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Abstract. Much of the data about free, libre, and open source (FLOSS) 
software development comes from studies of code repositories used for 
managing projects. This paper presents a method for integrating data about 
open source projects by way of matching projects (entities) and deleting 
duplicates across multiple code repositories. After a review of the relevant 
literature, a few of the methods are chosen and applied to the FLOSS domain, 
including a simple scoring system for confidence in pairwise project matches. 
Finally, the paper describes limitations of this approach and recommendations 
for future work. 

1 Introduction 

Free, libre or open source software (FLOSS) development teams often use 
centralized code repositories to help manage their project code, to provide a place for 
users to find the product, and to organize the development team. Although many 
FLOSS projects host their own code repository and tools, many projects use the tools 
hosted at a third-party web site (such as Sourceforge1, ObjectWeb2, or Rubyforge3). 
These code forges provide basic project/team management tools, as well as hosted 
space for the source code downloads, a version control system, bug tracking 
software, and email mailing lists. There are also directories of FLOSS software (such 
as Freshmeat4 and the Free Software Foundation5 directory) that try to gather into 
one convenient place material about projects interesting to a particular community. 
 

Much software development research has been focused on gathering metrics from 
code repositories. Many aspects of the repository-based software development 

 
1 http://www.sf.net 
2 http://forge.objectweb.org 
3 http://www.rubyforge.org 
4 http://www.freshmeat.net 
5 http://directory.fsf.org 



46 Megan Conklin 
 
process have been studied in depth, and repository data collection is important for 
these studies (see [2] for background). The FLOSSmole project [5] was created to 
consolidate metadata and analyses from some of these repositories and directories 
into a centralized collaboratory for use by researchers in industry and academia. As 
of this writing, FLOSSmole includes data and analyses from Sourceforge, 
Freshmeat, Rubyforge, ObjectWeb, and the Free Software Foundation (FSF) 
directory of free software. One of the challenges mentioned in [2] in creating this 
kind of collaboratory is in integrating the data from these various sources. When 
integrating project data from multiple sources, we must first identify which project 
pairs are matches; in other words, we want to find out which projects are listed on 
multiple forges. For example, is the octopus project on ObjectWeb the same as the 
octopus project on Sourceforge or the project also called octopus on Freshmeat? If 
we can determine a heuristic for determining whether a project pair is a match, then 
can we automate the matching process? 

 
The focus of this paper is entity matching (and duplicate identification) as applied 

to the domain of FLOSS projects. Section 2 outlines some terminology from the 
study of data integration problems and gives a background of entity matching 
algorithms. Section 3 describes the FLOSS domain in terms of entities and 
duplicates. Section 4 gives an example of applying some of the algorithms for entity 
matching to this domain. Section 5 outlines limitations of this work and gives 
recommendations for future study. 

2 Entity Matching Background 

The act of integrating multiple data sets and finding the resulting duplicate records 
("matches") is nearly as old as database processing itself. In practice and in the 
literature, this set of processes is known by many names: merge/purge, object 
identification, object matching, object consolidation, record linkage, entity matching, 
entity resolution, reference reconciliation, deduplication, duplicate identification, and 
name disambiguation. The terms entity matching and duplicate identification will be 
used throughout this paper. 

 
Within the larger activity of data integration, the act of matching entities or 

identifying duplicates is not to be confused with the act of schema reconciliation. 
Schema reconciliation refers to the act of matching up columns or views in different 
data sources, and using data or metadata to make the match. For a trivial example, 
suppose a field in Table A is called url but it is called home_page in Table B. To 
resolve these schemas, the analyst could create a global schema or view that 
encapsulates both underlying schemas. This task can be done manually, or can be 
automated through various machine learning techniques [1,4,8]. Schema 
reconciliation and entity matching are related, but not identical, tasks of data 
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integration. Most often the schema reconciliation will happen first, followed by the 
"merge" task, and finally by the eventual "purge" of duplicate data.  

2.1 Agree/Disagree and Frequency-Based Matching 

The simplest and oldest form of entity matching is the simple agree/disagree method: 
take two data sets A and B and compare them pairwise for matches based on one or 
more attributes. The pairs will either agree or disagree on zero or more of the 
attributes, and thus a weight for the match can be determined. 

 
To improve agree/disagree entity matching, early research relied on frequencies 

of values to determine the probability of a match (see [10] and [7] for brief 
explanations of this work). Frequency matching asserts an important premise: that 
two rare values are more easily and accurately matched than two common values. 
The example given in [10] is for two records listing the name Zbigniew Zabrinsky, 
two records listing the name James Smith, and any two records with first and last 
names. The two records for Zbigniew Zabrinsky are likely to be more easily and 
accurately matched than James Smith due to the rarity of the field values.  

2.2  Disjoint Sets 

In [4], the authors consider the problem of how to match 'person' records using 
disjoint attributes and a 'typical person' profile. For instance, the example given in 
the paper is that the two records {Mike Smith, age 9} and {Mike Smith, salary 
$200,000} are not likely to be the same person based on a profile indicating that a 
typical person with an annual salary of $200k is older than 9 years. The authors 
compare their system to a traditional agree/disagree system of matching, and show 
that disjoint attributes can be effective if paired with shared attributes. 

2.3  Confidences 

Numerous authors, including recently [6], consider how to merge records when a 
confidence measure has been added to the results of a prior merge process. In their 
description, confidences (also called weights or scores) usually measure either (a) the 
level of user-defined "belief" in the data, or (b) the amount of "accuracy" the user 
thinks is present in that particular merged record. In their paper, the authors ask: 
what is the best (most efficient, least work) way to match and merge records, given a 
confidence measure on each record? These authors do not discuss in [6] how to 
actually calculate a confidence value, but this is one of our concerns in Section 4. 
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3 Entity Matching Methods for FLOSS Data 

This portion of the paper describes the way each of these entity matching methods 
can be applied to integrate disparate sets of projects from the FLOSSmole project.  

