
Reusing an open source application –

practical experiences with a mobile CRM

pilot

Jyrki Akkanen1, Hunor Demeter2, Tamás Eppel3, Zoltán Ivánfi2, Jukka K.

Nurminen1, Petri Stenman4

1 Nokia Research Center, P.O. Box 407, 00045 NOKIA GROUP, Finland

jyrki.akkanen@nokia.com, jukka.k.nurminen@nokia.com

2 Nokia Research Center, P.O.Box 392, H-1461 BUDAPEST, Hungary

hunor.demeter@nokia.com, zoltan.ivanfi@nokia.com

3 Budapest University of Technology and Economics, Budapest Pf. 91,

H-1521 Hungary; peletomi@gmail.com

4 Nokia Ventures Organization, P.O. Box 407, 00045 NOKIA GROUP,

Finland; petri.stenman@nokia.com

Abstract. We discuss experiences in extending an open source CRM

application to develop a new server-based mobile business application.

Combining the application code reuse with incremental development process

allowed successful development of a pilot application in a tight schedule. In

particular, it enabled a quick start for customer-driven development,

diminished risks related to the baseline application itself, and provided the

flexibility needed in experimental pilot development.

1 Introduction

New software is often developed over a platform. In many senses platforms are ideal

for developing new applications: they are usually well-documented and designed for

reuse and easy development. However, in this paper we explore a different approach:

we discuss the benefits and challenges associated to reusing an existing open source

application in order to create a new product. This approach has potential since it

allows a quick start and, when combined to an agile process, also an early user

involvement. Furthermore, using an open source product as the development base

reduces risks due to associated information openness.

Our study grew up from practical experiences. Our vision was to create a

business software solution for small and medium-sized companies, a solution that

could support both multiple business domains and mobility. To begin with we

implemented a pilot system for the Finnish real estate agencies by extending an open

source CRM application to a new business domain and by integrating mobile phones

in it. The solution was a new concept and included a lot of uncertainty both on the

technical and business side. To deal with the uncertainty the venturing literature

suggests testing the underlying assumptions at the lowest possible cost (see e.g. [1]).

So we were not implementing an application fulfilling a fixed specification but in a

Akkanen, Demeter, Eppel, Ivánfi, Nurminen, Stenman218

very dynamic fashion exploring for the right combination of business and technology

to create profitable business.

2. Course of the development project

A lot has been written about motivations to participate in open source development;

both from individual and corporate viewpoint [2]. One of the frequently cited

benefits is that reusing open source reduces development cost [3,4]. This was also

our main motivation: using an open source business application as development base

would save development effort and thus allow us to rapidly test our concept and

assumptions with a real case.

On the Internet we found roughly 40 open source CRM and group work suites.

With a set of criteria (e.g. functionality, quality, license, environment) we finally

selected vTiger [5] as our base application. Most solutions were dropped due to

lacking functionality or immaturity, and none of them fully satisfied all the criteria.

With vTiger we were mostly concerned about the product quality and maturity. It is a

web-based business management software written in PHP and running over Apache

web server and mySQL database. The product is developed mainly by an Indian

company vTiger, which is getting revenue from support and subscription services.

Our baseline version was vTiger 4.2.

We used a very light-weight and incremental development process along the

common open source guideline “release early, release often” [3]. Our initially rather

vague understanding of customer requirements grew during the development, and we

also became more and more aware of our abilities to fulfill them. It was only after

two months, in the middle of the project, when we finally were able to estimate how

much functionality we actually can deliver, and were able to even roughly pin down

the final feature set for the deliverable:

1. Basic CRM functionality: contacts, messages, phone calls, notes etc. that

could be cross-linked to each other.

2. Real estate business specific functionality: property management and

search, bidding process, checklists, brochure creation.

3. Mobility support: synchronize CRM data (e.g. contacts) with phone, rich

context to phone calls.

4. PC-phone interoperability: dock the phone to PC, respond to incoming

calls on the PC with proper CRM context, and initiate calls by clicking

special hypertext link in PC browser.

