 

if y not in [ly, hy] then 

misconf ←True 

break 

return <misconf, g(F)> 
 

features for specific use cases, like QoT and lightpath length 

estimation; ii) adding new features to vector Y, so as to improve 

the representation of sample X; and iii) proposing new 

algorithms for lightpath length misconfiguration detection. 

A. Lightpath length misconfiguration detection 

In this first use case, two DNN models are trained for the 

characteristics of the lightpath (i.e., length, modulation format, 

symbol rate, etc.). Specifically, model f is used for lightpath 

length misconfiguration detection, whereas model g estimates 

real lightpath length. 

Algorithm 1 presents the main procedure, which receives 

features Y from an optical constellation sample, as well as the 

two trained models. Misconfiguration detection is carried out 

using model f, which specifies the range [ly, hy] that each of the 

features y ∈ Y should be in case of the received signal has 

propagated along the estimated lightpath length. Then, the 

algorithm checks every individual feature and only in the case 

that all are within the modeled range, we consider that the 

lightpath is properly configured. On the contrary, if the length 

of the lightpath is very different to the expected one, the 

distribution of the features would be different as well and found 

out of its modeled range. Finally, the result of the detection is 

returned jointly with the estimation of the distance provided by 

model g. This model was designed as a DNN with one input  
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Fig. 3. Example of Pout feature for constellation point [-3,3i] 

neuron per each feature, a number of hidden neurons in a single 

layer, and one single neuron for the output that estimates the 

distance (in km) where the Tx originating the received signal is 

likely to be. 

B. QoT estimation 

We tackle the estimation of lightpaths’ QoT, specifically the 

Bit Error Rate (BER), as a function of constellation features. 

Two different use cases can take advantage from such 

prediction: i) lightpath provisioning, where BER estimation can 

be used to validate that the expected QoT meets the required 

one. To this end, OCATA can be used to generate the expected 

signal and, from there, the expected BER is estimated; and ii) 

BER estimation during lightpath operation for QoT monitoring 

purposes, where collected optical constellations need to be 

analyzed. For both use cases, a DNN model is needed to 

estimate BER values in a meaningful range, e.g., from 10-5 to 

10-2. 

To this purpose, the basic features Y defined in Section II 

can be used as inputs of a DNN model that estimates the BER. 

Note that Y characterize the dispersion of symbols by means of 

bivariate Gaussian distributions and, in turn, such dispersion is 

related with BER. 

Nevertheless, the characterization of the dispersion that Y 

provides and its relation with BER is not trivial. In view of that, 

we propose adding a new feature, denoted as Pouti, that 

computes the probability that a symbol initially transmitted in 

constellation point i is detected in the Rx out of the detection 

area of such constellation point, denoted as Ai. Pouti is 

computed under the assumption that dispersion of symbols 

around constellation point i follow the bi-variate Gaussian 

distribution characterized by Yi. It is worth noting that this 

feature is more clearly related with the errors in the Rx. 

Fig. 3 shows and example of Pouti feature for constellation 

point [-3+3i]. The contours represent the different levels of the 

bi-variate Gaussian distribution that characterize this 

constellation point for a given lightpath. For the sake of clarity, 

we depicted σ, 2σ, and 3σ levels only; univariate marginal 

distributions are provided for both I and Q axes. The area 

highlighted in red in both bi-variate and marginal distributions 

represent the region that falls out of Ai, i.e., the square delimited 

by vertices (-4+4i) and (-2+2i). Hence, Pouti is formally defined  
 

as follows:  

����� =  1 − �(� ⊂ ��|�~�(��)) (1) 

Armed with this new feature, a DNN can be trained that take 

Pout as input and produce QoT estimation as output. 

IV. RESULTS 

For numerical evaluation purposes, a MATLAB-based 

digital coherent system was implemented. We assume a 11-

channel WDM scenario, where all channels are configured with 

the same modulation format and symbol rate (i.e., dual 

polarization 16QAM @64 GBd), and 75 GHz channel spacing. 

