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Abstract—The constantly increasing traffic volume triggers the
fast development of new optimization methods for backbone
optical networks. Operators seek new ways to improve several
network performance metrics, including network stability. In
this paper, we propose a multilayer packet-over-optical approach
combining grooming and traffic prediction. We demonstrate the
advantages of the proposed algorithm for provisioning daily time-
varying traffic of various services through multiple metrics. We
show how the proposed approach, enabled by the cross-layer
information exchange, can achieve a served traffic increase of
about 26% in operational scenarios.

Index Terms—multilayer network, grooming, traffic prediction

I. INTRODUCTION

The development of new technologies and the rising pop-
ularity of network-based services constantly and relentlessly
increase the traffic volume in backbone networks [1]. New
optimization methods are developed to cope with the inevitable
capacity crunch and fit more traffic within the existing infras-
tructure. Multilayer application-aware network optimization
[2], [3] is one of the recent promising approaches in which
the traffic from various services is provisioned using cross-
layer information exchange. On top of bandwidth blocking
probability minimization, serving the traffic of different types
in multilayer networks can bring benefits in multiple measures,
such as quality of service (QOS) assurance [4] or provide
a balance between costs and delay constraints [5].

An approach often considered in multilayer networks is
traffic grooming; the aggregation of traffic from multiple low-
rate connections from the upper layer into high-rate optical
channels allows several independent traffic streams to share
the bandwidth of a lightpath. That way, by maximizing the
amount of traffic on each lightpath, it is possible to minimize
the number of lightpaths, which can lead to energy savings [6].
Recent works also show how combining multiple IP requests
into large optical channels through traffic grooming can reduce
bandwidth blocking and fragmentation [7], [8].

Furthermore, machine learning (ML) techniques are gaining
attention in optical networking [9], [10], further enhancing
optimization algorithms. Developed models provide valuable
information of various kinds, including quality of transmission
estimation [11], [12] or link dimensioning [13]. Considering
the time-varying and constantly increasing nature of network

traffic, one of the essential research directions is using traffic
prediction. The knowledge about future traffic can improve
the request routing decisions and decrease overall bandwidth
blocking probability and resource usage in the short term [14]–
[17] or enable gradual cost-minimizing network upgrade in the
long term [18].

In this paper – as the main contribution and novelty –
we propose new multilayer network optimization methods
for time-varying traffic of various services and applications.
We demonstrate the advantages of cross-layer information ex-
change to perform traffic grooming and use free bandwidth in
the existing lightpaths for provisioning additional connection
requests. Furthermore, we propose to employ traffic prediction
to improve grooming decisions and demonstrate its benefits
through multiple metrics. We show how our machine-learning-
aided algorithm achieves lower bandwidth blocking, optimizes
resource utilization, and makes much fewer reallocations, lead-
ing to more stability and potentially lower operational costs.
Additionally, we describe a time-varying traffic model using
real-life traffic patterns of various network-based applications.
We perform simulations using realistic, up-to-date assumptions
to demonstrate the operation of our proposed algorithms and
collect several statistics to provide more insight into the
obtained results.

The paper is organized as follows. Related works are
described in Section II. The network model is introduced in
Section III, followed by the description of proposed algorithms
in Section IV and the traffic model in Section V. Finally, the
numerical experiments and results are presented in Section VI.
Section VII concludes this work.

II. RELATED WORK

Multilayer network optimization is not a new topic and has
been addressed by many researchers in the last few years.
The most recent research works include algorithms for real-
world networks approaching capacity limits. The authors of [4]
proposed an application-aware degradation scheme to ensure
the provisioning of the most critical connections. Similarly,
the authors of [5] focused on provisioning the most latency-
and protection-sensitive requests before the less urgent, best-
effort traffic. On the other hand, the authors of [19] did not
distinguish specific traffic classes but proposed a mechanism of
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hiding certain parts of network resources for unexpected traffic
bursts and showed how it decreases the overall bandwidth
blocking probability. Moreover, the authors of [20] used the
cross-layer information exchange to balance congestion prob-
ability and reconfiguration frequency. Finally, traffic grooming
of IP requests into optical channels was addressed by the au-
thors of [8] together with fragmentation-awareness, achieving
bandwidth blocking probability reduction.

