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Abstract—In the quantum key distribution (QKD) protocol, 

principles in quantum mechanics enable the detection of an 

eavesdropper statistically. By leveraging such principles, this 

research investigates the detectability of an eavesdropper in the 

Brassard–Bennett-1984 (BB84) QKD protocol over noisy 

quantum channel, against the partial intercept-and-resend attack. 

Based on the statistical property of quantum bit error rate 

(QBER), a simple eavesdropper detection algorithm with optimal 

threshold for the BB84 protocol is developed. By considering 

diverse factors such as the quantum channel condition, 

eavesdropping probability of an eavesdropper, and quantum 

resource expenditure, the optimal threshold renders flexibility to 

the algorithm. Through rigorous numerical analysis, the trade-off 

relation between the accuracy of eavesdropper detection and the 

secret key rate performance is investigated with respect to the 

eavesdropping probability in the partial intercept-and-resend 

attack of an eavesdropper. 
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I. INTRODUCTION 

The forthcoming quantum computer era threatens the 
continued existence of the number theory-based state-of-the-art 
cryptography system [1]. By utilizing the principles of quantum 
mechanics, quantum key distribution (QKD) technology can 
provide unconditionally secure communication, regardless of 
the computational evolution [2–5]. In QKD, a secret key is 
shared between two entities (Alice and Bob) over the quantum 
channel, where an eavesdropper (Eve) may be present. 
Accordingly, QKD encodes a binary bit information into a 
physical state of a particle, transmits it over the quantum channel, 
and decodes it. The state of the particle is defined as a quantum 
bit (qubit). To realize QKD technology, numerous QKD 
protocols have been proposed in the community [6–8], among 
which, the Brassard-Bennett-1984 (BB84) protocol is the first 
QKD protocol [6]. Because the BB84 is the most widely used 
protocol in practical systems, this study considers the four-state 
BB84 protocol as the basic model of the QKD protocol. 

Intercept-and-resend attack is a simple, yet powerful 
eavesdropping strategy that leaks digital information without 
leaving trace, and thus significantly hampers security of 
communication. Nonetheless, owing to the principles of 

quantum mechanics, the intercept-and-resend attack of a qubit 
in QKD inevitably statistically affects the qubit and increases the 
quantum bit error rate (QBER) [3–6]. This phenomenon 
introduces a novel perspective in the security problem in 
classical communications. However, due to the imperfection of 
implementation of the QKD system, a qubit may experience 
QBER, despite the absence of an eavesdropper in the quantum 
channel. Here, we define the channel error to represent the errors 
due to the imperfection of implementation of the QKD system, 
including multiphoton generation in a pulse, attenuation in a 
fiber, and dark current in a photo detector. Unfortunately, 
deterministic distinguish between the qubit error caused due to 
the existence of an eavesdropper and that caused by the channel 
is impossible. Accordingly, the existing research on the QKD 
mainly focuses on the secret key rate between the involved 
entities, regardless of the existence of an eavesdropper [5]. 
However, in this paper, we suggest further investigation of 
eavesdropper detectability that is a non-trivial and unique 
property in QKD. The accurate detection of an eavesdropper can 
introduce a better utilization of costly quantum resource to QKD 
and thus eventually contribute to key sharing in QKD. 

The intercept-and-resend attack is broadly assumed as a 
strategy of an eavesdropper in the BB84 protocol [6][9-12]. 
Inoue [3] and Scarani et al. [4] reviewed the partial intercept-
and-resend attack as a practical eavesdropping strategy. In the 
partial intercept-and-resend attack, the eavesdropper launches 
the attack to a qubit with a probability ρ and does nothing with 
a probability (1-ρ). The partial intercept-and-resend attack is one 
of the simplest individual attack of an eavesdropper. However, 
this paper assumes the partial intercept-and-resend attack as a 
sole strategy of an eavesdropper, for the straightforward analysis 
on detectability of an eavesdropper in the QKD protocol. In 
[3][4], QBER between the involved entities under the partial 
intercept-and-resend attack with probability ρ in the BB84 
protocol was calculated as ρ/4. In other words, the error due to 
eavesdropping was calculated independent of the channel error. 
However, in this study, we analyze QBER of the partial attack 
in the BB84 protocol as a function of channel error. 

