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Abstract—Deep reinforcement learning (DRL) with invalid
action masking is applied to the optimization problem of vir-
tual optical network embedding (VONE) over elastic optical
networks (EON). Separate DRL agents are trained on the node-
mapping task, link-mapping task, and overall VONE task. Their
blocking probability performance is compared with a spectral
fragmentation-aware VONE heuristic. All three DRL agents
achieve lower blocking probability than the heuristic across low
and high traffic loads.

Index Terms—elastic optical network (EON), virtual network
embedding (VNE), deep reinforcement learning (DRL)

I. INTRODUCTION

A. Application Context

Network virtualisation is a key enabling technology for the
continued expansion of cloud-based Internet services. Through
the abstraction of network resources, e.g. optical bandwidth
on links and compute at nodes, network virtualisation allows
multiple heterogeneous virtual networks to be overlaid on the
same substrate network.

The benefits of network virtualisation over the use of ded-
icated network hardware include reduced capital expenditure
for network tenants, reduced network management complexity,
improved scalability and architecture innovation [1]. These
benefits derive from the flexibility of infrastructure as a service
and the efficient use of network resources that virtualisation
allows.

The process of allocating resources to virtual networks is
known as virtual network embedding (VNE). Well-optimised
VNE ensures that network tenants and operators get cost-
effective use of the underlying resources.

In a network with fibre optic links, VNE is sometimes
referred to as Virtual Optical Network Embedding (VONE)
[2]. Depending on the optical substrate, the VONE problem
must take into account different spectrum constraints. The
division of available bandwidth into highly granular spectral
frequency slot units (FSU) to form an elastic optical network
(EON) greatly increases the potential network capacity [3].
Therefore, this work focuses on an elastic substrate network.
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B. The VONE problem

A virtual network request comprises a set of requested node
resources, bandwidth for interconnect, and virtual topology.
To allocate the resources for a virtual network request, the
VNE problem can be decomposed into the sub-problems of
selecting substrate nodes for virtual nodes (node-mapping) and
selecting one-or-more substrate links to comprise each virtual
link (link-mapping). VNE over elastic optical networks has
the additional requirement of FSU-selection for the virtual
links, where the selected FSUs are subject to continuity and
contiguity constraints. That is, the same FSUs must be used
on each link and those FSUs must comprise an uninterrupted
spectral ’block’.

The VONE problem can be further classified as static, where
virtual network requests are known a priori, or dynamic. This
work focuses on dynamic VONE, where requests must be
served on-demand. The VNE problem is NP-hard [1] and thus,
so is the VONE problem.

C. Previous work

As an NP-hard optimisation problem, VONE strategies have
been attempted with integer and mixed integer linear programs
[4] and heuristic algorithms [5]–[7].

An effective VONE heuristic is the Node-Switching-
Capability k-Shortest-Path Fragmentation-Degree-Loss algo-
rithm (NSC-kSP-FDL) [5]. This heuristic first ranks the sub-
strate nodes by ”node switching capability” (defined as the
product of available node capacity, port count and sum of
vacant FSUs on connected links) and maps virtual nodes to the
highest ranked substrate nodes. Virtual links are then mapped
by selecting from the available FSUs on the pre-computed
shortest paths that least increase the metric of fragmentation
degree loss. This combination of node-ranking and reduced
spectral fragmentation allows NSC-kSP-FDL to make efficient
use of network resources.

Most studies of the dynamic VONE problem have been
restricted to heuristic algorithms, with a few recent devel-
opments in the use of deep reinforcement learning (DRL).
The RDAM algorithm [8] utilises DRL to optimise node-
mapping strategies and achieves greater acceptance ratio than
two other algorithms but neglects to learn link-mapping,
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instead adopting breadth-first search. The multi-agent deep
reinforced virtual network embedding algorithm (MADRVNE)
[9] uses separate DRL agents for the node-mapping and link-
mapping (including FSU-selection), with an interdependent
reward structure to ensure their cooperation. It shows higher
acceptance rate and resource utilization than RDAM and two
heuristic algorithms, thereby demonstrating the effectiveness
of DRL for this problem.

