
CONTEXT-DEPENDENT EVALUATION
METHODOLOGY FOR OPEN SOURCE
SOFTWARE

Michele Cabano, Cesare Monti, and Giulio Piancastelli
DEIS, Dipartimento di Elettronica, Informatica e Sistemistica
Alma Mater Studiorum — Università di Bologna
via Venezia 52, 47037 Cesena (FC), Italy

[michele.cabano, cesare.monti, giulio.piancastelli]@unibo.it

Abstract Many evaluation methodologies have been proposed to mitigate the risks
of choosing Open Source Software as an e↵ective solution to an enter-
prise’s problem. This work extracts the shared traits from the most
important and widely known evaluation models, and re-applies them to
create a new methodology. This methodology has been designed both
to be used for the creation of a common knowledge base, and to be spe-
cialized for application in the context of the particular breed of small-
and medium-size enterprises found on the Italian ground.

1. Introduction
Selecting an Open Source Software (OSS) application as the appropri-

ate solution to an enterprise’s problem has always been an activity prone
to many risks of di↵erent nature [4]. Proposed solutions to this choice
problem have taken the form of evaluation methodologies [3, 1], aimed
at assessing a software package’s maturity for business IT adoption.

Open Source embracement is critical especially for small- and medium-
size enterprises, where the consequences to a wrong decision in the pick-
ing of an Open Source alternative to a commercial product might not
be as well-absorbed as in the context of bigger corporations. For this
reason, the Italian region Emilia-Romagna funded the OITOS project,1

started in 2005 with the goal of creating an Observatory for Innovation
and Technological transfer on Open Source software. The project aims
at strategic evaluations of Open Source solutions, in order to limit and
control the risks for enterprise IT adoption. For that purpose, by re-
applying a common structural pattern shared by the most important



2

Figure 1. An UML diagram illustrating the evaluation meta-model, where a single
metric can influence more than one category, and weights are used to take into account
the final rating’s dependency from the evaluation context.

and widely known methodologies, we designed a new OSS evaluation
methodology, both to build a knowledge base classifying Open Source
products, and to be applied in the specific business contexts of small-
and medium-size enterprises participating in the OITOS project.

2. Modeling existing evaluation methodologies
We identified three most important works in the area of OSS evalua-

tion methodologies, starting from the first Open Source Maturity Model
[4], created by Bernard Golden at Navica; another Open Source Maturity
Model has been later developed at the CapGemini consulting company
[3]; finally, Intel Corporation, Carnagie Mellon University, and others
are currently proposing a standard and open evaluation methodology
for OSS, named Business Readiness Rating (BRR) [1].

Despite possible dissimilarities among the listed works, we believe each
methodology always consists in the application of an evaluation model
to one or more software packages during the execution of a well-defined
assessment process. Both the process and the model can be reduced to
a common pattern solving the Open Source evaluation problem.

2.1 The evaluation meta-model
As shown in Figure 1, all the examined evaluation models share a

common meta-model subdivided along three layers. Those layers aim at
refining a product’s evaluation by aggregating raw data under ratings of
similar assets, until an overall score is determined.

A metric is defined as a measurable property of an open source soft-
ware project.2 Metrics are organized into categories representing com-
mon areas of interest. The aggregation of categories represents the whole
product under analysis. An evaluation is assigned to each metric, corre-
sponding to the value reached by the software on that specific property.



Context-Dependent Evaluation Methodology for Open Source Software 3

Figure 2. The three phases in the skeleton of the assessment process.

The evaluations of metrics sharing their category are combined into cate-
gory evaluations, which are then aggregated into the final product rating.
Weights could be assigned to categories and metrics to account for the
context-dependent importance that some aspects of a product may have.

The examined models feature common categories to evaluate quantita-
tive data taken from objective sources, such as the project’s infrastruc-
ture. Di↵erences between models result in the remaining categories,
which try to capture subjective data and normalize qualitative informa-
tion taken from other sources, such as code analysis or product use.