Several works also demonstrated the benefits of using traffic
prediction for network operation. The most recent research
showed how forecast-based routing path selection can bring
benefits in lower blocking probability [15], [16]. The authors
of [21] showed how the benefits of using traffic prediction are
marginal in a normal network state but increase under heavy
traffic load. In [22], the benefits of using traffic prediction
were presented in conjunction with dedicated path protec-
tion. Furthermore, provisioning of time-varying traffic was
addressed in [23], where the authors showed the advantages
of periodic reallocations of daily traffic of various services
to minimize bandwidth blocking. Additionally, the authors of
[24] and [25] used traffic prediction for periodic re-routing
to minimize congestion on network links. However, above
described research only considers the optical layer.

To the best of our knowledge, current literature lacks
research regarding the combination of traffic prediction and
grooming in multilayer networks. To fill this gap, we pro-
pose novel algorithms, demonstrating their benefits through
multiple metrics. We show how the cross-layer information
exchange aided by ML can improve various measures, includ-
ing bandwidth blocking, resource usage, and the number of
required reallocations.

III. NETWORK MODEL

We assume that the multilayer network consists of a packet
layer and an optical layer. The packet layer is used to di-
rectly serve the services and applications, i.e., to establish
requests/connections required to serve various types of ser-
vices and applications. In turn, the optical layer is used to
create a virtual topology of lightpaths transmitting aggregated
requests. We assume that the requests in the packet layer
represent time-varying traffic, i.e., traffic that changes over
time (day) due to the different popularity of various services
and applications at different times of the day. For instance,
Fig. 1 shows hourly trends for a popular system, namely
TikTok, based on [26].

The optical network operates on flexible (elastic) frequency
grid with slots (slices) of 12.5 GHz granularity and with coher-
ent transceivers (TRXs), which support reconfigurable bitrates
and apply various modulation formats (MFs) according to the
optical path properties. We use Ciena WaveLogic 5 Extreme
[27] transceiver model. The below presented parameters are
based on various information provided by Ciena. In more
details, the TRXs support one of the two available baudrates
(64 or 95 Gbaud). In turn, each TRX supports an optical
channel (OC) of 6 or 9 slices (75 or 112,5 GHz, respectively).
The bitrates carried by OCs depend on the spectral efficiency

of the MF in use. If a request surpasses the maximum capacity
that a TRXs can support using a particular MF, the request is
established with the use of superchannel (SCh) occupying a
relevant number of adjacent slices. The transmission reaches
of considered modulation formats are provided in Table I.
TABLE I: Modulation formats – transmission reach and sup-
ported bitrate based on [27].

MF transmission reach supported bitrate # slots
QPSK no limit 200G 6
8QAM no limit 400G 9
16QAM 800 km 400G 6
16QAM 1600 km 600G 9
32QAM 200 km 800G 9

The requests are served in the packet layer. With the as-
sumed time-varying traffic, the bitrate of each request changes
every time step.

IV. PROPOSED ALGORITHMS

The first proposed multilayer algorithm, MLTL, assumes
a dedicated lightpath for each time-varying connection re-
quest. First, the requests are sorted by their current bitrate
descending. Then, lightpaths are created in the optical layer
for each request, according to their current bitrate. In each
subsequent time step, the requests are sorted by current bitrate
and ensured that they still fit in their lightpaths. For each
request no longer fitting, its lightpath is torn down, and a new
one is created according to the current bitrate. In turn, the
number of lightpaths in the optical layer is constant and
equal to the number of requests. This algorithm serves as
a baseline solution, corresponding to traditional dynamic traf-
fic algorithms for optical networks with individual lightpaths
for traffic demands. Note that the packet layer does not have
the topology details of the underlying optical network and
only sends lightpath creation or tear-down requests, receiving
information about their supported bitrate. In turn, the packet
layer is a virtual topology of lightpaths.

