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Abstract—The performance of communication-intensive dis-
tributed machine learning (DML) workloads and other emerging
applications can suffer from a traffic-topology mismatch in
traditional data-center networks. This degradation can be allevi-
ated by performing a logical network topology reconfiguration.
However, how to dynamically reconfigure the logical topology
and steer the bandwidth efficiently with a control plane capable
of efficiently adapting to the current data center traffic patterns
without considerable overhead is still an open question. This
paper presents a reversibility-aware deep reinforcement learning
algorithm (RA-DRL) for optical switch reconfiguration in data
center networks and validates it in an experimental testbed.
Using our testbed, we show that appropriate optical-switch
reconfiguration, driven both by a baseline DRL and an RA-
DRL method, can improve the training performance of DML
workloads under network congestion. More importantly, by
incorporating the concept of reversibility in the training of the
DRL agent, we demonstrate a 5x training-time decrease for a
distributed computer-vision application and an improvement in
convergence time by up to 64%.

I. INTRODUCTION

The enormous growth of cloud computing has led to an
increase in the number of network services with different
requirements and, consequently, to more complex traffic pat-
terns [1]. Thus, today’s data center (DC) and high-performance
computing (HPC) networks are characterized by increasingly
spiky, diverse, and unpredictable traffic. Current DC/HPC
networks have dealt with this problem using static over-
provisioned architectures designed to handle worst-case sce-
narios. Unfortunately, this kind of static networks architectures
does not efficiently adapt to unpredictable traffic and typically
results in quality-of-service (QoS) degradation. In addition,
worst-case static provisioning requires very expensive and un-
necessary cabling, excessive heat production, and high power
consumption [2], [3].

Reconfigurable optical DC networks are being considered
as an alternative to electrical DC networks [4]. But performing
optical-circuit reconfiguration on live traffic can momentarily
degrade some of the applications’ QoS, like the completion
time of a computing application’s workload. Additionally,
a reconfigured topology might not remain optimal to serve
dynamic applications for a long time, and frequent recon-

figuration might be required. Thus, reconfiguration strategies
using integer linear programming (ILP) formulations [5], [6]
are inadequate for large-scale DC/HPC networks. Similarly,
heuristic-based reconfiguration strategies are often inadequate
due to the lack of generalization and the tendency to converge
to sub-optimal solutions [7], [8].

In this context, researchers started exploring machine
learning-based solutions that have the potential to scale prop-
erly without considerable human intervention [9]–[11]. Al-
though the current deep reinforcement learning (DRL) based
solutions are promising [12]–[14] thanks to their fast decision
capabilities and high adaptability, they have some disadvan-
tages. Specifically, DRL follows a trial-and-error approach
which leads to making many mistakes (taking sub-optimal
or failure-leading actions) that can slow down the training
process. DRL training can be lengthy, energy-consuming, and
data-hungry.

In this work, we move beyond statically wired networks
and we develop a smart infrastructure capable of dynamically
provisioning the resources needed for each application, leading
to an improvement in QoS and a simpler network architecture.
Our technical contributions to this study can be summarized
as follows. First, we deploy two cloud applications (DML
and Iperf) in our experimental intra-DC testbed, and we
evaluate the improvement in DML training performance by
reconfiguring the intra-DC network topology. To solve the
problem of dynamically reconfiguring network resources, we
use a DQN agent [15]. The DQN-based DRL method is used
as a baseline. Second, we adopt a reversibility-aware (RA)
DRL method [16] to show that RA-DRL can improve the
convergence time of the DQN agent by reducing the number
of actions leading to the network collapse state or sub-optimal
solutions during the training of the DQN agent. The proposed
RA-DRL agent achieves a 5x improvement in training time for
DML with respect to the baseline DQN. Moreover, the RA-
DRL algorithm can improve the agent’s performance, leading
to up to 64% faster convergence.

The rest of the paper is organized as follows. Sec. II
describes our experimental testbed and introduces the problem
definition and the DQN baseline solution. We discuss the more
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advanced RA-DRL method for reconfiguration in Sec. III. The
experimental setup and results are presented in Sec. IV. Sec.
V concludes the paper.