At the Tx side, pseudo-random binary sequences of 220 bits are 

modulated to create 218 symbols and shaped by a root-raised 

cosine filter with a 0.06 roll-off factor. An ideal optical 

multiplexer aggregates individual signals with optical channel 

power of -1 dBm and creates the WDM channel to be 

propagated through the optical line system consisting of a 

number of 80 km of standard single mode fiber (SSMF) spans 

characterized by attenuation factor of 0.21 dB/km, dispersion 

parameter of 16.8 ps/nm/km, and nonlinear parameter of 1.14 

(W⋅km)−1. An erbium doped fiber amplifier with noise figure of 

4.5 dB ideally compensates each span losses. The pulse 

propagation along the SSMF is modelled by solving the 

nonlinear Schrödinger equation using the split-step Fourier 

method [11] with propagation step size of 100 m. Finally, DSP 

blocks capable to perform an ideal dispersion compensation and 

phase recovery are considered in the Rx. 

A. Lightpath length misconfiguration detection 

For this application, we generated a large dataset 

comprising of 4,000 signal samples, with 2048 symbols each, 

for the lightpath under analysis with lengths ranging from 80 

km to 2,000 km, i.e., from 1 to 25 spans. Data were split for: i) 

training and testing application’s models; and ii) validating the 

overall procedure. 

Let us first demonstrate the potential usefulness of the 

features. Fig. 4a shows the difference of the computed mean 

values from the expected constellation point centroid (∆μ) for 

constellation point (-3+3i) as a function of the lightpath length, 

where each point averages the results of 10 samples. We 

observe that the constellation point’s center moves away from 

the expected center when the lightpath length increases. The 

correlation between features and lightpath length is even 

stronger in terms of variance components. Fig. 4b shows a clear 

increase of the variance from short to longer paths. Therefore, 

we can conclude that the proposed features summarize useful 

information about lightpath length, which is a necessary 

condition for highly accurate models. 

Next, we study the performance of the misconfiguration 

detection model. To this aim, we trained one model f for each 

of the considered path lengths and evaluated each model with 

enough testing samples to guarantee that no false 

misconfiguration detection is produced when a sample of the 

same distance is processed. Then, for each length, we run the 

detection procedure in Algorithm 1 with samples of shorter 

distance than that of the actual one. Detection accuracy reduces 
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Fig. 4. Mean deviation (a) and variance 

(b) vs lightpath length 

Fig. 5. Accuracy of misconfiguration 

detection vs lightpath length 

Fig. 6. Max and avg relative error in 

distance prediction 
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Fig. 7. Correlation of BER with variance 

and Pout features  

Fig. 8. Max and avg relative error of DNNs 

vs length and number of nodes 

Fig. 9. Influence of constellation size on 

the relative error. 
 

with the real distance of the lightpath; Fig. 5 shows the 

detection accuracy of each model for samples with only one 

span less than the length of the lightpath. We reproduced the 

analysis for several subsets of constellation points (the inset 

table in Fig. 5 specifies the points selected in each case). From 

the results, we conclude that the selected 4 constellation points 

covering different parts of the constellation achieves 100% of 

misconfiguration detection accuracy for paths up to 1,000 km, 

and such accuracy decreases down to 90% for paths of 2,000 

km. 

Finally, let us now focus on the distance estimation 

accuracy. Model g was implemented as a DNN with the 

following configuration: i) features Y from the 4 selected 

constellation points as inputs; ii) 2 hidden layers with 12 and 6 

neurons, respectively, using the hyperbolic tangent (tanh) as 

activation function; iii) the estimated lightpath length as output 

neuron; iv) root mean squared propagation as optimization 

algorithm; v) training stage with up to 5,000 epochs; and vi) 

mean square error as loss function. 

Fig. 6 shows the average and maximum relative estimation 

error of the model. We observe that the accuracy of the model 

heavily depends on the real distance; short distances might 

include larger error than longer ones. 