There are studies for eavesdropper detection against 
intercept-and-resend attack in QKD protocols. Bennett and 
Brassard assumed the communication to be free from 
eavesdropping, if the QBER measured is zero [6]. In [9], 
Elboukhari et al. calculated that an eavesdropper will not be 
detected with a probability of (3/4)K in the four-state BB84 QKD 
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protocol, where K is the number of qubits to calculate QBER. 
Subramaniam and Parakh analyzed that an eavesdropper will not 
be detected with a probability of (1/2)K for infinite-state BB84 
and quantum Diffie–Hellman protocols [10]. In [11], Zamani 
and Verma proposed a two-way QKD protocol and calculated 
the probability that an eavesdropper will not be detected with 
respect to K and the number of key exchanges. The underlying 
assumption in the aforementioned studies is an ideal quantum 
channel, where eavesdropping is the only reason for QBER > 0. 

Our previous work [12] was the first study on accuracy of 
eavesdropper detection in the BB84 QKD protocols by 
considering practical quantum channel conditions. However, in 
[12], only full intercept-and-resend attack (ρ = 1) was considered, 
and the accuracy analysis of eavesdropper detection was limited 
by its upper-bound. Moreover, the key share performance of 
QKD, such as the secret key rate, was not investigated in [12]. 
As a follow-up study of [12], the primary objective of this work 
is to investigate the eavesdropper detectability in the BB84 QKD 
protocol against more general attack over noisy channel. The 
main contributions of this study are as follows: 

• By considering quantum channel condition, probability 
of eavesdropping in the partial intercept-and-resend 
attack, and quantum resource expenditure, a simple and 
flexible eavesdropper detection algorithm for BB84 
protocol is numerically developed. 

• Eavesdropper detection accuracy of the proposed 
algorithm is numerically evaluated against probability of 
eavesdropping. It is shown that the large number of 
qubits used for QBER calculation can increase the 
accuracy performance. 

• A strong trade-off relation between the eavesdropper 
detection accuracy and secret key rate performance of the 
proposed algorithm with respect to probability of 
eavesdropping, is revealed. 

II. PRELIMINARIES 

This section summarizes the notations and reviews the 
procedure of the classical four-state BB84 QKD protocol. 

A. Notations 

We adopt the terminologies of true-negative (TN), false-
positive (FP), true-positive (TP), and false-negative (FN) from 
[13][14]. The terminologies are summarized in Table I. We 
evaluate the false negative ratio (FNR) and false positive ratio 
(FPR). FNR and FPR are the ratios of incorrect judgments in 
and without the existence of an eavesdropper that can be written 
as FN/(TP+FN) and FP/(TN+FP), respectively. Furthermore, 
the accuracy represents a ratio of correct judgments that is 
expressed as (TP+TN)/(TP+FN+TN+FP). Table II summarizes 
the notations and the associated descriptions used in this paper. 

TABLE I.  TERMINOLOGIES FOR EAVESDROPPER DETECTION 

Eavesdropper Judgment Terminology 

exist 
exist True-positive (TP) 

not exist False-negative (FN) 

not exist 
exist False-positive (FP) 

not exist True-negative (TN) 

TABLE II.  NOTATIONS AND DESCRIPTIONS 

Notation Description 

K The number of shared qubits to calculate QBER 

ρ 
A probability of eavesdropping for a qubit in the partial 
intercept-and-resend attack 

νch,K QBER measured by K qubits without existence of Eve 

νeve,K QBER measured by K qubits with existence of Eve 

μch Genuine QBER without existence of Eve 

μeve Genuine QBER with existence of Eve 

θQBER QBER threshold for eavesdropper detection algorithm 

bA=E Events that bases of Alice and Eve are identical 

bA≠E Events that bases of Alice and Eve are non-identical 

cE Events that a qubit collapses into error at a basis of Eve 

cB Events that a qubit collapses into error at a basis of Bob  

(err.|Att.) 
Events that a qubit collapses into error when Eve 
launches intercept-and-resend attack to the qubit 

(err.| 
no Att.) 