In the optical layer, after receiving a lightpath creation
request from the upper layer, a new lightpath that satisfies
the specified bitrate is sought using a greedy algorithm. For
a given pair of the request’s source and destination nodes,
a set of 10 shortest candidate routing paths is considered,
which enables a high probability of setting up a lightpath
without unnecessary algorithm complexity increase. The most
spectrally efficient MF is selected on each path, supporting
its transmission distance. The number of required slots is
computed supporting the requested bitrate. For the obtained
number of slots, a SCh satisfying spectrum continuity and
contiguity constraints is sought with the lowest possible ending
slot index. Finally, corresponding SChs found on each candi-
date path are compared, and the one with the lowest ending
slice index is selected to serve the request. Note that due to
the TRXs model, the bitrate supported by the lightpath may be
larger than the requested bitrate. Therefore, the information
regarding created lightpath capacity is returned to the upper
layer.
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Fig. 1: TikTok original.
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Fig. 2: TikTok with 5 minutes interpolation and Gaussian noise.

In a proposed modification to the baseline MLTL algorithm,
we take advantage of the cross-layer information exchange
and use traffic grooming. In more detail, the optical layer
uses transceivers to create lightpaths with certain capacity
granularity, thus rounding the requests bitrate up and leaving
some unused free bandwidth. The connection requests often
have a relatively small bitrate and can be fit in those free spaces
without the need to set up additional lightpaths. Therefore, in
MLTL_G, the algorithm first tries to incorporate the requests
sorted by bitrate in existing lightpaths in each time step, using
the information about the remaining free bandwidth obtained
from the optical layer. Moreover, using Yen’s algorithm, five
candidate paths of multiple lightpaths are created for the
requests if they do not fit in any existing direct lightpath
from their source to their destination node, thus employing
IP routing. The candidate paths are sorted by length measured
in the number of lightpaths. The chosen k = 5 prevents the
creation of longer paths in the top layer, as they would require
multiple O–E–O conversions. In the end, if a request cannot be
provisioned in the current lightpath topology, a new lightpath
is created for it. Note that the described procedure is used
not only for the initial allocation but also when reallocating
requests that no longer fit, except for the initial iteration,
when no routing in the packet layer is allowed. Moreover,
in each iteration, the requests with a bitrate lower than the
previous time step are considered first to free resources for
the ascending bitrate of the remaining connections.

Finally, in MLTL_GP, we employ short-term traffic pre-
diction to handle request allocation and reallocation better,
considering their forecasted bitrate. In more detail, if a request
is predicted to have an increasing traffic trend in the next
timestep, the algorithm makes decisions using the maximum
of the request’s next three bitrates instead of the current
one. That way, more bandwidth is reserved for the forecasted
bitrate increase, and additional, tightly fitting requests are not
groomed into its lightpath, hopefully preventing unnecessary
reallocations. The length of the considered prediction horizon
was tuned in preliminary experiments.

The overview of request allocation in a considered multi-
layer network is visualized in Fig. 3. Let us consider an optical
network topology with 5 nodes V = {v1, . . . , v5} and 7 links
(edges) E = {e1, . . . , e7} (Fig. 3a). To accommodate various
requests from the packet layer, lightpaths are created in the
optical layer. In Fig. 3b, different colors represent different
lightpaths L = {l1, . . . l6} with assigned spectrum resources
on adequate network links. Typically in optical networks, spec-
trum continuity constraint is required, where each lightpath is