II. DRL-ENABLED OPTICAL SWITCH RECONFIGURATION

Fig. 1. System’s architecture consisting of a software-controlled and managed
plane and a data plane with hosts and network devices.

A. System Architecture

Fig. 1 shows the architecture of our experimental testbed,
which represents an example of a small-scale DC/HPC system.
It consists of a data plane and a control and management
(C&M) plane. The data plane is composed of six virtual
machines (VM1 to VM6), four virtual top-of-the-rack (vToR)
switches (vToR1 to vToR4), and an optical circuit switch
(OCS). The OCS is connected with two bidirectional fibers
to each vToR, and by means of reconfiguration it allows
to provision different topologies. The C&M plane hosts a
monitor and a software-defined network (SDN) controller.
The Monitor server is where the brain of the application
is, and it sends commands to the SDN controller to install
new flows on vToRs, reconfigure the OCS or gather traffic
metrics from the data plane. The C&M plane also runs our
proposed reversibility-aware DRL algorithm module for OCS
reconfiguration to help decongest the network and improve
the training time of a DML application running over multiple
virtual machines.

B. Problem Definition and Solution

The goal of the work is to reduce the congestion in
the network by reconfiguring the OCS using reinforcement
learning based approaches in presence of multiple applications.
We demonstrate a DC control system that takes the real-time
traffic matrix and network topology as inputs and outputs an
OCS reconfiguration. Then, we update the flow tables and
OCS configuration in the data plane for routing the traffic.
To solve the routing optimization problem, we use a DRL

Fig. 2. An example of an MDP for the experimental scenario considered.

algorithm together with traffic monitoring. In general, DRL
tries to learn an optimal reconfiguration policy π by taking a
set of actions A on possible states S to maximize the reward
R. A DRL agent acts on a dynamic environment, described by
a Markov decision process (MDP) with a tuple < s, a, r, s′ >.
The agent collects a reward r by taking action a in state s to
reach the next state s′. Note that there are some states after
which the environment no longer changes, e.g., win or loss
state in a game. All the different types of interactions of the
agent with the environment (taking actions, collecting rewards,
moving to the next state) are defined within the context of
an episode. An episode is terminated whenever a failure or
success state is reached or after reaching a maximum number
of actions. This number (e.g., 10 in our case) is generally
chosen via trial and error to balance the length of the episode
and the learning speed of the agent.

We model the multi-application traffic optimization prob-
lem with an MDP representing the link congestion status
between the vToRs and the OCS. To illustrate the problem
we show an example in Fig. 2 where the MDP has four states
S = {0, 2, 3, F}. Here, a state s ∈ S represents the number of
congested links (vToR to OCS) in the network. Specifically,
the state F refers to the ”failure state” in which no traffic flows
due to a communication breakdown by a faulty OCS reconfig-
uration scheme. Each action in A = {a1, a2, a3, a4} over state
space S leads to a transition between two states. This transition
corresponds to a reconfiguration pattern expressed through an
OCS matrix, like the one shown in Fig. 3, where the entry
value one means that the two ports of OCS are connected.
Each action will lead to a different network topology which
may lead to a decrease in network congestion, and the goal is
to converge to state 0 where the optimal congestion scenario
is reached.

To learn an optimal routing policy in the MDP, we formulate
a DRL reward function where positive rewards are collected
when actions lead to less congested states. We formally define
the reward function in Eq. (1) below, which we designed
to minimize the number of congested links. The variable σt

represents the number of congested links used by the DML
algorithm at a certain time step, to optimize its routing policy.
Variable L represents the total number of links. The cost
function A(t+ 1) is given by Eq. (1).
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A(t+ 1) =
σt

L
− σt+1

L
(1)

By looking at Eq. (1) it becomes clear that the reward
becomes larger if the number of congested links decreases. In
this way, by maximizing the reward, we minimize the number
of congested links where the DML is running, which is given
by A(t) − A(t + 1), which represents our reward function.
For example, when the number of links is L = 24 (link in
our setup) and an action a1 is taken in state 3, we collect a
positive reward of 0.125 ( 3

24−
0
24 ). On the other hand, if action

a0 is taken in state 3 or 2, it will lead to a failed state F with
a negative reward of -0.125, which has been chosen via a trial
and error procedure in order to smooth the convergence of the
agent.