Events that a qubit collapses into error when Eve does 
not launch intercept-and-resend attack to the qubit 

B. Procedure of Four-State BB84 Protocol 

In the four-state BB84 protocol, Alice generates a random 
binary bit sequence as a secret key. Alice encodes a binary bit 
into a polarization state of a particle (a qubit), where the 
polarization can be generated by selecting a basis among 
rectangular (+) or diagonal (×). The encoding rule between a 
binary bit and a polarization state with respect to bases are 
publicly shared. For example, ⟷ and ↕ polarizations can 
represent 1 and 0, if Alice selects a rectangular basis. Alice sends 
qubits to Bob over the quantum channel, and Bob decodes the 
qubits by the encoding rule. Please note that Bob randomly 
selects a basis to decode a qubit because Alice does not share the 
information of her encoding basis for the qubit. If the bases of 
Alice and Bob are non-identical for a qubit, the qubit collapses 
randomly into a polarization of a basis of Bob. After sending all 
the qubits, Alice and Bob communicate over the public channel. 
Bob shares the information of his decoding bases of each qubit 
and Alice answers which bases are identical to her encoding 
bases. Among the identical bases, Bob announces decoding 
results of randomly selected K qubits. Alice can calculate the 
QBER by comparing the original binary bit information and 
decoding results of the K qubits of Bob. The qubit is a costly 
resource in the QKD. Considering practical interest, we limit K 
to a few hundreds. 

In the case of the intercept-and-resend attack, Eve randomly 
selects a decoding basis between rectangular or diagonal to 
intercept a qubit. If bases between Alice and Eve are identical, 
the qubit does not collapse at the basis of Eve. However, when 
bases are non-identical, the qubit collapses randomly to a 
polarization with respect to the basis of Eve. Eve resends the 
qubit to Bob. Assuming perfect quantum channel condition 
[6][9–11], the average QBER measured by Alice and Bob is 
calculated as 25%  because the probability of non-identical bases 
between Alice and Eve for a qubit is 50%, and 50% of them 
collapse into errors. Please refer [6] for the further information. 

2023 International Conference on Optical Network Design and Modeling (ONDM)



III. THRESHOLD-BASED EAVESDROPPER DETECTION  

IN THE BB84 PROTOCOL 

This section discusses the modelling of QBER distributions 
in the BB84 protocol in and without the existence of an 
eavesdropper, by considering partial intercept-and-resend attack 
strategy of an eavesdropper. Based on the statistical property of 
QBERs, a simple eavesdropper detection algorithm is 
developed. 

A. QBER Threshold-based Eavesdropper Detection 

We define the Bernoulli random variable of Qch,i to model an 
error event of i-th qubit without the existence of Eve. Qch,i is 1, 
if Alice and Bob disagree on Qch,i, otherwise, 0. We assume 
independent and identically distributed channel errors for each 
qubit. Accordingly, the QBER measured by K qubits without the 
existence of Eve is calculated as 

, ,

1

1 K

ch K ch i

i

Q
K

ν
=

=  .                               (1) 

QBER calculated by K qubits in the existence of Eve is 
expressed as (2), where the Bernoulli random variable Qeve,i is 1, 
if Alice and Bob experience bit-mismatch on Qeve,i, otherwise, 0. 

, ,

1

1 K

eve K eve i

i

Q
K

ν
=

=                                (2) 

Owing to the central limit theorem [15], if K is sufficiently large, 

for example, larger than 30 [16], then the distribution of the 

average of K-sampled variables follows the normal distribution.  

Accordingly, we model the normal distributions of QBERs 

without and in the existence of Eve as 
2

, ~ ( , )ch K ch chNν µ σ  and 
2

, ~ ( , )eve K eve eveNν µ σ , respectively. Here, μch and μeve are the 

genuine means of QBERs that can be calculated by (1) and (2), 

when K is infinite. From the central limit theorem, the variances 

of each distribution are calculated using (3) and (4) that are 

functions of genuine means and K. 

( )1ch ch

ch
K

µ µ
σ

−
=                              (3) 

( )1eve eve

eve
K

µ µ
σ

−
=                            (4) 

Because this study considers partial intercept-and-resend 
attack, an error event of a qubit in the existence of Eve can be 
categorized into two cases; Eve launches an attack with 
probability ρ and Eve does not launch any attack with 
probability (1-ρ). Please note that a qubit suffers from channel 
error even though an attack is not launched to the qubit by Eve. 
Accordingly, μeve is expressed as (5). 

