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Abstract—In optical cloud networks, data center nodes pro-
cess cloud services requested by users. Disasters can damage
critical infrastructure elements and possibly trigger overloading
or malfunctioning of nearby apparatuses generating cascading
failures with severe consequences for the operation of the entire
infrastructure. Providing optical connectivity services in the
presence of post-disaster cascading failures is crucial. This paper
proposes a restoration strategy that combines the ability to
recover service after a disaster event while leveraging information
about potentially correlated cascading failures. Simulation results
show how this strategy successfully reduces the chances of a
service being disrupted multiple times by a disaster event and
its cascading failures.

Index Terms—disaster, restoration, relocation

I. INTRODUCTION

Optical Cloud Networks (OCNs) encompass distributed
Data Centers (DCs) providing clients during a period of time
with processing and storage capabilities while being intercon-
nected by high-bit-rate and low-latency optical connectivity
services. OCNs are vulnerable to disasters, natural (e.g.,
earthquakes, flooding) or human-made (e.g., fiber cuts) [1].
Disasters cause the failure of multiple links and/or nodes
and may lead to correlated cascading failures, which happen
sometime afterward and are a consequence of the disaster
that can damage links/nodes and, thus, overload and disrupt
other links/nodes, as well as power disruptions in cascade [2].
As cloud-based services are becoming increasingly important,
network and cloud operators must implement strategies to
guarantee the resilience of their infrastructures in the presence
of disasters, including their correlated aftermaths.

OCNs survivability can be achieved by either protection or
restoration strategies [1]. Protection methods reserve backup
resources before failures. Restoration strategies, on the other
hand, provide an acceptable trade-off between resource usage
and reliability guarantees by re-provisioning interrupted ser-
vices based on the post-disaster available resources. Moreover,
restoration performance can be improved by cloud service
relocation [3], [4], i.e., migrating a cloud service to a different
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DC if the original one providing the service is not reachable
anymore due to a lack of transport resources.

This paper proposes a restoration strategy for disaster re-
covery in OCNs. There are a number of studies aimed at
improving the disaster recovery performance of restoration
strategies [1]. However, the strategy proposed in the paper
is the first that jointly takes advantage of service relocation
in combination with cascading failures risk awareness for
disaster recovery in OCN networks. The rationale is to restore
disrupted services using links/DC that reduce the risk of
being re-disrupted by another failure stemming from the same
disaster that disrupted them in the first place. Simulation
results indicate that the proposed strategy reduces the number
of services affected by cascading failures, while not impacting
the performance in terms of blocking ratio and number of
relocations when compared to a strategy that does not leverage
cascading failure awareness.

II. SYSTEM MODEL AND PROPOSED STRATEGY

Cascading failures are events that affect elements of the
network that are close to the epicenter or a disaster. For
example, Fig. 1 illustrates the epicenter of a disaster that
may propagate and disrupt the areas around the epicenter.
The closeness (physically or in terms of dependencies) to the
epicenter defines how likely an element may be impacted (e.g.,
73%, 15%, and 5% in Fig. 1) [2].

Fig. 1. USA topology with an example of disaster including the potential
cascading failures.
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Assuming a scenario where requests from users (to a DC)
have independent arrivals and departures, the performance of
the network is controlled by the provisioning and restoration
strategies. A service request r=<s, h, tu, pu> that specifies
the source node (s), the holding time (h), and the number
of the transport and processing units requested (tu and pu,
respectively). Since our proposed restoration approach works
independently from the provisioning strategy, the provisioning
can use e.g. closest-DC or load-balancing strategies.

A. The Path Restoration with Failure Probability Awareness

We propose a strategy called Path Restoration with Failure
Probability Awareness (PRPA), which restores services con-
sidering the trade-off between the transport resources used by
the restoration path and the risk of being affected by cascading
failure. We formally introduce the proposed PRPA strategy in
Algorithm 1. It uses an auxiliary graph G to represent the
post-disaster OCN, and it is executed whenever a set S of
provisioned services are disrupted due to a disaster.

Algorithm 1: The PRPA strategy
Input: Graph G = (V,E) for post-disaster OCN; set

S of disrupted services.
Output: Each service si ∈ S restored or dropped.

1 for each service si ∈ S|srti > sdti do
2 K ← k-shortest-paths for si (source to cur. DC)
3 if K ̸= ∅ then
4 selPath← min cost (K) [Eq. (1)]
5 Restore si on selPath

6 else
7 selPath =∞
8 for DCn ∈ NDC |DCpu

n ≥ spui do
9 K ←k-shortest-paths from source to DCN

10 if K ̸= ∅ then
11 relPath← min cost (K) [Eq. (1)]
12 if cost(relPath) < cost(selPath) then
13 selPath← relPath

14 if selPath ̸=∞ then
15 relocateAndRestore si on selPath

16 else
17 drop si

The algorithm iterates over each service si ∈ S, testing
whether or not the remaining service time (rt) for si is greater
than its restoration time (dt) (line 1). If this is not the case, the
service is dropped (i.e., there is not enough time to restore it).
Then, the algorithm computes the set K of shortest routes for
si from its source to the DC currently used (line 2). If there
exist routes with enough transport resources for si (line 3),
then the one with the lowest cost (defined by (1) explained
in the following) is selected (line 4). Otherwise, the algorithm
checks whether it is possible to connect si to a different DCn

with processing capacity (DCpu
n ≥ spui ) enough to provision

si (lines 7–15). The path with the lowest cost (according to
(1)) to a DC is adopted and si is relocated and restored using
selPath (line 15). Otherwise, the service is dropped (line 17).