Masked reinforcement learning can be considered as a
form of model-based reinforcement learning which incor-
porates domain knowledge about the problem to shape an
agent’s decision [10]. Invalid actions, e.g. selecting occupied
nodes or FSUs, are masked out such that their probability
of selection by the agent is zero. Training is consequently
more efficient, as the agent does not need to learn which
actions are invalid before learning which valid actions are
most effective. This technique has been successfully applied
to resource allocation problems in data centres [11], as well
as routing-and-wavelength [12] and routing-and-spectrum [13]
assignment in optical networks. The latter corresponds to the
virtual link-mapping between nodes of the VONE problem
here considered.

D. Motivation and Novel Contributions

Given the promising results of a multi-agent DRL approach
for the dynamic VONE problem, this work aims to investigate
if a simpler single agent DRL system can also outperform
state-of-the-art heuristics. Therefore, this work presents the
first study of DRL for the dynamic VONE problem that uses
minimal feature engineering for the observation space com-
pared to other approaches [9] and is the first to successfully
use a single agent design, through the use of multi-step invalid
action masking.

Three separate DRL models are evaluated, one each for
the node-mapping and link-mapping sub-problems and the
combined VONE problem, to further understand the influence
of the problem structure on the effectiveness of DRL in finding
optimised VONE policies. The agents are referred to as the
Node Agent, Path Agent and Combined Agent, respectively.

II. NETWORK AND TRAFFIC MODEL

The substrate network is an EON that is modelled as an
undirected graph comprising Ns nodes and Ls bidirectional
links. Each substrate node ns ∈ Ns is equipped with C(ns)
capacity units. Each substrate link ls ∈ Ls has B(ls) FSUs.
The substrate nodes may represent resources that are co-
located or in geographically distinct datacentres. The physical
interpretation of node capacity depends on the characteristics
of the substrate network that is being modelled. Nodes may
correspond to optical switches with capacity measured in
number of ports/transceivers, or nodes may include computing
resources, in which case capacity usually refers to available
compute or memory [7]. In the rest of the paper, node capacity
is referred to as compute units.

Virtual networks are also modelled as undirected graphs,
consisting of Nv virtual nodes and Lv virtual links. Virtual

nodes and links are assigned an integer identifier. The i-
th virtual node ni

v has a capacity requirement of RC(ni
v)

compute units and the i-th virtual link liv has a bandwidth
requirement of RB(liv) FSUs.

Traffic is assumed to be dynamic. That is, virtual network
requests arrive and depart following a stochastic process.
Virtual network requests are triplets specifying: i) the list
of virtual links as pairs of virtual nodes [(ni

v, n
j
v), ...], ii)

the list of virtual node requirements ([RC1, RC2, ..., RCNv
])

and iii) the list of bandwidth requirements for virtual links
([RB1, RB2, ..., RBLv

]). The bandwidth requirements of vir-
tual links can be expressed as the required number of FSUs
directly, if the choice of modulation format based on link
qualities and required data transmission rate has been pre-
calculated.

III. DEEP REINFORCEMENT LEARNING ALGORITHM

Reinforcement learning describes a class of machine learn-
ing algorithms in which a policy is learned to perform actions
in an environment to maximise some notion of ’reward’.
The reward is always a scalar value that is returned by the
environment in response to an action. The policy is a function
that maps observations of the environment to a probability
distribution of actions. In DRL, the policy function is approx-
imated by a deep neural network.

DRL is distinct from other learning paradigms (e.g. super-
vised or unsupervised learning) in that the actions taken are
evaluated and the policy is optimised based on the evaluation,
rather than direct instruction of which actions are best [14].
This evaluative feedback during training is what allows DRL
to find new policies that can outperform existing heuristics.