2.2 The assessment process skeleton
As illustrated in Figure 2, the prototypical assessment process for

OSS evaluation methodologies is composed by three phases: (1) Data
Gathering; (2) Data Analysis through predefined metrics grouped by
category; (3) Numerical Synthesis. The process can be refined, as it
happens with the Quick Assessment filter of the BRR [1], or further
detailed, as in the seven steps of CapGemini’s Maturity Model [3]; but
the outlined three phase pattern still maintain its validity.

The Data Gathering phase can be accomplished by collecting infor-
mation indirectly through reuse of third party evaluations, or directly
from primary data sources such as the project’s support infrastructure
and web sites promoting the software product. The Data Analysis and
Numerical Synthesis phases represent the application of the evaluation
model in two steps: first, following a numeric scale, a score is assigned to
each metric, then weighted and aggregated on the basis of metric’s areas
of influence to calculate the rating of each category; second, product’s
evaluation is obtained by applying di↵erent weights to category ratings.

The assessment process must be frequently repeated over time for each
software package, due to the responsive nature of Open Source projects.

2.3 Towards a pattern for software evaluation
We believe that the meta-model and process skeleton detailed in Sec-

tion 2.1 and 2.2 form the structure of a pattern3 for the creation of the
two key elements in a software evaluation methodology. Patterns dis-
till and provide a means to reuse the knowledge gained by experienced



4

practitioners [2]. In fact, the proposed software evaluation methodology
pattern has been extracted from the solutions to the software evaluation
problem proposed throughout the latest years. Besides, the creation of
the BRR methodology shows that this solution pattern to the evaluation
problem, on which the BRR is based, is considered mature enough to be
openly discussed and worth of a standardization attempt.

3. The OITOS methodology
Started in 2005, the OITOS project is the first attempt made by the

local government of an Italian region to spread Information Technology
knowledge on its territory. The project aims at strategic evaluations of
Open Source solutions under the perspective of enterprise IT adoption.
The OITOS project involves a lot of companies which operate in several
sectors. Di↵erent organizations have di↵erent technical requirements in
the choice of software products: an assessment made for a company can
rarely be totally reused for another. Thus, our primary task was finding
a set of metrics which could always be used in any assessment, in order
to create a knowledge base common to every organization.

3.1 Creating a knowledge base
Since existent evaluation models did not consider some important

metrics the OITOS project’s context demanded (e.g. migration costs or
interoperability) we needed to create a new model to match our own re-
quirements. The OITOS evaluation model was thus developed following
the structure described in Section 2.1 without considering weight fac-
tors. The model was built to evaluate open source projects, rather than
products, around three categories, aimed to measure a set of objective
properties of general interest in a quantitative way: (1) Development;
(2) Community; (3) Transition. The Development category measures the
work made by project developers, and is composed by the Documenta-
tion, Developers, Tools, and Composability4 metrics. The Community
category measures all the resources o↵ered by users, scientific commu-
nities and private companies, and is composed by the Visibility, Success
Stories, Support, and Fundings metrics. The Transition category es-
timates how much the product is adaptable to existent organizational
structures and configurable for its e↵ective use, and is composed by the
Configurability, Set-up, Use, Migration, and Interoperability metrics.

Needing general assessments in order to gain maximum reusability, we
opted for the simplest possible evaluation process: it relied on a single
phase called Preliminary Assessment, which included all the three steps
highlighted in the prototypical process characterized in Section 2.2.



Context-Dependent Evaluation Methodology for Open Source Software 5

3.2 Context-dependent software evaluation
Companies participating in the OITOS project also needed evalua-

tions customized to their particular technological context. Willing to
reuse the objective and more general parts of each evaluation, the model
and process described in Section 3.1 were extended piecemeal to produce
a context-dependent methodology: metric weights from the meta-model
in Section 2.1 were introduced, a new Technology category was added,
and the process was extended to comprise three di↵erent phases.