B. QoT estimation 

For this use case, we studied 12 different scenarios of 

lightpaths with 2, 3, 7, and 9 hops, and 2, 3, 6, and 7 fiber spans, 

and 50, 60, 80 km. At each network node, the optical 

constellations were collected and employed to evaluate the 

BER of the received optical signal. As on the previous 

application, data were split for: i) training and testing 

application’s models; and ii) validating the overall procedure. 

Two different low complexity DNNs have been considered, 

with: i) lightpath length in km, number of nodes, and considered 

features from 4 selected constellation points as inputs; ii) 2 

hidden layers with 10 neurons, using tanh as activation 

function; iii) the log10 of the BER as output neuron; iv) root 

mean squared propagation as optimization algorithm; v) 

training stage with up to 5,000 epochs; and vi) mean square 

error as loss function. The first DNN, named basic Y, 

considered basic features Yi=[µI,µQ,σI,σQ,σIQ]i, whereas the 

second DNN considered Pouti. Then, the former DNN has 22 

input neurons, whereas the latter one only 6. 

For illustrative purposes, Fig. 7a, b shows the correlation 

between BER and σI and Pout1 features, respectively, computed 

from constellation point (-3+3i). We observe a linear 
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correlation of BER and Pout1 in logarithmic scale, being that 

with σI nonlinear. This result anticipates better accuracy of the 

Pout DNN model, as we observe in Fig. 8, where both models 

are compared as a function of lightpath length and number of 

nodes in terms of maximum and average relative error. 

Although in both cases the error is more than acceptable, the 

Pout DNN model provides noticeable accuracy. 

Finally, Fig. 9 studies the relationship between the accuracy 

of the Pout DNN and the number of symbols in the collected 

constellations that are used for training and as input for 

estimation. Note that the larger the number of symbols, the 

higher the accuracy and robustness of the GMM fitting. To this 

end, collected constellations with |X|=218 symbols were 

randomly down-sampled to 213 (labeled 8k) and 215 (labeled 

32k) symbols. We observe how DNN accuracy reduces 

remarkably when the number of symbols collected decreases. 

V. CONCLUSIONS 

Two new applications of a digital twin for the optical layer, 

named OCATA, have been proposed and evaluated through 

simulation. In OCATA, every optical constellation point is 

modelled as a bi-variate Gaussian distribution characterized by 

its I and Q means and variances and the covariance, which are 

called basic features. OCATA includes: i) DNN models that 

propagate features of a network components based on the 

impact of LI and NLI noise. Those models can be concatenated 

to model end-to-end lightpaths; and ii) algorithms and DNN 

models that use features from optical constellations generated 

by OCATA or collected from the network. Extensions to both, 

the considered features that characterize optical constellations, 

as well as algorithms and DNN models have been proposed for 

lightpath length misconfiguration detection and BER 

estimation. 

For the misconfiguration detection, it was shown that when 

real distances are short, detection achieves high accuracy, 

which decreases for long distances. A distance estimation 

application was also proposed, which exhibited opposite 

behaviors as the misconfiguration detection, i.e., it achieved 

high accuracy for long distances and decreased for short 

distances. Therefore, a combined analysis of both detection and 

prediction achieves remarkable accuracy. 

As for BER estimation, two possible applications where 

highlighted, for lightpath provisioning purposes, where the 

input constellation comes from OCATA and for monitoring 

purposes, where the input constellation has been collected from 

the network. A new feature, named Pout, was proposed 

accounting for the probability of a symbol to be out of the area 

reserved for the intended constellation point. DNNs were 

trained considered Pout as input only and another considering 

the basic features. A linear correlation between Pout and BER 

was observed, which translated on a very accurate DNN for 

BER estimation. Finally, the impact of the size of the 

constellation on DNN accuracy was shown, where size with 

32k symbols provide good estimation accuracy.  
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