To calculate the cost of adopting a path for restoration, the
following cost function is used:

C(pi) = (prob× α) +

(
hops

maxHops
× (1− α)

)
(1)

where C(pi) is the cost utilization of path pi; prob ∈ [0, 1] is
the probability of pi being affected by a cascading event; α
determines the weight for prob; hops is the number of hops
of pi; maxHops is the highest number of hops among the
k candidate paths; (1 − α) determines the weight of hops to
C(pi); k=10 routes with the least number of hops. Thus, a
path with a low probability of failure and a small number of
hops will have a low cost, making it a potential candidate to
accommodate a restored service. The α parameter allows us
to set the importance given to the two involved metrics.

III. PERFORMANCE EVALUATION

We conduct simulations to assess the benefits of the pro-
posed PRPA strategy. The knowledge of cascading failure
risk is used only during the restoration phase (Sec. II-A),
and it does not influence how cloud services are initially
provisioned in the network. The closest available DC strategy
is used for service provisioning. As a baseline for comparison,
we use the Path Restoration with service Relocation (PRwR)
algorithm [3] that is agnostic to the risk of cascading failures.
If restoring the service to its current DC, the PRwR selects
DCs based on the shortest-path criteria.

The simulation considers the USA topology (Fig. 1), with
24 nodes, 43 links with 80 wavelengths in each direction,
and full wavelength conversion capability. Three DC nodes
are selected based on their connectivity and are equipped
with 1, 800 processing units. Three hundred simulation runs
were carried out for each point in the curves presented in this
section. Each simulation run involved 100,000 cloud services
following a Poisson process. The holding time of each cloud
service and disaster duration are exponentially distributed with
a mean equal to, respectively, 86,400 and 43,200 units. The
requests source are uniformly distributed among all non-DC
nodes in the network. Each request demands the bandwidth
corresponding to one wavelength channel. The number of
processing units required by each cloud service is uniformly
chosen in the interval [1, 5]. Fig. 1 shows one of the ten disaster
zones considered (epicenter and cascades with the considered
probabilities)1, each one repeated twice during the simulation
time. The time between two consecutive epicenter disasters is
uniformly distributed through the number of service requests,
whereas the time between two consecutive cascades is 3,600
time units. Three cascading events are considered per epicen-
ter, and their occurrence depends on their relative proximity
to the epicenter with 73%, 15%, and 5% probability [2]. The
service reconfiguration time is 1,800 time units.

1Other zones available on GitHub https://github.com/GSRamalho/python-
simple-anycast-wdm-simulator/zones
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Fig. 2. Results of the PRPA strategy with different α values.

Figure 2 shows the results of the simulations as a function
of the network load. To verify the impact of the number
of hops and cascading failure probability in the restoration
decisions, the proposed PRPA algorithm was executed con-
sidering different weights for α – see (1). Fig. 2(a) shows
that the blocking ratio presented by all compared algorithms
is very similar, indicating that our strategy does not impact the
blocking ratio. Fig. 2(b) show the average number of service
disruptions per simulation campaign (i.e., 100,000 arrivals).
The performance of PRPA is defined by α, where higher
values of α lead to higher impact of the cascading failure
risk to the decision. PRPA with α=0.5 reduces the number
of service disruptions by around 11%. The reason for the
lower number of disruptions can be explained by analyzing
Fig. 2(c), where we have the number of services that were
disrupted more than once. In this case, PRPA with α=0.5
reduces the number of services that are re-disrupted by more
than 40%. The lower number of disruptions achieved by PRPA
contributes to higher availability (i.e., ratio between the sum
of the uptime of services and the sum of their holding time
values) than PRwR, as illustrated in Fig. 2(d). Fig. 2(e) shows
that, although availability achieved by PRPA is higher than
the one achieved by PRwR, the restorability is lower. This
is explained by the fact that the number of disruptions in
PRPA is lower, leading to a lower number of opportunities to
restore services. Moreover, as Fig. 2(f) shows, the restoration
paths used by PRPA are slightly longer than the ones used by
PRwR. This is explained by the fact that, by avoiding links
with potential cascading effects, PRPA needs to deviate from
the surroundings of the disaster epicenter.

IV. CONCLUSION

This paper introduced PRPA, a disaster restoration strategy
for OCNs. PRPA leverages the knowledge of the risk links and
DSCs being down due to cascading failures. Simulation results
show how PRPA is able to outperform benchmark strategy that
does not consider cascading failures information during the
recovery operations. The total number of service disruptions,
and especially the number of re-disruptions, are substantially
reduced while maintaining blocking ratio values similar to
non-cascading-failure-aware methods. Another added benefit
is in terms of better service availability levels thanks to the
reduction in the number of disruptions. On the other hand,
the consideration of potential cascading failures leads to a
slightly lower restorability, mainly caused by the use of longer
restoration paths.

In the future work, it would be interesting to extend this
study with additional cascading event modeling. The investi-
gation of the monetary consequences of disasters is also an
interesting topic. Finally, investigating the disruption of other
network elements (e.g., DCs) can also require new strategies.
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