
DyCroNO: Dynamic Cross-layer Network
Orchestration and Real-time Deep Learning-based

Network Load Prediction
Venkat Sai Suman Lamba Karanam and Byrav Ramamurthy

School of Computing
University of Nebraska-Lincoln

Lincoln, NE, USA
saisuman@huskers.unl.edu and ramamurthy@unl.edu

Abstract— In this paper, we present Dynamic Cross-layer Net-
work Orchestration (DyCroNO), a dynamic service provisioning
and load balancing mechanism for IP over optical networks.
DyCroNO comprises of the following components: i) an end-end
(E2E) service provisioning and virtual path allocation algorithm,
ii) a lightweight dynamic bandwidth adjustment strategy that
leverages the extended duration statistics to ensure optimal
network utilization and guarantee the quality-of-service (QoS),
and iii) a load distribution mechanism to optimize the network
load distribution at runtime. As another contribution, we design
a real-time deep learning technique to predict the network load
distribution. We implemented a Long Short-Term Memory-based
(LSTM) method with a sliding window technique to dynamically
(at runtime) predict network load distributions at various lead
times. Simulations were performed over three topologies: NSFNet,
Cost266 and Eurolarge using real-world traffic traces to model
the traffic patterns. Results show that our approach lowers the
mean link load and total resources significantly while improving
the resource utilization when compared to existing approaches.
Additionally, our deep learning-based method showed promising
results in load distribution prediction with low root mean squared
error (RMSE) and ∼90% accuracy.

Index Terms—IP over optical networks; Software-defined net-
work; Load distribution; Real-time Deep Learning.

I. INTRODUCTION AND BACKGROUND

In this paper, we present a Dynamic Cross-layer Network
Orchestration (DyCroNO) for IP over optical networks such
as the IP-based MPLS over Optical Transport Networks (OTN)
using the software-defined networking (SDN). The main con-
tributions of this paper are summarized as follows. We address
three problems native to IP over optical networks: (1) dynamic
service provisioning, (2) dynamic resource allocation and (3)
dynamic load distribution mechanism. Additionally, we intro-
duce a real-time deep learning-based network load distribution
prediction mechanism and integrate it into DyCroNO. We
used autoencoder-based variation of Long Short-Term Memory
(LSTM) [1] method modified with a sliding window procedure
to fit our problem statement. DyCroNO is designed using SDN
paradigm with OpenFlow standard [2]. We assume Software-
Defined IP-based MPLS over Optical Networks (SDION) and
present results for the same. However, our proposed work can
be extended to most multi-layer networks.

First, we discuss the limitations of current state-of-the-
art and generalize them into categories. We later compare
the results of DyCroNO against the generalized categories.
The authors in [3] propose a software solution for tunable
configuration and routing selection in optical networks called
HeCSON. HeCSON selects a configuration for the lightpath
using combination of data rate, modulation scheme and forward
error correction based on the optical fiber’s characteristics
(number of channels, length, etc). We categorize works along
this line as Bandwidth Separation Allocation methods (BSA).
BSA separates the services and over-provisions based on their
initial bandwidth request instead of the bandwidth they actually
use.

The authors in [4] propose RADWAN, an optical link
capacity reconfiguration approach that adapts the rate based
on the measured SNR in the physical layer channel using a
simple heuristic. Motivated by reducing transfer completion
times, utilization and transfer costs, authors in [5] optimized
bulk datacenter transfers connected via optical networks by
formulating the resource provisioning as an optimization prob-
lem. The authors in [6] proposed an online linear programming
approach to improve transfer completion times by optimizing
the sum of flow times. The works proposed in [4]–[6] are
limited to specific transport services (single layer) which makes
them difficult to adopt jointly to IP over optical networks.
The existing works on joint service provisioning in IP-based
optical WANs use priority matching between the end-to-end
(E2E) services and the virtual resources based on the QoS
requirements [7], [8]. We generalize these works as Bandwidth
Aggregation Allocation methods (BAA). BAA methods utilize
the maximum or peak traffic statistics of the service to allocate
bandwidth. Follow-up adjustments to the bandwidth is done
based on the monitored resource utilization by the services.

