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Abstract—Failure management in optical networks usually
deals with the processing of alarms, including alarm classification.
The alarms data obtained from network management systems
often include a high number of categorical features (e.g., name
of the alarm, cause), which can make machine learning (ML)
training a complex and data-intensive process. To overcome this
issue, this paper proposes a pre-processing technique for alarms
data, enabling the use of smaller datasets for ML-based alarm
classification. The results obtained using three different ML
models suggest the effectiveness of the proposed approach.

Index Terms—Alarm classification, Network management sys-
tem, Data dimensionality reduction.

I. INTRODUCTION

Failure management has emerged as a key application of
machine learning (ML) in optical networks [1]–[3]. A failure
in an optical network is normally associated with a large
number of alarms [4], [5] in the network management system
(NMS). The classification of alarms according to their root
causes can simplify the analysis of alarms for the operational
teams and accelerate their intervention to clear failures. The
complexity of alarm classification process is not only related
to the large number of existing alarms in operational networks
but also the context that should be taken into account. Given
the complexity of the problem, large datasets are needed to
train the ML model [6] to deal with different type of failures
and to overcome the high cardinality issue of categorical
features in the alarms dataset. This complexity could make the
proposed solutions greedy in terms of required computational
resources and training time. Authors in [7] propose to consider
the overall classification problem as a succession of binary
classification sub-problems where the ML-based model has to
distinguish between alarms generated by a specific failure and
all the other alarms (hereinafter referred to as noise alarms).
This approach simplifies the complexity of the problem but
does not address the high cardinality issue efficiently.

In this paper, we used a small experimental dataset with
many noise alarms to perform a binary classification. We
proposed an alarms pre-processing approach in which high
cardinality of categorical features has been dealt using a more

sophisticated and reversible encoding method. The effective-
ness of encoded data was evaluated on three different ML
models trained for alarm classification in two optical subnet-
works, with results on test dataset indicating high F1-scores
for alarm classification. Using the available small dataset, our
approach has been shown to significantly reduce the training
and inference time without having a significant impact on the
classification performance.

II. EXPERIMENTAL TESTBED SETUP

The experimental testbed shown in Fig.1 was used to collect
the alarms data. It consisted of two subnetworks managed
by the real field-like NMS. The subnetwork 1 included four
main nodes labeled N1, N2, N4, and N5, as well as an inline
amplifier (N3) considered as a node. Similarly, subnetwork
2 had three nodes marked as N6, N7 and N8 in Fig.1. The
optical power attenuation co-efficient for utilized single-mode-
fibers was 0.25 dB/km, with an average distance of almost 50
km between two adjacent nodes. All nodes were capable of
communicating with the NMS to update the status of their
cards and raise alarms in case of any failure. The considered
optical services in both the subnetworks are also indicated in
Fig.1. In order to artificially introduce failures in the networks,
variable optical attenuators (VOAs) were placed at various
positions labeled as P1-P8 in Fig.1. The attenuation was
increased from its lowest possible level to the point where we
observed complete service disruption. This attenuation of an
optical signal was considered as a failure, and the resultant
raised alarms were used for this investigation. The alarms
generated because of other failures or uncleared alarms from
previous failures were considered as noise alarms.

For this study, we assumed that failure events (i.e., different
levels of attenuation of an optical signal) occur one at a time
and are independent of each other. In our future work, we
intend to consider other types of failures as well.

III. ALARMS PRE-PROCESSING

We started by removing redundant features from the
raw alarms data during the feature engineering process by
utilizing domain expertise. After that, we were left with five
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Fig. 1. Experimental testbed setup and alarms pre-processing

categorical features (PROBABLE CAUSE, ALARM NAME,
NE NAME, AFFECTED OBJECT NAME, ADDI-
TIONAL TEXT) and one numerical feature (FDN). There
were many unique labels in each categorical feature, and each
label ideally maps to a new dimension in the dataset after
one hot encoding (OHE). Table. I shows the training dataset
size, s = (a, d), at various stages of alarms pre-processing for
alarm classification. In s, a represents the number of alarms
and d represents the dataset dimensions, which are equal
to the total number of unique labels across all categorical
features and the number of numerical features (i.e., only FDN
feature in this case that was scaled using Robust Scaler).

TABLE I
ALARMS PRE-PROCESSING INSIGHTS (TRAINING DATASET)

Subnetwork 1 Subnetwork 2
Before rare-label encoding (1400, 866) (955, 623)
After rare-label encoding (1400, 94) (955, 109)

After PCA (98%) (1400, 57) (955, 56)

With the proposed pre-processing, to address the high cardi-
nality of the alarms dataset, we assigned a new label rare to all
the less frequent labels in each categorical feature, determined
on the basis of a threshold. We used a 1% threshold for
alarm classification. In order to further reduce the dimensions
of the dataset, we used the principal component analysis
(PCA) technique [8], which linearly maps data from N to
K dimensions where K<N, while preserving the specified
amount of information. In this case, PCA was used to preserve
98% of the information; which means that we lose 2% of the
information at this stage. It should be noted that the dimen-
sions indicated against “Before rare-label encoding” in Table.
I are the dimensions obtained with basic pre-processing (in

which neither rare-label encoding nor PCA was performed).

IV. RESULTS AND DISCUSSION

After pre-processing the alarms data, we evaluated the
performance of the encoded dataset using three ML mod-
els: gradient boosting classifier (GBC) [9], extreme gradient
boosting (XGBoost) [9], and light gradient boosting machine
(LightGBM) [9]. The achieved performance from encoded
data obtained using the proposed method was compared to
the basic pre-processing scenario. The metrics selected for
comparison were the training and inference time, as well as
the F1-score, which is a reliable measure of classification
performance even when class imbalance is present.

Figs. 2(a, b, and c) present the results achieved from basic
data pre-processing, whereas Figs. 2(d, e, and f) show the
results for proposed pre-processing. As shown in Figs. 2(a)
and 2(d), for GBC, training time was reduced by 41.04%
and 51.4% for subnetwork 1 and subnetwork 2, respectively.
Similarly, inference time was reduced by 58.9% and 18.75%
for subnetwork 1 and subnetwork 2, respectively as indicated
by Figs. 2(b) and 2(e). Figs. 2(c) and 2(f) demonstrate that the
information loss (i.e., 2% during PCA) during dimensionality
reduction process, has a minimal impact on the classification
performance of the ML models. For GBC, F1-score was
reduced by only 0.2% and 3.1% in subnetworks 1 and 2,
respectively.

The proposed dimensionality reduction framework has been
found to achieve similar performance improvements for the
other two considered ML models as well. The proposed pre-
processing technique significantly reduced the training and in-
ference time for XGBoost (i.e., up to 47%) while maintaining
comparable classification F1-score. Similarly, for LightGBM,
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Fig. 2. Performance comparison of proposed and basic pre-processing in terms of training time, inference time, and macro-average F1-Score

we observed a reduction of up to 60% in inference time,
with only a slight impact on classification performance. This
demonstrates the effectiveness of the proposed framework in
reducing computational costs while maintaining performance.
The trade-off between reduction in inference/training time and
classification accuracy can be considered based on the specific
requirements and scenarios.

V. CONCLUSION

We investigated an alarms pre-processing method to im-
prove the quality of the small training alarms dataset for
machine learning (ML) models. The effectiveness of the
processed dataset was assessed for a typical use-case i.e., ML-
based alarm classification in optical networks. Three different
ML models were used for this purpose, and the proposed alarm
pre-processing has shown to significantly reduce training and
inference time for these ML models, with only a slight impact
on F1-score (up to 3%) due to the loss of information during
dimensionality reduction.
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