Technology category groups all the metrics relative to features which
an enterprise may consider important for its specific context. These met-
rics usually measure facets connected directly with the software product,
never with the open source project’s infrastructure. For this reason,
rating those metrics is a subjective activity, but evaluations are more
customized to their technological context than in other categories.

The assessment process is composed by three phases: (1) Context
Analysis; (2) Preliminary Selection; (3) Filtered Selection. During the
Context Analysis phase, information concerning a company are gathered
in order to define its necessities. Each need is resolved by a software class
which will be estimated by the model. After identification of software
classes, a list containing possible products to introduce is edited, and a
complete set of evaluation metrics is defined. In the Preliminary Selec-
tion phase, a set of most critical metrics is extracted. To each critical
metric is associated a threshold, which must be surpassed to grant a
software product access to the next phase. During the Filtered Selec-
tion step, software products passing Preliminary Selection are estimated
once more, by the complete set of metrics defined in the Context Analy-
sis phase. There are no thresholds assigned to the metrics: instead, each
metric receives a 1 to 10 value which may be modified by a weight factor.

With reference to the process pattern outlined in Section 2.2, the
Data Gathering phase has been split onto all the three phases in the
OITOS methodology. During Context Analysis, data is collected about
the company for which the evaluation is performed.5 In the Preliminary
Selection phase, we refined the process in the fashion of BRR’s Quick
Assessment filter [1]: data is gathered for critical metrics, and a first
Data Analysis activity is performed to rule in or out software packages
from the next step. During Filtered Selection, the complete evaluation
of software is accomplished, featuring all the three phases in the pattern.

4. Open issues and future work
The Data Gathering and Data Analysis processes are driven by two

sets of questions, which let evaluators collect the raw material to be



6

used for assessing a product’s rating, and establish the influence of each
metric on the higher category layer. These two sets are of fundamental
importance, since they comprise the point of view that the methodology
enforces on the software product being evaluated. Unfortunately, even
if those questions are sometimes contained in accompanying documents
such as user’s guides or appendixes, more often they are nowhere to be
publicly found, especially when consultancy agencies are involved.

Despite the endeavor to control subjective information and normal-
ize qualitative data, a certain degree of discretion is still possible while
performing a software evaluation. Subjectivity has not been eliminated:
it has just been transferred to the normalization process, which at most
can be driven by a set of best practices, not a well-defined specification.
If the influence of the evaluator’s point of view and the dependence
from the context cannot be eliminated, they should at least be traceable
during and after the evaluation process. For this reason, every software
evaluation should be accompanied by a document explaining choices and
relating facts to the actual ratings assigned to metrics and categories.

In the context of the OITOS project, not only the results of every
evaluation are public, but the methodology itself is made open to feed-
back from OITOS participants. As a first result, steady interest has
been shown for the introduction of a new category in the model, with
the purpose of evaluating legal issues connected with software, such as
private data management, copyright, and licence responsibilities.

Notes
1. Details and documents for the OITOS project are available at http://www.oitos.it,

including a case study on Groupware applications where our software evaluation methodology
has been tested.

2. We adopted the BRR lexicon to achieve a uniform vocabulary and avoid confusion.

3. A pattern is a general repeatable solution to a commonly occurring problem.

4. Composability aims to estimate how many projects use the product as a component.

5. We extended the meaning of Data Gathering to also include information not related
to software, but still essential to an e↵ective evaluation.

References

[1] BRR Project (2005) Business Readiness Rating for Open Source. BRR-2005-RFC1

[2] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-
Oriented Software Architecture – A System of Patterns. John Wiley & Sons

[3] Duijnhouwer FW, Widdows C (2003) Open Source Maturity Model. CapGemini
Expert Letter

[4] Golden B (2004) Succeeding with Open Source. Addison-Wesley