operating on the same frequency window along the routing
path. The routing of each lightpath in the optical network is
presented in Fig. 3c, where each color represents a different
lightpath l ∈ L. Based on that, a packet (virtual) network
topology is created where each lightpath represents an edge
between its end nodes (Fig. 3d). Note that a given pair of nodes
may have more than one link in virtual topology, depending
on how many lightpaths are available between the given pair
of nodes. Moreover, different lightpaths set up between a pair
of nodes in the bottom layer might use different routing paths.
Nevertheless, they are equivalent to the top layer. Fig. 3e
presents the allocation of some new incoming requests r1
and r2 between nodes v3 and v4 during network operation,
each requiring 100 Gbps bandwidth. The chart visualizes the
occupied bitrate in each lightpath l ∈ L, i.e., a bitrate that is
assigned to other requests (blue-gray color). Assuming that
the request r1 (yellow) is processed, the algorithm seeks
an available link in the virtual topology to accommodate
its bitrate. In particular, if grooming is considered, lightpath
l4 contains sufficient residual capacity. In such a case, the
allocation algorithm accommodates (grooms) request r1 to that
lightpath. Next, request r2 (green) is processed. As there are
not enough available resources in lightpath l4, the algorithm
can either request from the optical layer to create a new
lightpath between nodes v3 and v4 or can use Yen’s algorithm
to find different routing path in the virtual topology. In the
considered example, the routing path consisting of lightpaths
l3 and l5 is selected. Note that using a multi-hop routing
path in the virtual topology may require optical-electrical-
optical conversion in the intermediate node that introduces
additional latency and some optical links might be traversed
twice. Nevertheless, the introduction of routing in the packet
layer allows for accommodating more traffic compared to
single-hop path creation. It is worth noting that the algorithm
without grooming requires the creation of a new lightpath for
each incoming request in the packet layer.

V. TRAFFIC MODEL

The traffic is generated based on data from [26], differentiat-
ing daily patterns of eight diverse traffic types associated with
popular network-based applications, including, e.g., YouTube,
TikTok, and Zoom. Requests are generated with bitrate scaled
to the 100-150 Gbps range with a uniform distribution. Each
request has a traffic pattern of a specific application, and there
are multiple requests for each pair of nodes. Since [26] only
provides hourly means of the bitrate of particular traffic types,
an interpolation algorithm is employed to obtain traffic values
every five minutes, which gives 288 observations per day. In
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Fig. 3: Overview of requests allocation in multilayer network.

particular, between each hour, a signal is interpolated using
a combination of linear and exponential functions such that the
integral for a given hour remains the same as in the original
data. Further, Gaussian noise is introduced to the signal to
recreate more natural traffic changes behavior. Fig. 1 and 2
present the original TikTok signal and a signal with applied 5
minutes interpolation, respectively.

The traffic prediction model is based on our previous work
[28]. In a nutshell, because of a high seasonality present in
optical networks, each request’s future exact bitrate values
are based on two significant historical observations: the traffic
a day and a week before the forecasted sample. Following
the recommendation from [28], the ML algorithm of choice
is linear regression as a fast and reliable predictor of highly
seasonal network traffic. The prediction model is trained on
one month-worth of traffic data for each request.

VI. NUMERICAL EXPERIMENTS

In the following part, we analyze averaged results of ten
simulations of 24 hours of network usage, with bitrate changes
every 5 minutes. The experiments are conducted for the US26
topology (see Fig. 4).

Fig. 5 presents the average highest occupied slot for each
network link. This measure illustrates how evenly the traffic is
distributed across the network. A humble but clear advantage
of using traffic prediction is visible. The 320 slots available
in each link are approached faster in algorithms without
knowledge about future traffic. Furthermore, Fig. 6 presents
the sum of occupied slots, which illustrates the usage of the
available resources. It can be noticed that traffic grooming

Fig. 4: US26 topology.