The authors in [9] have highlighted the gap between the
optical and IP networks for joint provisioning in optical WANs.
The authors in [10] propose an integer linear programming
approach for joint routing over non-segregated static and recon-
figurable links. These works take considerable time to converge
and do not operate on the sub-second time. We generalize these
works as Virtual Dynamic Bandwidth Allocation (VDBA).
VDBA methods adopt dynamic bandwidth adjustment in re-

978-3-903176-54-6 © 2023 IFIP

2023 International Conference on Optical Network Design and Modeling (ONDM)

sponse to varying runtime resource demands, most often using
SDN. VDBA methods treat the individual IP and optical layers
as blackboxes. Existing research tells us that IP and optical
layers each exhibit their own influence on the traffic flowing
through the network [9]. Consequently, the runtime demands of
the services in IP over optical networks exhibits high temporal
and spatial locality [11], [12]. This can lead to resource over or
under utilization and may impact the QoS for the services.For
such an effort, individual transport layers cannot be treated as
blackboxes to make accurate predictions. This requires not only
the runtime monitoring of the virtual network resources but
also the IP and optical elements comprising them. Additionally,
estimating traffic demands currently and into the future in
IP over optical networks is needed so that dynamic resource
adjustments, most often in sub-second time frames. The results
presented in Section III compare DyCroNO against BSA, BAA,
and VDBA strategies. Rest of the paper is organized as follows.
Section II presents the technical design, the algorithms and the
proposed deep learning method. Section III presents the results.
Section IV concludes the paper.

II. DYCRONO
In this section, we present the technical details of the

proposed mechanism, DyCroNO. The symbols and definitions
used in this section are described in Table I.

A. Problem Statement
Consider a software-defined IP over optical network. Due

to the runtime dynamics, (1) the network resource usage
(e.g. links) is imbalanced i.e. load imbalance exists, (2) some
services are not being served up to their QoS, and (3) some
resources can be re-provisioned from services with loose QoS
requirements. While these can be addressed by following an al-
gorithmic optimization similar to the existing works discussed
in Section I, it does not ensure that (i) the overall network
utilization is improved, (ii) the load distribution across the
network is uniform i.e. there are no bottlenecks and, (iii) the re-
provisioning can be made in advance by predicting the network
usage and service QoS.

B. Methods
In this subsection, we explain the methodology of DyCroNO.

First, we define the concept of virtual container and explain
its usage in DyCroNO. Second, we explain the three main
components in DyCroNO, namely, a) the service provisioning
(par. II-B0a), b) an improved dynamic bandwidth adjustment
(DBA) (par. II-B0b), and c) the load distribution (par. II-B0c).
Three algorithms, namely, Algs. 1, 2, 3 are referred when the
components are explained. The definitions of terminology used
are presented in the Table I. Last, we present the proposed
real-time deep learning approach for predicting network loads
in Section II-C.

a) Service Provisioning: When a new service request
arrives, the controller does a best match with the virtual
container that can serve the request while considering its
priority, required bandwidth, and maximum allowed turnaround
time (1). The service rank rsi for service si is given by the
3-tuple (usi , µi,req, bi,req). usi is the user given priority to the

Algorithm 1 Service Provisioning
1: procedure ASSIGN VIRTUAL CONTAINER(si)
2: Create list 0 of virtual containers matching rank rsi
3: Create list 1 from list 0 with

bvi−bRi,Pvi

|C| ≤ thu,PVi

4: Order list 1 based on rank
5: Pick the first virtual container vj from list 1
6: Order all circuits ck in Cj based on their ranks
7: Split circuits in Cj into Ca, Cb and Cc for top, middle

and bottom 33% in their ranks
8: if rsi is high then
9: Pick the circuit ck with lowest utilck from Ca

10: else if rsi is medium then
11: Pick the circuit ck with lowest utilck from Cb

12: else
13: Pick the circuit ck with lowest utilck from Cc

14: procedure SERVICEFINISH(vj)
15: while true do
16: if Service sij finishes then
17: Call UpdateVirtualContainerRank(vj)
18: Call UpdateCircuitMetrics(ck)

Algorithm 2 Dynamic Bandwidth Adjustment
1: procedure DBA(si)
2: Call UpdateServiceProgress()
3: All services with progresssi ≥ α → S heavy
4: All services with progresssi < α ≥ β →

S medium
5: Put rest of the services into list S light
6: for each sk in S heavy, S medium and S light do
7: Order on drsi/trdsi