Pr( . | .) (1 ) Pr( . | .)
eve

err Att err no Attµ ρ ρ= + −         (5) 

An error probability of a qubit when Eve launches an attack is 

further divided into two cases, when bases between Alice and 

Eve are identical and non-identical, as shown in (6). 

Pr( . | .) Pr( ) Pr( . | , .)

Pr( ) Pr( . | , .)

A E A E

A E A E

err Att b err b Att

b err b Att

= =

≠ ≠

=

+
           (6) 

The original binary bit becomes erroneous if a qubit experiences 
odd numbers of bit-flip. Under the condition of identical bases 
between Alice and Eve, there are two reasons of bit-flip of a 
qubit—channel error between Alice and Eve (μAE) and channel 
error between Eve and Bob (μEB). Therefore, when Eve launches 
an attack and the bases of Alice and Eve are identical, a 
probability of error is calculated as (7) that represents one bit-
flip of a qubit due to the channel error. We assume independent 
channel error each other. 

( ) ( )Pr( . | , .) 1 1A E AE EB AE EBerr b Att µ µ µ µ= = − + −       (7) 

QBER in the BB84 protocol is calculated only when the bases 
of Alice and Bob are identical. Therefore, an event bA=E 

represents the cases when the bases of Alice, Eve, and Bob are 
all identical. Accordingly, (7) does not consider the error cases 
corresponding to the basis of Bob. 

For a case of non-identical bases between Alice and Eve, an 

error probability Pr(err.|bA≠E,Att.) is calculated in (8) by a 

summation of the probabilities of all possible cases of odd 
numbers (once and three times) of bit-flips of a qubit. Refer to 
[12] for the detailed description of each event in (8). In (8), the 
channel errors and errors due to non-identical bases between any 
two entities are assumed as independent. We further assume 
each error event in (8) to be independent of each other. 

Pr( . | , .)

Pr( | ){1 Pr( | )}{ (1 )(1 )}

{1 Pr( | )}Pr( | ){ (1 )(1 )}

Pr( | ) Pr( | ){ (1 ) (1 ) }

{1 Pr( | )}{1 Pr( | )}

{ (
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E B
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E B

A E A E AE EB AE EB

E B

A E A E AE EB AE EB

E B

A E A E
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err b Att

c b c b

c b c b

c b c b

c b c b

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ

≠
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1 ) (1 ) }EB AE EBµ µ µ− + −

 

(8) 
Pr(err.|no Att.) in (5) can be simply expressed as μAB. 

In the four-state BB84 protocol, a qubit randomly collapses 
at a basis of Eve when the bases between Alice and Eve are non-
identical. Therefore, Pr(cE|bA≠E) = Pr(cB|bA≠E) = 0.5. We assume 
that Alice, Eve, and Bob select their bases randomly, Pr(bA=E) = 
Pr(bA≠E) = 0.5. We further assume that imperfections of a single 
photon generator at a sender and a photodetector at a receiver 
are the major reasons for channel error. Accordingly, we can 
simplify the channel error between any two entities to the same, 
μAB = μAE = μEB = μch, because all they undergo one single photon 
generator and one photodetector. Consider altogether, we can 
simplify (5) as (9), as a function of ρ and μch. 

20.25eve ch chµ ρ µ ρµ= + −                         (9) 

Accordingly, the distance between μeve and μch is expressed as   

2(0.25 )chρ µ− .                               (10) 

Under an ideal quantum channel condition (μch = 0), μeve 

calculated using (9) is 0.25ρ that is in line with the calculations 

in [3][4]. If we further consider full intercept-and-resend attack 

(ρ = 1), μeve becomes 25%, as regarded in [6][9–11]. If we 

consider full intercept-and-resend attack (ρ = 1) in (10), the 

distance becomes 
20.25 chµ− , equivalent to that in [12]. 
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We suggest an eavesdropper detection algorithm for BB84 
protocol. The algorithm makes judgment of the existence of an 
eavesdropper, if QBER measured by K qubits is larger than a 
threshold (θQBER). In this algorithm, FP increases if νch,k is larger 
than θQBER. Similarly, FN increases when νeve,k is equal to or 
smaller than θQBER. With sufficiently large K (a few hundreds) 
the FPR is calculated by the integration of the distribution of νch,k 
from θQBER to infinite, as shown by (11). 