As depicted in Figure 1, all the business functionality was implemented in an

Application Server that provided a web UI for a browser. That consisted mostly of

vTiger CRM augmented with Realtor Extensions, the set of specific modules for real

estate business. The mobile phones connected to the Application Server through a

proprietary Mobility Server that took care of all the mobility-related issues. A small

adaptive module, Mobility Connector, in the Application Server provided a Web

Reusing an open source application – practical experiences with a mobile

CRM pilot

219

Services interface for the Mobility Server. This design made the mobility framework

independent from the Application Server.

Fig. 1. The solution architecture

We managed to deliver the pilot to our customers according to the original

schedule and they were satisfied with the quality of the deliverable. There was no

need to fix bugs during the 2 month pilot testing period. The table 1 below sums up

the code size in the Application Server divided into different functions.

Table 1. Deliverable size: lines of code including empty lines and comments

Base New Modified Release

vTiger CRM 361 487 8 000 7 915 373 838

Realtor Extension 12 080 12 080

Mobility Connector 2 979 2 979

Third-party Libraries 163 020 902 380 164 266

Total 524 507 23 961 8 295 553 163

The Base column shows the size of the original vTiger 4.2. The New column

contains the lines in the files that we created ourselves while the Modified column

tells how many lines in the Base code files were modified. The Release column

contains the final size of the deliverable.

The figures show that reuse was very efficient: only 6% of all the code lines in

the deliverable were written by us. Furthermore, we used only about 15 man-months

to enhance the vTiger CRM into our Application Server, obviously an order of

magnitude less than what would have been required for developing everything.

Akkanen, Demeter, Eppel, Ivánfi, Nurminen, Stenman220

Of course a considerable effort would still have been required to finalize our

prototype into a product. In addition, the fact that the vTiger modifications spread

over 236 files complicates future maintenance. For instance, merging the changes to

a newer version of vTiger would be harder.

Despite the successful pilot we eventually decided to discontinue developing the

Application Server. The reasons were mostly related to business: as our revenue

would come from mobility support it might be better to rely on existing business

applications rather than develop new ones. We thus re-focused our resources in

developing the mobility support into such form that creating the necessary Mobility

Connector modules for existing business applications would be as easy as possible.

3. Lessons learned

Compared to mature application platforms complete applications have a harder

learning curve, especially if they are weakly documented and do not have a clean

architecture. Our experience showed that the benefits of complete applications easily

outweigh their weaknesses: we got a lot of complete functionality for free. In our

case the base application already provided most of the necessary software

infrastructure and one third of necessary features. Furthermore, we could develop

new functionality on top of the old one with relatively small effort.

Basing our development on an existing application suited well to incremental

customer-driven process. Customers easily caught a definitive role in the

development process as the lead users could try out working software from the first

day of development. We could also quickly provide new functionality: this kept

customers active and motivated to provide domain knowledge and feedback. Active

weekly customer feedback was crucial to maintain the development speed and right

focus. In the software engineer viewpoint, incremental prototyping felt as well the

best approach to get familiar with the base application: the source code was readily

available, but we did not know it at all and it did not have too much documentation.

Making small modifications was a natural way to learn the software piece by piece.

Maybe we could even state that reusing an existing application is an optimal

approach only when combined to an incremental process. A careful and deep design

phase before implementation requires learning both the existing software and

requirements. This is time-consuming and, as a result, one loses the quick start. In

worst case one ends up re-designing large parts of the base software in such a way

that writing completely new software turns out to be an easier solution.

Incremental prototyping approach is, however, not a silver bullet: it may lead to

architectural problems. The architectural decisions in the base software concern also

the new features but, in practice, deviations from clean architecture easily occur. In

the beginning one simply does not know the software enough to follow its

architecture. It is also difficult to control the overall architecture if new features are

inserted one after another with least possible effort. In the end some architectural

refactoring may need to take place.

Reusing an open source application – practical experiences with a mobile

CRM pilot

221

A further benefit of open source is that not only the source code, but all other

data concerning the software is public and accessible. For us the open information

was useful for the software quality. The open source advocates eagerly remind us

from the elements in open source development model that promote quality [3] and

based on experience with mature top-quality open source products like Linux and

Apache, such claims are valid [6]. On the other hand, during our selection process, it

became clear that all products were not mature enough for real production use. We

encountered security vulnerabilities, weak usability, low performance, lots of dead

code, and poor documentation.