8: Update utilvi
9: All vj with utilvj ≥ thhigh → V heavy

10: All vj with utilvj < thhigh ≥ thmedium →
V medium

11: Put rest of the virtual containers into list V light
12: Predictions = MovingWindow LSTM()
13: Call LoadBalance()
14: for all virtual containers in each list V heavy,

V medium and V light do
15: Assign first service si from s heavy to first

virtual container in V heavy that matches
the required source-destination pair

16: procedure UPDATEVIRTUALCONTAINERRANK(vj)
17: rankvj = (bRj ,Pvj

/|C|, bRj
/|C|, bvj/|C|, thni

−
currni)

18: procedure UPDATECIRCUITMETRICS(ck)
19: Update τck = [τck,prev

∗ (s
1+d)] + τck,prev

∗ [1− s
1+d]

20: Update utilck = [utilck,prev
∗(s

1+d)]+utilck,prev
∗ [1−

s
1+d]

service, µi,req is the required throughput calculated from the
(amount of data/max allowable time) and bi,req is the
required minimum bandwidth. Each vi has a set of circuits Ci

and each circuit cij in Ci has a length (i.e. number of hops),
available bandwidth, and a guaranteed minimum turnaround
time. To make sure that there are no large load imbalances, the
distribution of services that on the circuits in Ci need to be as

2023 International Conference on Optical Network Design and Modeling (ONDM)

Table I
TERMINOLOGY

Symbol Definition Symbol Definition
S set of all services in the network sij some service sj in virtual container vi
C set of all circuits in the network Ci Set of all circuits in vi
Rj set of service requests for vj cij some circuit cj in Ci

rsi rank of service si rankvj rank of vj
bRj currently used bandwidth in vj bRj ,Pvj

total bandwidth by all services in Rj with priority pvj
bvj sum of bandwidths of the circuits in

Cj belonging to vj
currni

the current number of services being served by vi

utilck current utilization value of cik utilcik,prev
previously computed util. value of the circuit cik

τck,prev
previous turnaround time on ck thni

number of services that virtual container vi can support
avg utilc measured average util. of all circuits τci the calculated average turnaround time on ci
Slight lightly served services. Smedium and

Sheavy are moderately and heavily
served.

Vlight lightly utilized virtual containers. Vmedium and Vheavy
are moderately and heavily utilized virtual containers.

utilvi
utilization of the virtual container vi thhigh upper threshold for utili. Similarly, thmed, thlight are

middle and lower thresholds.
thu,Pvi

bandwidth upper threshold of vi trdsi
time remaining for si

α, β, γ upper, middle and lower thresholds of
service’s progress (in %)

progresssij unit-less metric that represents how much the service in
virtual container vj has been served till now

(a) (b) (c)

Figure 1. Mean load per link as the ratio of occupied versus free bandwidth in: (a) NSFNet, (b) Cost266 and, (c) EuroLarge networks.

uniform as possible. Each cij in Ci has a rank associated with
it, which can be given as cijrank

= (τCij
, cijlength

, cijbw). cijbw
is the available bandwidth of circuit cij . τcij is the calculated
average turnaround time given in the form of exponential
smoothing average shown in Alg. 2 line 19. Here, s is the
smoothing factor with value 2 and d is the time in days.

To encapsulate the spatio-temporal behavior, we go beyond
the E2E utilization statistics. We form statistical relations
between the physical network elements (the circuits) and the
services with their virtual containers. For each circuit cii in
vi, we calculate its historical utilization utilcii periodically.
utilcii is calculated as an exponential smoothing average and
is a network wide statistic (see Alg 2 line 20). This lets
us prioritize the physical layer circuits in vi that are most
likely to be underutilized if not being chosen. This strategy
is different from existing works, which consider the virtual
containers as blackboxes. Finally, we calculate the rank of
vi as rankvi = (bRi,Pvi

/|C|, bRi
/|C|, bvi/|C|, thni

− currni
)

(Alg. 2 line 17).
b) Improved Dynamic Bandwidth Adjustment (DBA): To

efficiently monitor a service si’s progress and make DBA
decisions, we periodically keep track of the historical average

Algorithm 3 Periodic Update
1: procedure LOADBALANCE
2: for each vj in V heavy do
3: for each ck in Cj do
4: if utilck > avg utilc then
5: Add ck to Cl belonging to the first virtual

container vl from list V light with same
source and destination

6: if Projected Finish Times for services in
vl <Previously Measured Finish Times

then
7: Exclude ck from list Cj

8: Repeat until utilvj equals thmed

9: procedure UPDATESERVICEPROGRESS(si)
10: Compute progresssi = [progresssi,current ∗ (s