The next subsection describes our proposed methodology
for real-time OCS reconfiguration involving multiple steps.

Fig. 3. An OCS port connectivity example with 1 representing
corresponding ports are connected, and 0 as disconnected.

Fig. 4. A flow chart for the (RA-)DRL-based OCS reconfiguration method-
ology adopted in this paper.

C. Workflow Description

A workflow for our proposed solution is shown in Fig. 4.
The episode starts by implementing an initial OCS con-

figuration to guarantee connectivity among all the VMs to
start the DML. After the initialization, for every step up to

ten in an episode, we monitor the traffic, check the current
network state, and verify if the reconfiguration threshold is
met. In fact, the agent should only reconfigure the network
if it is needed (the reconfiguration threshold is exceeded),
otherwise we would only incur unnecessary overhead. If the
threshold is not met, we go back to the monitoring phase.
Otherwise, we trigger the DRL (or RA-DRL) to get a new
OCS reconfiguration (Fig. 3). Real-time network analytics are
collected using Sflow, a tool that allows us to gather network
statistics using a Rest API. The metrics are stored per flow,
where each flow is defined IP-to-IP. The OCS is managed
using Standard Commands for Programmable Instruments
(SCPI) via a TCP socket. We build the DRL agent using a deep
Q-learning approach which is naturally suited for this problem
given the discrete action space. In fact, the action space is
made up of a set of different reconfiguration topologies that
are chosen by the agent depending on the output of the neural
network. Before actually implementing the reconfiguration, we
check whether or not it will lead to a collapsed (or failure)
state F . If it does not, then we implement the action and
get the associated reward. Otherwise, we just get a negative
reward of -0.125 and terminate the episode. Once the new
OCS configuration has been implemented, we install new flow
tables in the vToRs to perform routing over the new obtained
topology. The routing works by computing the k−shortest
paths between servers and selects the one with the most
cumulative bandwidth available. Once the paths have been
chosen, by means of the Ryu ofctl-rest API an OpenFlow
message is sent to the ToR switches to install the needed flows.
After the flows have been installed, we collect the reward and
store it in the replay buffer for training the agent. The last
step is to check whether we have reached the optimal state 0
or the failure F state. If we reached either of the two states,
then we move on to the next episode by terminating the current
applications and restarting them again; otherwise, we fall back
to traffic monitoring again while the applications keep running.

III. RA-DRL FOR OPTICAL SWITCH RECONFIGURATION

One of the main limitations of reinforcement learning, in
general, is the lack of awareness when taking some actions
that could lead to an ”irreversible” outcome, such as a failure
state or network breakdown.

Recently, the authors of [16] proposed to embed a ”re-
versibility” estimation in reinforcement learning agents. Re-
versibility estimation allows teaching the agent to maintain a
safer behavior in high-risk environments, for example, a robot
handling fragile material. The RA-DRL algorithm subtracts the
reversibility factor ρt from the reward of standard DRL given
in Eq. (1). ρt represents the probability that a state comes
before another state on average. The reward in the RA-DRL
is given by Eq. (2)).

A(t+ 1) =
σt

L
− σt+1

L
− ρt (2)

The ρ value in Eq. (2) represents the probability of re-
versibility of each action, and its goal is to penalize irreversible
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actions. For example, going to the F and getting stuck on
state 2 should be strongly penalized. One may argue that
terminating the episode when state F or 0 is reached will teach
the agent to avoid the optimal action leading to an optimal
state 0. To avoid this issue, the penalty ρ is not applied to the
action leading to the optimal state 0. The next question is how
to compute ρt, which we describe below.