In this paper, the dynamic VONE problem is modelled as
a sequence of discrete decision-making timesteps. At each
timestep, a virtual network request is received and resources
are allocated to service it. As the embedding decision made
at each timestep is dependent only on the current state of
the network, the entire VONE process can be considered as
a Markov Decision Process (MDP). This MDP formulation
allows DRL algorithms to be applied to learn optimised
allocation strategies. As an MDP, the components of the DRL
system are divided into the environment and the agent, as
shown in Figure 1.

A. Environment

The environment (yellow box in Figure 1) corresponds to
the substrate EON where virtual networks are established and
released. It comprises the model of the substrate network, the
generated virtual network requests, the reward function, and
the machinery to interpret and effect the actions of the agent.

The interaction of the agent with the environment is medi-
ated by the virtual network request and network state obser-
vation (arrow 1 in Figure 1), the agent’s action (arrow 3) and
reward (arrow 4).

The observation space contains the information on the
state of the network’s resources that is presented to the agent
at each timestep, and includes the current virtual network
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Fig. 1. Overview of the interaction between agent (blue) and environment
(yellow) in the modelled VONE process, including the principle of multi-step
invalid action masking for node-and-path selection by the agent.

request. In this work, the network state presented to the agent
comprises a list of remaining node resource capacities and
a two-dimensional binary array (slots matrix in Figure 1)
representing the occupation of FSUs in each substrate link.
Additionally, an agent that only performs the path-mapping
task must receive the information on selected substrate nodes
as part of the observation space.

The action space for the agent can be divided into node
and path sections. The action space dimensionality must match
that of the agent with which it is paired.

If selecting Nv virtual nodes per request from a possible
Ns substrate nodes, and considering the request ordering to be
immutable, the node action space dimensions are (1×NNv

s ).
These dimensions can be further reduced by considering the
constraint that no virtual nodes in a request can share the same
substrate node. A reduced action space is desirable to reduce
the agent’s training time taken to evaluate all actions.

The path action space in this work is simplified using
the common technique of pre-calculating the k-shortest paths
between all nodes. The action selection for each virtual link
therefore becomes a choice between the FSUs on each of
the k-paths. The selected slot serves as the initial slot to
accommodate the requested bandwidth. For a request com-
prising Lv virtual links, the action space dimensions become
(Lv × k ∗Nf ), where Nf is the number of FSUs per link.

The reward returned by the environment is the signal
on which the agent policy is optimised. Although reward
functions that capture domain knowledge have been used in
prior work to guide agent behaviour and improve performance
[15], it is recommended in [14] that the reward function
only provides information on whether the target outcome
is achieved, without influencing how it is achieved. Con-
sequently, the reward used in this work is not shaped to
direct the learning experience of the agent by penalising or
rewarding particular behaviour, other than successful servicing

of a request, as shown by Equation 1.

R =

{
10, Success
0, Failure

(1)

Success or failure is determined by the environment check-
ing that the selected nodes have sufficient compute resources,
the selected initial FSU’s are the start of a sufficient vacant
spectral block to accommodate the bandwidth request at every
substrate link in the path, and that the selected slots for the
different virtual links in the same request do not clash.

B. Agent

The DRL algorithm for the agent is based on Proximal
Policy Optimization (PPO), a policy gradient method that
compares favorably to other DRL algorithms for data effi-
ciency and robustness to hyperparameter selection [16]. The
algorithm is modified to apply invalid action masking prior to
an action being sampled. The invalid action mask is a binary
1-D array that is calculated in the environment according to the
current request and remaining node and link capacities. Each
element of the array corresponds to an action and has value
zero if the action attempts to utilise unavailable resources. The
mask is then applied to the output probabilities of the policy
network, which represent possible actions from the agent, such
that only valid actions have a non-negligible probability of
selection. The three agents investigated in this work (Node
Agent, Path Agent, Combined Agent) all employ invalid action
masking during training and evaluation.

The Node Agent and Path Agent perform only the node-
mapping or link-mapping tasks of the VONE problem, respec-
tively. That is, their policy networks only output probabilities
for node and path selection, respectively, and the correspond-
ing masks are applied in those cases. The remaining task is
completed by the NSC-kSP-FDL heuristic [5] For example,
once the Node Agent has selected the nodes, suitable paths to
connect nodes are found by applying first-fit on the k-shortest
paths between nodes. Analogously, once the physical nodes
have been selected based on their ranking according to the
heuristic, the Path Node agent selects a path to connect the
selected nodes.