enables the creation of fewer lightpaths to serve the traffic.
Traffic prediction further optimizes resource utilization, with
noticeably fewer occupied slots at any of the considered traffic
loads. Overall, the resource usage clearly but modestly benefits
from traffic prediction and grooming. However, this is not the
case for the number of reallocations, shown in Fig. 7, which
measures the network’s stability. As can be captured from the
plot, the increase in traffic load leads to an higher number of
required reallocations in MLTL, which uses individual light-
paths for each request. The usage of traffic grooming enables
considerably fewer lightpath reallocations with a much slower
increase under heavier traffic load, ensuring more stability.
The use of traffic prediction further reduces the number of
necessary reallocations, enabled by more informed algorithmic
decisions. Note that an increasing traffic load further highlights
the benefits coming from traffic prediction. In particular, for
traffic of 41.25 Tbps, MLTL_G, and MLTL_GP need 5.7
and 11.9 times less reallocations than the reference MLTL.
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Moreover, we want to underline that reducing the number
of reallocations also contributes to decreasing the network
operational costs (OPEX).

25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5
Traffic load [Tbps]

200

220

240

260

280

300

av
g 

hi
gh

es
t o

cc
up

ie
d 

slo
t MltL

MltL_G
MltL_GP

Fig. 5: Average highest occupied slot.
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Fig. 6: Sum of occupied slots.
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Fig. 7: Number of reallocations.

Fig. 8 reports bandwidth blocking probability (BBP), mea-
suring what portion of the traffic was not provisioned under
a specific load. Furthermore, to differentiate the blocked
requests, in Fig. 9, we report BBP scaled by distance (BBP_SD),
and in Fig. 10 BBP scaled by the square root of distance
(BBP_SSRD). The motivation for using two additional blocking

metrics is that the basic BBP does not account for rejected
traffic being related to node pairs of various distances. As
an example, in the considered network topology, the shortest
distance between a node pair is 188 km, while the longest
distance between a node pair (measured as the length of the
shortest path) is 5894 km. Scaling the BBP by distance (Fig.
9) and the square root of distance in (Fig. 10) presents more
insight into the performance of the compared approaches.

Clear benefits from traffic grooming are visible, with block-
ing occurring under a much heavier traffic load. Traffic predic-
tion enables further BBP reduction. In more detail, the amount
of accepted traffic assuming BBP of 1% is 34.99 Tbps, 41.04
Tbps, and 44.11 Tbps, for MLTL, MLTL_G, and MLTL_GP,
respectively. It means that MLTL_GP allows to provision
26.1% and 7.5% more traffic in the network than MLTL
and MLTL_G, respectively. The corresponding differences for
the remaining BBP versions are similar. However, scaled BBP
measures highlight the benefits of traffic forecasting more
clearly. That means the use of or ML-aided algorithm led to
the rejection of some more distant connections, thus accepting
more short-term requests using shorter paths.

The average simulation time of 24h network usage with 5-
minute sampling on a machine with the Intel Core i5-1038NG7
processor and 16 GB of RAM is 432ms for MLTL, 479ms
MLTL_G and 502ms for MLTL_GP, with the number of
reallocations accounting for the majority of the algorithm’s
complexity.
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Fig. 8: Bandwidth blocking probability (BBP).

In summary, traffic grooming in multilayer networks enables
the operators to fit considerably more traffic in a backbone
network than traditional dedicated request lightpaths. Adding
traffic prediction further improves network operation, leading
to reduced blocking probability and resource utilization. The
use of machine learning also substantially lowers the number
of required reallocations, thus enabling OPEX decrease and
stability improvement.

VII. CONCLUSIONS

In this paper, we tackled the problem of provisioning
time-varying traffic in multilayer packet-over-optical networks.
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Fig. 9: BBP scaled by distance.
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Fig. 10: BBP scaled by square root of distance.

Through experiments with connection requests of diverse
traffic types, we demonstrated the advantages of using traffic
prediction and grooming enabled by cross-layer information
exchange in several metrics. Our algorithm, through the com-
bination of grooming and ML-based traffic prediction, achieved
a considerable reduction of bandwidth blocking, resource
utilization, and the number of required reallocations. Gained
benefits can improve network stability and lower OPEX while
provisioning more traffic within the existing infrastructure.

In the future, we plan to use data analytics to create intent-
based multilayer network optimization methods and consider
the unique requirements of various traffic types.
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