A. Reversibility Estimation

The reversibility factor ρ is estimated using a so-called self-
supervised learning process, which uses a neural network with
auto-labeling of samples. The neural network has an input
layer, a hidden layer with ReLu activation, and an output layer
with a single output with sigmoid activation for estimating the
probability of reversibility. The structure of the neural network
is similar to the ones found in classical supervised learning.
However, the training phase is considerably different.

In detail, the first step is to randomly sample a pair of
consecutive states, say (s1, s2), from the replay buffer – an
ordered queue – that stores the MDP state evolution. After
sampling, we feed them to the neural network in random order
and provide the actual ordering of the states as a target value.
Note that the true order of states is never explicitly provided
to the neural network (like in classical supervised learning)
but inferred directly from the ordered data. Then, both states
are passed independently through the first hidden layer before
concatenating them together. The concatenation is passed
through the output layer, which will output the probability that
s1 comes before s2 on average. In order to compute the loss of
the neural network, we use the non-shuffled state pair as targets
or the true order. The self-labeling of the data through the
use of temporal order information for learning the reversibility
makes the RA-DRL method attractive.

Fig. 5. An experimental testbed with an optical switch, computing nodes,
and an electronic packet switch (or ToR) virtualized into 4 vTors.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

To validate the reversibility-aware DRL method for optical
switch reconfiguration, we set up some experiments on the
testbed shown in Fig. 5 with 6 VMs, 4 vToRs, and a MEMS

optical switch (see the detailed connectivity in Fig. 1). We
consider two applications: DML and Iperf. The DML is
deployed in four virtual machines (VM1 to VM 4). The DML
consists of an image classification task of the Cifar10 dataset,
which contains 60,000 32×32 color images in 10 classes, with
6000 images per class. The Iperf application runs on VM5 and
VM6. It generates 9 Gbit/s User Datagram Protocol (UDP)
traffic from VM5 to VM6 and acts as background traffic. The
Iperf is started once per episode in order to congest the links
where the DML traffic flows and trigger the execution of the
DRL/ RA-DRL algorithms.

We train the DRL and RA-DRL agents to learn a policy
to optimize the routing to achieve the least congestion state
0 as formulated by the MDP in Fig. 2. Note that state 1 is
not present because we need at least two links between vToR
to vToR via OCS to enable the communication between two
VMs. A state s is represented by a one-hot encoding with a
vector size of 4. The one-hot encoding is the input for our DRL
agent, whose structure is as follows. It has an input layer of
size 4 neurons with normalization, two hidden layers of sizes
15 and 30 neurons with the ReLU activation, and an output
layer of 4 neurons with the ReLU activation. The different
layer sizes have been considered as hyper-parameters and, as
such, have been chosen based on a trial-and-error approach.

We train the agents offline for 2,000 episodes following
an ϵ-greedy exploration with discount factor γ = 0.9 and a
replay buffer of size 250. γ is a parameter that can be tweaked
in order to make the agent more or less focused on short-
term gains, with a γ = 1 the agent will evaluate each of the
available actions based on the total of all the future rewards.
ϵ-greedy exploration is used to deal with the exploration-
exploitation dilemma and consists in taking a random action
with a probability ϵ. An episode is terminated after either 10
reconfiguration steps have been implemented without success
or the optimal or failure state has been reached. The same
experimental setup has been used for the DRL and the RA-
DRL methods.

Fig. 6. DML training time obtained under three scenarios over 20 epochs.

B. Results

Fig. 6 shows the DML’s training time for three scenarios:
i) Ideal shown in red when DML as a single application runs
on the VMs, ii) with DRL-based reconfiguration, shown in
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green, under two applications (DML and iPerf) running, and
iii) without DRL (or RA-DRL), shown in blue, under the two
applications. We observe the following DML training times
for the three scenarios.