The Node Agent’s output only comprises the node action,
therefore the action is masked based on remaining node
resource capacity. For the Path Agent, the nodes selected by
the heuristic form part of the observation, such that the invalid
action mask for the path action can be calculated on the basis
of the selected nodes.

Invalid action masking for the Combined Agent requires
a two-step approach, due to the sequential interpretation of
its action as node-mapping followed by link-mapping. The
process is illustrated in the blue region of Figure 1. The
initial mask comprises the node mask, in which actions
corresponding to nodes without sufficient capacity are masked
to zero, and identity values for the path mask. The probability
of each action logit is inferred by the policy network from
the observation state and the node action is sampled. From
the node action, the context for the path actions is established
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and the path mask is calculated to exclude occupied FSUs
and FSUs that don’t initiate a sufficient contiguous block.
The combined node and path masks can then be applied to
an additional forward pass of the policy network (arrow 2 in
Figure 1).

As the action of the policy network is sampled stochastically
according to the output probabilities of the action logits, the
final node action must always be substituted with the original
selection, to ensure the path mask context remains consistent.

IV. RESULTS

A. Training

Each training episode starts with an unoccupied substrate
network. A training episode comprises a set number of
timesteps, during which the agent collects experiences and
periodically updates the parameters of its policy network.
Experiences are gathered in a rollout buffer of length nsteps,
which is an important hyperparameter to tune to achieve peak
agent performance. The batch size should be a factor of nsteps.
Each training episode comprised 5000 timesteps and the agents
were trained for 40 episodes, after which no improvement in
acceptance ratio was observed.

Training was performed considering as a substrate net-
work the NSFNet topology (14 nodes, 21 bidirectional links),
equipped with 16 FSUs per link and 5 compute units per node.
The virtual network topology is restricted to a 3-node ring
topology, therefore requests are simplified to be a tuple of the
requested node compute resources, RCi, and FSUs, RBi, for
node interconnection: ([RC1, RC2, RC3], [RB1, RB2, RB3]).
The number of FSUs, node resources and virtual node
topology-variants are restricted in order to facilitate the anal-
ysis of agent behaviour and performance on the tasks, while
retaining the key challenges of judicious node-, link- and FSU-
selection of the VONE problem.

Requested compute and bandwidth are randomly selected
from {1,2} units and {2,3,4} FSUs, respectively. The mean
service holding time is set to 10 time units and request arrival
times are selected randomly from an exponential distribution
of the ratio of traffic load to mean service holding time. The
random number generator for traffic generation was reset at
the beginning of each episode and seeded with the index of
the training episode, to ensure non-identical traffic patterns
across episodes.

The traffic load for training was set to 9 Erlangs, which
was sufficient to require the agent to find strategies with good
performance. The number of alternative routes was set to
k = 5 and deemed to be a reasonable number for the size
of substrate network to allow suitable diversity.

Hyperparameter optimisation was performed separately for
each agent. To efficiently find hyperparameter values, sweeps
were performed using a Bayesian optimisation [17] and Hyper-
band early stopping [18], with the Weights and Biases online
monitoring platform [19].

Figure 2 shows the training results of the 3 agents, with
the metric of mean acceptance ratio (accepted requests / total
requests) per episode. The Node Agent rapidly converges on

an effective policy, which is then refined over the course of
training. The Path Agent follows a similar trend of rapid
convergence but at a ∼20% lower overall acceptance ratio
than the Node Agent. This disparity indicates the Path Agent
is limited by the efficacy of the heuristic that determines node
selection.

The Combined Agent shows lower acceptance ratio than the
other agents in the first half of training. We hypothesise this is
due to the much larger action space for the Combined Agent,
which requires more timesteps to explore and to learn the
interdependency of node and path selection. The Combined
Agent converges to a policy with mean acceptance ratio
between those of the other agents. The Combined Agent has
access to the full range of actions in both node and path action
spaces, so is capable of learning the same policy employed
by the Node Agent, yet does not achieve the same level of
performance. This suggests the Combined Agent converges to
a local minimum, despite the invalid action masking, again
due to its larger total action space.