Such weaknesses are also common in commercial non-mature software products.

However, the benefit of open source development is that it is practically impossible

to keep quality problems hidden. To look behind the hype on the front page you can

install and try out the software. An experienced developer can recognize low-quality

code by looking at the implementation. The discussions in various Internet boards

also reveal if users are having problems with the software and indicate what the

developer community attitude towards the possible weaknesses is.

The situation is totally different with commercial software. Information can only

be accessed “in drops” and getting beyond the front page advertisements often

requires commitment. This holds especially if you think about reusing the software

in order to further develop it: commercial software is usually not sold or advertised

for that purpose.

We were bad citizens in that respect that we did not contribute to an open source

community at all. The basic reason for not doing so was that we were unsure about

what to contribute, where and how. The realtor-specific features were very domain-

and country-specific, so we did not expect them to have much generic interest. The

mobility features would surely have been welcomed but the solution depended on

proprietary components that could not be open sourced.

An additional difficulty in joining the community was that our own targets were

changing as our experience with the business and technology grew. As we were not

mature enough to clearly specify our needs we concluded that attempting co-

operation in so early stage would just confuse the base product community.

Open source application reuse causes complicated licensing situation inside

companies building commercial solutions. When you modify open source code, you

end up intermingling your code with the open source code. Depending on the open

source license this may lead to many concerns related to commercial usage of the

software. You may also end up with problems with your IPR: this is very

complicated matter and so difficult to analyze to even understand all the

consequences [7]. In our case this led to situation where we had code without clear

strategy how to use it later on.

Akkanen, Demeter, Eppel, Ivánfi, Nurminen, Stenman222

4. Conclusions

The target of our project was quickly and with small resources to provide a pilot of a

server-based business application, which supports realtors in their daily work and

allows use through a mobile phone. Building on top of an existing open source

application allowed us to successfully release the pilot in a tight schedule.

Reusing an open source application gave us a quick start for the development. As

the base product already contained lots of functionality, we could concentrate on

satisfying the actual needs of the user. Many risks related to the product could be

easily managed since open source software came with open information: all relevant

knowledge of the base product was easily available.

We also noticed the benefits of combining agile, incremental development

process to reusing an existing application. Straight from the beginning of the project

the customers were able to use the weekly releases. Their feedback of the features

and their usability steered the project and allowed flexible prioritization of the

implementation tasks.

On the other hand, for the pilot, we ignored some critical questions concerning

the software licensing and our position in the open source community. These must be

dealt with before basing a commercial product on an open source application.

References

1. McGrath, R.G and MacMillan, I., The Entrepreneurial Mindset (Harvard

Business School Press, 2000).

2. Rossi, M., Decoding the ‘Free/Open Source Software Puzzle’: a survey of

theoretical and empirical contributions (2004), in: The Economics of Open

Source Software Development, edited by J. Bitzer and P.J.H. Schröder (Elsevier

2005); http://opensource.mit.edu/papers/rossi.pdf.

3. Raymond, E., The Cathedral & the Bazaar (O’Reilly, February 2001). See also

http://www.catb.org/~esr/writings/cathedral-bazaar/.

4. Bessen, J.E., Open Source Software: Free Provision of Complex Public Goods

(July 2005). Available at SSRN: http://ssrn.com/abstract=588763 or DOI:

10.2139/ssrn.588763 (http://dx.doi.org/10.2139/ssrn.588763).

5. vTiger CRM; http://www.vtiger.com/.

6. Boulanger, A. Open-source versus proprietary software: Is one more reliable and

secure than the other? IBM Systems Journal 44:2 (June 2005), p.239.

7. Vetter, G.R. “Infectious” Open Source Software: Spreading Incentives or

Promoting Resistance. Rutgers Law Journal 36:1 (Fall 2004), p.53;

http://opensource.mit.edu/papers/vetter2.pdf.