2
1

21
1

2

ch

ch

QBER

x

QBER ch

chch

FPR e dx

µ

σ

θ

θ µ

σσ π

 −
−  ∞  

 
− 

= = − Φ  
 

  (11) 

Here, the Φ function represents the cumulative distribution 
function of the standard normal distribution and is defined as 

2 /21
( )

2

x
t

x e dt
π

−

−∞
Φ =   [17]. Similarly, (12) calculate FNR. 
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 
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A large θQBER can reduce FPR at a cost of the increase in 
FNR. The proposed algorithm with an appropriate threshold can 
achieve acceptable accuracy performance, if the intersection 
between distributions of νch,k and νeve,k is sufficiently small. We 
highlight following observations: 

• Owing to the central limit theorem, a large K reduces the 
variances of distributions of νch,k and νeve,k. Therefore, a 
large K can effectively reduce FPR and FNR with an 
appropriate threshold in the proposed algorithm. 

• A small ρ in the partial intercept-and-resend attack 
reduces the distance between μeve and μch, which may 
degrade accuracy performance of the proposed 
algorithm. However, a small ρ simultaneously reduces 
the variance of distribution of νeve,k, which can improve 
FPR and FNR of the proposed algorithm. 

B. Optimal Threshold 

We calculate the optimal threshold 
*

QBERθ  using (13) that 

minimizes the summation of FPR and FNR.  

( )* arg min
QBER

QBER
FPR FNR

θ

θ = +                    (13) 

Because both FPR and FNR shown in (11) and (12) are 
differentiable, the optimal threshold satisfies 

2 2* *
1 1

2 21 1

2 2

QBER eve QBER ch

eve ch

eve ch

e e

θ µ θ µ

σ σ

σ π σ π

   − −
   − −
   
   = .    (14) 

By taking logarithm and organizing terms, we rewrite (14) as  

2 2* *

2 ln
QBER eve QBER chch

eve eve ch

θ µ θ µσ

σ σ σ

   − −
= −      
   

.      (15) 

 
Fig. 1. Optimal θQBER for the eavesdropper detection algorithm. 

From the quadratic formula, we determine a feasible solution of 
*

QBERθ  as (16). The optimal threshold can be written as a function 

of K, μch, and ρ, by substituting (3), (4), and (9) into (16). 

Figure 1 illustrates
*

QBERθ calculated by (16) for various 

conditions of K, μch, and ρ. A larger μch requires a larger optimal 
threshold because it changes μeve to a large value. As shown in 
Fig. 1, a large K results in a small optimal threshold under all 
conditions. However, the increase in K does not significantly 
affect the optimal threshold because a few hundreds of K is 
sufficiently large. For example, the largest difference between 
the optimal solutions with respect to K is 0.3% for μch = 3% and 
ρ = 10%. Partial intercept-and-resend attack with a small ρ 
results in a small optimal threshold because a small ρ 
significantly decreases the distance between μeve and μch. Please 
note that the optimal threshold in (16) considers both average 
and variance information of QBER distribution, whereas that in 
[12] considered average information only. 

C. Assumptions and Discussion for the Optimal Threshold 

The optimal threshold in (16) requires information on K, μch, 
and ρ. Information on K is easily obtained because it is selected 
by Alice and Bob. However, accurate knowledge of μch is 
impossible under the time-varying quantum channel condition. 
According to [18], we assume that Alice and Bob can 
approximate μch from a quantum interference visibility measure, 
before actual QKD transmission. Authors in [18] report that the 
difference between the estimated and measured QBERs lies 
within 1% for 122 km of standard telecom fiber QKD 
transmission. Moreover in [19], the fluctuation of QBER in 
QKD transmission lies within 0.16% during 70-h monitoring. 
Please refer [12] to handle the cases when Eve manually varies 
quantum channel conditions to spoil the algorithm. 
Unfavorably, the parameter ρ is decided by the eavesdropper, 
which can mislead the optimal threshold. In this study, we 
assume that Eve maintains ρ as a constant. This assumption is 
practical if Eve is equipped with a passive optical device for 
partial intercept-and-resend attack. For example, Eve can use an 
optical coupler with 50:50 coupling ratio for partial intercept-
and-resend attack with probability ρ = 50%, similar to the 
eavesdropping system shown in [20]. Accordingly, Alice and 
Bob can analyze the statistics of QBER and estimate ρ using (9). 