Fig. 2. Mean acceptance ratio during training under 9 Erlangs.

B. Evaluation

The agents were evaluated for 3 episodes at each traffic
load from 1 to 15 Erlangs. The range of traffic loads selected
produces blocking probabilities that are considered high for
an operative network but are appropriate in this investigation
due to the reduced number of FSUs in the substrate topology,
and in order to test the performance of the different methods.
For traffic loads of 1-3 Erlangs, sufficient evaluation episodes
were run until 100 blocking events were observed before
calculating the mean blocking probability (blocked requests
/ total requests). Figure 3 shows the evaluation results for
each agent, compared with the results for the NSC-kSP-FDL
heuristic VONE algorithm [5].

All three agents show lower blocking probability than
the heuristic at low traffic loads despite only training at 9
Erlangs, which suggests good generalisation across traffic
loads. At traffic loads of 4 Erlangs and above, the Path
Agent performance converges with that of NSC-kSP-FDL.
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Fig. 3. Mean blocking ratio performance when evaluated across traffic loads.

This indicates that the Path Agent learned a link-mapping
policy as successful as FDL that could also adapt to low traffic,
but was limited by the node selection.

The Node Agent does not perform as well as the Combined
Agent at low traffic loads, due to the rigid link-mapping
heuristic’s inability to adapt to a less-populated substrate.
Above 4 Erlangs, the Node Agent gives the lowest blocking
probability of all agents and the heuristic. This underscores the
importance of node-mapping in dynamic VONE, which can
outweigh link-mapping in determining overall performance.

The Combined Agent shows the best performance at low
traffic loads but does not match the Node Agent’s perfor-
mance at higher loads. We hypothesise that the Combined
Agent policy network converged to a local minimum due to
insufficient exploration of its larger action space. The training
efficiency of the Combined Agent may also have been impeded
by requests that fail to be serviced due to virtual links that
use the same substrate link and FSUs, when mapping links
between different node pairs in the same request. This failure
mode, referred to as slot clashing, is not masked and likely
contributes to reduced performance compared to the Node
Agent, which performs an exhaustive search in the link-
mapping heuristic to avoid such clashes.

The greater freedom of action of the Combined Agent
allows it more theoretical scope for optimization than the
other agents, therefore strategies to optimise it further may be
beneficial. Reward-shaping, such as awarding higher values
for requests fulfilled when network utilisation is higher, could
allow the agent to achieve better performance at higher traffic
loads rather than lower. Additionally, the multi-step invalid
action masking could be extended to re-mask the path actions
after each virtual link is mapped. This would eliminate a com-
mon failure mode of slots clashing in fulfilling the same virtual
request, thereby ensuring reduced blocking probability and/or
training time, but at the expense of increased computational
cost due to multiple forward passes of the policy network.

V. CONCLUSIONS

Three separate DRL agents: Node Agent, Path Agent and
Combined Agent, were trained to find optimised policies for
node-mapping, link-mapping and the complete VONE prob-
lem, respectively. All three outperform a heuristic algorithm,
through the use of invalid action masking to improve training
efficiency. The Node Agent achieved the lowest blocking prob-
ability, thus demonstrating the importance of node selection in
VONE and the limited efficacy of the heuristic algorithm in
this task.

The Combined Agent, which performs node-mapping and
link-mapping simultaneously, demonstrates a novel application
of multi-step invalid action masking and is the first single-
agent architecture to outperform a heuristic in this problem.
Although not as effective as the Node Agent in this work, it is
expected that further optimisation of the training regime and
additional action masking steps could allow the single-agent
approach to achieve state-of-the-art blocking probability.

Future work on explainability of the best-performing agent
would enable insight to its strategy, to inspire improved
heuristics and highlight research directions for further policy
optimisation.
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