• Ideal: 977 seconds (≈ 16 minutes)
• With (W/) DRL: 1026 seconds (≈ 17 minutes)
• Without (W/O) DRL: 5676 seconds (≈ 94 minutes)
The above result is interesting as it provides a proof of

concept that DML workloads can have their training time
improved thanks to optical reconfiguration, and that DRL can
be used to successfully drive the whole process. The rewards
evolution and the loss for the DRL agent are shown in Fig. 7
and Fig. 8, respectively. The agent’s loss shows the expected
behavior by slowly converging to approximately zero around
training epoch 400. Also, the reward evolution behaves as
expected by converging to the maximum reward of 0.125. The
spike around episode 500 in 7 is likely due to the exploration
process, which consists in taking a random action with a
probability ϵ = 0.8, which decreases in time but does not
become zero.

Fig. 7. DQN Reward evolution

Fig. 8. DQN Loss evolution

Next, we investigate the performance of the RA-DRL
method. In our experiment, the trained RA-DRL agent con-
verges to the optimal state 0 (see Fig. 2) and thus shows the
same performance gain as with DRL in Fig 6 when tested
under two applications. The reason for the above is related
to the fact that both agents, after offline training, converge to
the optimal solution. However, the main benefit of RA-DRL
comes during the training phase. The idea is to embed the

concept of causality in the behavior of the DRL agent in order
to speed up the training process.

The comparison between the regular DQN agent for the
DRL and the self-supervised aided one for RA-DRL is shown
in Fig. 9 with the exploration ϵ of 0.8. From the plot, we can
see that the RA-DRL is able to converge faster than the regular
DRL.

Fig. 9. Reward evolution DRL vs RA-DRL with exploration ϵ = 0.8

However, having such a high exploration value does not
allow for a clear comparison between the DRL and RA-DRL,
since the oscillations due to exploration and the effects on
convergence can be relevant. The benefits of the RA-DRL
on convergence may not always be very evident in every
experiment. Therefore, we opt for an exploration value ϵ =
0.1, and the corresponding average episode reward is shown
in Fig. 10.

Fig. 10. Reward evolution DQN (blue) vs reward evolution DQN with a
self-supervised module (red) ϵ = 0.1.

In order to precisely quantify the advantage of using the RA-
DRL method, we perform five experiments made of ten runs
of DRL and ten runs of RA-DRL with ϵ = 0.1. This allows us
to understand how much gain in convergence time could be
obtained. The results are shown in Fig. 11. Interestingly, the
classical DRL does not converge to the optimal solution every
time, while the RA-DRL does. With ϵ = 0.1, the DRL agent
can get stuck permanently in state 2 (Fig. 2). On the other
hand, the RA-DRL will recognize state 2 as an irreversible
state and avoid it, leading to convergence in every experiment.
Converging to state 2 would be a suboptimal solution. It can
be observed that the RA-DRL always outperforms the DRL
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algorithm by a minimum factor of 10% to a maximum of about
64%, which proves our initial hypothesis.

Fig. 11. Average convergence episode for five experiments.

Finally, the loss of the self-supervised aided DQN network
for the RA-DRL with respect to the number of training
epochs is shown in Fig. 12. It is worth pointing out that
the self-supervised loss is not showing the ideal behavior
(smooth convergence to a smaller value); despite decreasing
and converging around the value of 0.2, the convergence is
not very stable. This behavior requires a future investigation.

Fig. 12. Self-supervised loss with respect to training epochs.

V. CONCLUSIONS

This paper presented a deep reinforcement learning (DRL)-
based optical reconfiguration algorithm to improve the training
time of a distributed machine learning (DML) application run-
ning over 4 nodes in an experimental testbed in the presence of
network congestion. We demonstrated a 5× times training time
improvement by generating a new topology via optical switch
reconfiguration and routing to completely separate the DML
from the congested traffic flow. We were also able to improve
the performance of the DRL agent using a reversibility-aware
technique leading to faster convergence up to 64%. This work
shows that DML workloads can improve their training times
thanks to optical reconfiguration and that a reversibility-aware
method can improve the performance of a regular DQN agent
and speed up the training process considerably. In future
work, we will evaluate the scalability of the proposed method
through network simulation.
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