( ) ( ) ( )
22 2 2 2

2 2

1
2 ln ch

ch eve eve ch ch eve eve ch ch eve

evech eve

σ
σ µ σ µ σ σ µ µ σ σ

σσ σ

  
− − − + − 

−   
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Fig. 2. accuracy of eavesdropper detection (ρ = 0.7). 

IV. PERFORMANCE EVALUATION 

We evaluate the accuracy of eavesdropper detection and 
the trade-off relation between the accuracy and secret key 
rate. 

A. Accuracy of Eavesdropper Detection 

From (11) and (12), Fig. 2 numerically analyzes 1-
accuracy performance of eavesdropper detection capability of 
the proposed algorithm with the optimal thresholds for various 
conditions of K and μch. ρ is fixed as 0.7. Please note that we 
plot 1-accuracy performance in the logarithm scale, for better 
presentation and clear comparisons. The larger the value of K, 
the higher the accuracy of eavesdropper detection that can be 
explained by the central limit theorem. Both σch and σeve in (3) 
and (4) increase with respect to the increase in μch that degrade 
the eavesdropper detectability in the proposed algorithm. 
Simultaneously, as shown in (10), a larger μch results in a 
shorter distance between μeve and μch. Therefore, a large μch 
degrades the accuracy performance over the entire regimes of 
K. As shown in Fig. 2, more than 100 qubits comparisons for 
QBER calculation are required to guarantee 99.9% accuracy, 
if ρ and μch are estimated as 0.7 and 3%, respectively. 

Figure 3 numerically compares 1-accuracy performance 
of eavesdropper detection between the proposed algorithm in 
this paper and a reference algorithm in [12], with respect to ρ. 
In the comparison, a range of K is {100, 300, 500} and a value 
of μch is 3%. In [12], the optimal QBER threshold for detection 
of an eavesdropper is proposed, where the threshold is 
approximated by Hoeffding’s inequality under the full 
intercept-and-resend attack assumption. For a fair comparison, 
we assume an equal priority between FPR and FNR for the 
reference algorithm in [12]. For the entire regimes of ρ and K, 
the proposed algorithm achieves dramatic improvement in 
accuracy performances from those of the reference algorithm. 
The main reason behind this observation is explained as 
follows; With sufficiently large K, the optimal threshold in (16) 
is calculated by average and variance information of normal 
distributions for QBER. However, the optimal threshold in [12] 
is approximated by upperbounds of FPR and FNR, which 
lacks consideration of variance information of QBER 
distributions. Therefore, in our interested area for K (a few 
hundreds), the proposed algorithm shows much better 
accuracy performance. For all K condition, the decrease in ρ 
results in a degradation of the accuracy in the proposed 
algorithm, because a small ρ decreases the distance between 
μeve and μch. As expected, a larger K effectively achieves 
higher accuracy performance of the algorithms. The same 
performance trends were observed for different μch. 

 

Fig. 3. Numerical comparisons for the eavesdropper detection accuracy 
between algorithms for various ρ. (μch = 3% and K = {100, 300, 500}) 