1+d)] +
progresssi,prev ∗ [1− s

1+d]

11: procedure UPDATEVIRTUALCONTAINERUTIL
12: for each virtual container vi do
13: Compute utilvi = [utilvi,current

∗ (s
1+d)] +

utilvi,prev ∗ [1− s
1+d]

2023 International Conference on Optical Network Design and Modeling (ONDM)

progress of the service since its inception. This also relieves
some nuances associated with the service complexity. The his-
torical average progress of si i.e. progresssi is shown in Alg. 3
line 10. Here, progresssi,current

is given by dtsi/tddsi
where

dtsi is the amount of data transferred, tddsi
is the time since

data transfer began. We break any ties with drsi/trdsi
, where

drsi is the amount of data remaining and trdsi
is the time

remaining expressed as (maximum allowable time limit−
time since data transfer began).

c) Load Distribution: We calculate the ranks of virtual
containers and the circuits when provisioning the services
to help balance the load within a virtual container (and the
network, by extension) while still meeting the QoS. We use
the historical average utilization of each vi, given by utilvi
in Alg. 3 line 13 in making load balancing decisions. Here,
utilvi,current

is the variance of the utilization of all circuits in C
i.e. σ2(util(C)). Larger value of utilvi,current implies uneven
historical distribution of utilization among the circuits in vi.
Line 6 in Alg. 3 is the ”make before break” condition which
checks if the new allocation for the container– including the
constant overhead for reallocating the circuits– improves the
finish times of services carried by it. If the reallocation does
not improve the finish times then no reallocation is made.

C. Real-time Deep Learning-based LSTM Method for Network
Load Distribution Prediction

We use a well-known version of the deep learning method
called LSTM) [13] after modifying it to support a sliding
window procedure. We encode the multivariate time-series data
collected from the network at run-time into an input sequence
using a sliding window methodology. For example, a given
day may be divided into x time slices, which means that the
input sequence for each day consists of link utilization metrics
collected at x interleaved steps i.e. time-steps of length x. Each
time slice consists of k input features or variables used in a
multivariate fashion to make predictions in time slice x + 1.
This encoded input sequence is fed to the next component
(or submodel), a hidden encoder layer, chosen as an LSTM
model. The encoder layer interprets and encodes the data and
feeds it to a dense decoder layer. The decoder layer interprets
the encoded data and feeds the final layer, the dense output
layer. The final single value output is the prediction for the
link load distribution for one time slice x + 1. The sliding
window now moves over by one time slice and the process is
repeated. We forego the in-depth implementation specifics of
the conventional LSTM for the sake of brevity [1]. We modified
the conventional LSTM model with a sliding window variation
specifically to learn and predict in run time. Figure 2 shows
one iteration of our model. We strategically run the model
at Alg. 2 line 12 i.e. at each time slice so that learning is
done in an iterative fashion until the current time slice and day
(i.e. to-date). The runtime implementation of our model in the
SDN controller opens the possibility to dynamically balance
the loads based on predicted values.

III. RESULTS AND DISCUSSION

We chose three topologies, namely, 1) NSFNet with 14 nodes
and 19 links, 2) Cost266 with 16 nodes and 24 links and

3) EuroLarge with 43 nodes and 180 links. We used real-
world traffic traces from a local Internet Service Provider (ISP)
from the US midwest region. We compare the performance of
DyCroNO with other methods discussed in I, namely, Static
and Separated Bandwidth Allocation method (BSA), Static and
Aggregated Bandwidth Allocation method (BAA) and Virtual
DBA (VDBA). ODU0 and ODU2 are the supported OTN
transport channels with a bandwidth of 1 Gbps and 10 Gbps
respectively. The simulation runs services of 3 priorities high,
mid and low.

a) Load Distribution: Figures 1a, 1b and 1c present the
mean distribution of loads per link across the three topologies.
The mean load per link of DyCroNO is just below VDBA
while BSA and BAA present much lower loads per link. Our
approach exhibits a relatively uniform distribution as well as
lower values of link loads compared to the other methods
method while still maintaining the desired QoS (as shown by
blocking probability in Fig. 5). In BSA and BAA, bottlenecks
exist because certain links exhibit very high link loads while
rest of the network is lightly loaded. This can be attributed
to the reallocation of circuits (paths) and services transported
among them on top of the service re-provisioning. We discuss
more on this when we present our results on resource utilization
and blocking probability.