B. Secret Key Rate 

Secret key rate is a representative performance measure in 
QKD that is rate of unconditionally secure key between the 
involved entities against an eavesdropper. Even though the 
security proof in the QKD is beyond of scope of this paper, in 
order to understand the secret key rate performance of BB84 
protocol against the partial intercept-and-resend attack, we 
review and calculate the secret key rate for our specific model. 
From [4], the secret key rate under the intercept-and-resend 
attack in BB84 protocol is expressed as  

max[I(A:B) - IE, 0],                          (17) 

where I(A:B) is the mutual information of raw key between 
Alice and Bob. IE denotes Eve’s information. Because it is 
impossible to generate a secret key when Eve has more 
information than the involved entities, the max function is 
used in (17) that returns the larger one. By assuming equal 
probability of bit values, from [4], we rewrite I(A:B) as 1 - h(q), 
where h and q are the binary entropy function and QBER, 
respectively. In the partial intercept-and-resend attack with 
probability ρ, IE is calculated as ρ/2 [4]. Therefore, the secret 
key rate is expressed by (18), as a function of QBER and ρ. 

max[1 + qlog2q + (1 - q)log2(1 - q) – ρ/2, 0]      (18) 

Figure 4 compares the secret key rate of the BB84 protocol 
against partial intercept-and-resend attack. By assuming 
infinite K, we calculate the secret key rate from (18) using q = 
μch and μeve for in and without the existence of an eavesdropper, 
respectively. In Fig. 4, the solid and dashed lines represent the 
secret key rates in and without the existence of the 
eavesdropper, respectively. When the eavesdropper is present, 
the increase in ρ results in an increase in QBER. Therefore, 
the solid lines in Fig. 4 monotonically decrease and reach zero, 
with the increase in ρ. Because μch is independent of ρ, the 
dashed lines in Fig. 4 show constant values with respect to ρ. 
A large μch results in a large μeve. Therefore, a smaller μch 
shows a higher secret key rate, for both in and without the 
existence of the eavesdropper. We omit comparison of secret 
key rate performance as a function of K, because it is 
negligible in our interested area of K. 
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Fig. 4. secret key rate comparison in the BB84 QKD protocol over noisy 
quantum channel under partial intercept-and-resend attack. 

The performance evaluation manifests a strong trade-off 
relation between the eavesdropper detection accuracy and 
secret key rate, with respect to ρ. If Eve selects a small ρ to 
reduce the detection probability against the threshold-based 
eavesdropper detection algorithm, Alice and Bob can take 
advantage of a higher secret key rate of the BB84 QKD 
protocol. On the other hand, if Eve launches partial intercept-
and-resend attack with a large ρ for more information 
acquisition, the proposed eavesdropper detection algorithm 
will enable an extremely high-accuracy performance for 
eavesdropper detection. Because the proposed algorithm 
operates by considering a combination of the quantum channel 
condition, eavesdropping probability, and quantum resource 
expenditure, the algorithm can improve the BB84 protocol by 
ensuring flexibility in operation and efficiency when utilizing 
the costly quantum resource. 

V. CONCLUSIONS 

In addition to the classical secret key rate analysis, this 
study explores the eavesdropping detectability in BB84 QKD 
protocol by means of representative performance measures in 
the intrusion detection engineering problem, such as accuracy. 
Based on the central limit theorem, we develop a threshold-
based eavesdropper detection algorithm against partial 
intercept-and-resend attack. The algorithm operates flexibly 
with respect to the quantum channel condition, the number of 
used quantum resource for the calculation of QBER, and the 
eavesdropping probability of an eavesdropper. Numerical 
analysis reveals a trade-off relation between the economy of 
quantum resource and eavesdropper detection accuracy. This 
study further investigates the trade-off relation between the 
eavesdropper detection accuracy and secret key rate in the 
QKD with respect to the eavesdropping probability of an 
eavesdropper.  

Detectability of an eavesdropper in the QKD protocol is 
initial research stage. For the straightforward analysis on the 
detectability, this study could not avoid a number of 
assumptions. A partial intercept-and-resend attack, one of the 
simplest individual attacks, was fixed to as a specific strategy 
of an eavesdropper. We further assumed that the statistical 
property of quantum channel and attack strategy of an 
eavesdropper are known in prior. As future study, we plan to 
evaluate the detectability of an eavesdropper in the QKD 
protocol with realistic assumptions including side channel 
attack of an eavesdropper. 

By incorporating the QKD protocol, we hope that this 
study can contribute to quantum secure communications and 
networking. We further believe that the investigations on 
eavesdropper detection of QKD in this study can contribute to 
enhance the understanding of QKD, by revealing a 
fundamental aspect of QKD protocol. 
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