b) Resource Utilization: Figures. 3b and 3d present the
instantaneous resource utilization for NSFNet and Cost266
topologies respectively. DyCroNO exhibits highest overall re-
source utilization in addition to the overall 55-60% reduced
total resources (shown in Fig. 3). This is because: (i) our
approach reduces the internal fragmentation of resource uti-
lization within the virtual containers because the under utilized
circuits are reallocated among existing virtual containers.)ii)
Our approach reduces the external fragmentation of the virtual
containers by prioritizing the under utilized circuits for service
re-provisioning instead of a simple priority matching.

Figure 4a shows the total network resource utilization and
the load distribution of the network links measured as a
standard deviation (std. dev.) of utilization. The total resource
utilization steadily decreases for the first few time slices then
stabilizes. The link utilization distribution shows significantly
lower std. dev. values over one day. Lower std. dev. values
imply higher uniformity in network load distribution. Figure 4b
shows the results of total network resource utilization and
the distribution of load on the network link over a span of
10 days. The total network resource utilization stabilizes over
the first couple of days while the link utilization distribution
continues to show lower std dev. values. The improvements
can be attributed to the LoadBalance() procedure, which is
called before every time slice in a day and hence the traffic
is redistributed among the network resources (keeping in mind
the relations between virtual containers, the physical circuits
within them and the services running in the network).

c) Blocking Probability: Figure 5 presents the results of
the blocking probability. Across all three topologies, DyCroNo
maintains the lowest blocking probability (more evident at
higher traffic loads). Higher blocking probability implies that
newer services are blocked when the network cannot provision

2023 International Conference on Optical Network Design and Modeling (ONDM)

Figure 2. The input time-series data is collected during run-time and fed to the LSTM-based model during run-time. The input time-series consists of the run
time statistics collected at x interleaved time steps. These statistics form the input features to the first layer i.e. the run-time encoder. Next, the encoder-decoder
step outputs the decoded resultant units to the interpretation layer. Finally, the output layer outputs 1 unit of output, which is the predicted value for the (x+1)
time step.

(a) (b) (c) (d)

Figure 3. (a), (c) Total occupied resources, (b), (d) Mean service Utilization i.e. the mean resource utilization by the services. which have high or mid-priority,
(a), (b) using NSFNet topology. (c), (d) using COST266 topology

(a) (b) (c)

Figure 4. The total network resource utilization and the load distribution among network links (as std. dev.) in NSFNet topology using DyCroNO over (a)
one day consisting of 10 time slices, (b) over 10 days. The traffic load was set to 120 Erlang. (c) RMSE values of the std. dev. of link load distribution in
the network over several prediction lead times using our proposed deep learning-based method.

them. This happens when the circuits that are supposed to carry
these services are overburdened. DyCroNO dynamically and
periodically reroutes the services internally among the circuits
in the virtual containers. DyCroNO’s load balancing technique
is different from existing works because the resource utilization
of circuits inside each virtual containers are balanced, not just
the virtual containers themselves as black boxes. As shown in
Fig. 1, the network link loads are maintained relatively high

but at a level while still being able to provision additional re-
sources. Instead of a simple priority matching between services
and the virtual containers, we (re)provision the specific services
that have the highest likelihood of being blocked if not being
served by selecting the best circuits inside the virtual containers
(in addition to selecting the best virtual container).

d) Total Occupied Resources: Figures 3a and 3c show
the total occupied network resources measured in Gbps for

2023 International Conference on Optical Network Design and Modeling (ONDM)

(a) (b) (c)

Figure 5. Blocking Probability over: (a) NSFNet, (b) Cost266 and (c) EuroLarge networks.

NSFNet and Cost266 topologies respectively. The total occu-
pied resources are reduced by more than 100% for lower loads
and by even greater levels for higher loads. BSA and BAA
provision the services based on their peak demands. VDBA
dynamically allocates the extra (unused) bandwidth to a lower
priority service using a simple random weighted algorithm.
Although this improves the network resource utilization, it fails
in addressing the internal and external fragmentation among
the circuits inside virtual containers and the virtual containers
respectively. DyCroNo overcomes this limitation because it
explicitly addresses the internal and external fragmentation
(see III-0b).

e) Load Distribution Prediction: We use the std. dev.
of the measured link utilization in the network as a metric
for load distribution due to simplicity. Higher std. dev. values
imply higher load imbalances in the network. Our deep learning
model is applicable to any numeric metric other than std.
dev., if need be. Figure 4c shows the root mean squared error
(RMSE) results of the collected std. dev. of network link load
distribution. The number of time slices x was set to 10, after
experimenting with several values. The hyperparameters were
set as follows: the number of epochs to 100, batch size to
50, LSTM hidden layer width to 200, dense layer width to
100, and output layer width to 1. We chose several prediction
lead times ranging from 1 day to 7 days. We averaged the
collected results shown in Fig. 4c over several runs of our
algorithm. Our method predicts the link load distribution values
with high accuracy (evidenced by the low RMSE values) across
all prediction lead times.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented DyCroNO for dynamic (1)
bandwidth adjustment, (2) service provisioning, and (3) a load
balancing mechanism for IP over optical networks. DyCroNo
uses a real-time deep-learning based load prediction method
using LSTM to make decisions. We presented the simula-
tion results in an IP-based Packet over OTN network for
blocking probability, resource utilization, resources utilization
of the resources, total resources used, load distribution, and
accuracy of load prediction. In the future, we will investigate
the scalability of our methods. We would like to extend our
approach to more than two types of networks (eg: optical
transport network (OTN), wavelength division multiplexing

(WDM), elastic optical network (EON) etc.). Additionally, we
will investigate the scalability of our deep learning method at
(i) much larger network sizes (eg: number of links > 10,000)
and (ii) various sliding window sizes (x).

V. ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant Number CNS-1817105.

REFERENCES

[1] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[2] “120022, OpenFlow Specifications v.1.3.0, May, 2012.” [Online]. Avail-
able: https://opennetworking.org/wp-content/uploads/2014/10/openflow-
spec-v1.3.0.pdf

[3] S. K. Patri, A. Autenrieth, D. Rafique, J.-P. Elbers, and C. M. Machuca,
“HeCSON: Heuristic for configuration selection in optical network
planning,” in Optical Fiber Communication Conference. Optical Society
of America, 2020, pp. Th2A–32.

[4] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill, “RADWAN:
Rate adaptive wide area network,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
547–560.

[5] L. Luo, H. Yu, K.-T. Foerster, M. Noormohammadpour, and S. Schmid,
“Inter-datacenter bulk transfers: Trends and challenges,” IEEE Network,
vol. 34, no. 5, pp. 240–246, 2020.

[6] M. Dinitz and B. Moseley, “Scheduling for weighted flow and completion
times in reconfigurable networks,” IEEE INFOCOM, pp. 1043–1052,
2020.

[7] S. Rahman, T. Ahmed, S. Ferdousi, P. Bhaumik, P. Chowdhury, M. Tor-
natore, G. Das, and B. Mukherjee, “Virtualized controller placement
for multi-domain optical transport networks using machine learning,”
Photonic Network Communications, vol. 40, no. 3, pp. 126–136, 2020.

[8] R. Casellas, R. Martı́nez, R. Vilalta, and R. Muñoz, “Abstraction and con-
trol of multi-domain disaggregated optical networks with OpenROADM
device models,” Journal of Lightwave Technology, vol. 38, no. 9, pp.
2606–2615, 2020.

[9] R. Singh, M. Ghobadi et al., “Run, walk, crawl: Towards dynamic link
capacities,” in Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, 2017, pp. 143–149.

[10] T. Fenz, K.-T. Foerster, S. Schmid, and A. Villedieu, “Efficient non-
segregated routing for reconfigurable demand-aware networks,” Com-
puter Communications, vol. 164, pp. 138–147, 2020.

[11] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity of
traffic traces and implications,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 4, no. 1, pp. 1–29, 2020.

[12] C. Avin and S. Schmid, “Toward demand-aware networking: a theory
for self-adjusting networks,” ACM SIGCOMM Computer Communication
Review, vol. 48, no. 5, pp. 31–40, 2019.

[13] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks:
LSTM cells and network architectures,” Neural computation, vol. 31,
no. 7, pp. 1235–1270, 2019.

2023 International Conference on Optical Network Design and Modeling (ONDM)