 
First, by way of introduction to the FLOSSmole data, Table 1 shows a partial list 

of the project attributes available for each of the repositories/forges in FLOSSmole at 
the time of this writing. These project attributes are the most likely candidates for the 
job of matching projects. (There are dozens of other attributes about each project in 
FLOSSmole, such as registration date or project status or number of downloads, but 
these are not likely to be helpful in matching projects across repositories.) 

 
Forge 

Sourceforge, Freshmeat, Rubyforge,  
Objectweb, Free Software Foundation 

 

Attribute 

SF FM RF OW FSF 
Short Name (unixname) X X X X X 
Long Name X X X X X 
Description X X X X X 
URL X X X X X 
License Type(s) X X X X X 
Programming Language(s) X X X X X 
Operating System(s) X X X X  
Topic(s) X X X X  
Intended Audience(s) X X X X  
User Interface(s) X X   X 
Environment(s)   X X  
Developer(s) X X X X X 

Table 1. Project metadata: relevant attributes for matching projects, (FLOSSmole, Dec, 2006) 

Most of these attributes shown in Table 1 are self-explanatory. However, some 
confusion can arise when differentiating between the short name and the long name 
for a project. The short name is usually an internal-to-the-repository name that is 
given to the project at the time of its creation. Some repositories use this as a sort of 
primary key for the project in its database. The long name of a project is the more 
descriptive name for a project. It can change over time, it can include spaces and 
special formatting characters, and it typically more descriptive than the short name. 
Values for all of the attributes shown in the list in Table 1 are chosen by the project 
administrators, and except for short name and long name, they can all be NULL. 
License type, operating system, topic, audience, interface, and environment can have 
multiple values.  
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The next three sections describe a few of the obvious choices for attributes from 
this list that can be used to establish matches between projects. One choice from 
Table 1 that may initially look promising is "List of Developers". Since this attribute 
is actually a list of developers who work on each project, what better way to 
differentiate or match two projects? (If the list of developers is the same for the two 
projects, then the two are a match.) The problem with this is that developers are 
entities themselves, and matching developers between repositories requires an 
entirely separate list of attributes (developer name, developer email, developer skills, 
role on project, etc). Section 5 discusses broadening project entity matching to 
include developers, but the remainder of this paper will exclude developers as 
entities and will retain the focus on project matching only. 

3.1 Matching by URLs 

The diagram shown in Figure 1 depicts each forge/directory in FLOSSmole and how 
many of its projects list another forge as the actual hosting home page. For example, 
in the diagram, the topmost arrow shows 11 projects on the FSF that actually have 
Rubyforge listed as the home page. The arrow notation is used to show a direction of 
the relationship (e.g. 10,044 Freshmeat projects show a home page on Sourceforge, 
but only 4 Sourceforge projects list a Freshmeat home page). Pairs of forges with no 
URLs in common are not shown. (No Rubyforge projects list ObjectWeb URLs, and 
vice versa. Also, as is befitting its status as a directory and not a repository, the FSF 
directory is not listed as the home page of any projects from the other repositories, so 
these empty relationships are not shown in the diagram.) 
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Fig. 1. Number of projects at each repository that list a home page at another repository 

3.2 Matching by Project Names 

Figure 2 shows the number of short project names shared in common between each 
pair of projects. For instance, starfish is a project listed on both Sourceforge and 
Rubyforge. On Rubyforge, it is described as a "tool to make programming 
ridiculously easy", but on Sourceforge the starfish project is described as a password 
management application. There are 470 projects with shared names on Rubyforge 
and Sourceforge. A similar problem exists between the project names on 
Sourceforge and ObjectWeb. For example, the project called octopus exists on both 
these forges and appears to be a completely different application: on Sourceforge this 
is an Eclipse plug-in, but on ObjectWeb octopus is an ETL data warehousing tool. 
Of the 125 applications (total) listed on ObjectWeb, 41 have names that are shared 
with a Sourceforge project. The Sourceforge project may (as in the case of 
lemonldap) or may not (as in the case of octopus) be the same project. On Freshmeat, 
there also is a project called octopus, but this one is a financial trading application. 
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Fig. 2. Number of projects at each repository that share an identical short project name 

Most forges require projects to have a unique name (sometimes called the 
"unixname") within that forge. For example, once a project called starfish has been 
added to Sourceforge, another one cannot be added with the same short unixname. 
However, multiple projects can have the same "display name"; Sourceforge projects 
starfish and xstarfish both have the display name of "starfish". On Sourceforge, 
44,112 (39%) of projects have unixnames that are different from their display names 
(December 2006 FLOSSmole data). Note that the FSF directory has only a 
requirement for case-sensitive uniqueness in project names. The FSF lists project 
pages for both ANT (telephony application) and ant (build tool). There are 54 such 
(ambiguously) named projects listed on FSF. 

3.3 Matching by Other Attributes 

It may be possible to determine the accuracy of each matched pair further by 
attempting to match the project owner or developer names, emails, or usernames as 
in [11]. Or, it may be possible to find a matched pair through the textual description 
of the project, or through the project license type, the programming language(s), 
operating system(s), or other metadata about the project. Each of these possible 
match fields requires that the project administrator has accurately filled in the 
metadata for his/her project. If the administrator never bothered to fill in the 
programming language for the project on one or both of the sites where the project is 
listed, then it will not be possible to disambiguate by finding a match on this item.  
 

 
Project Attribute Projects listing at least one Projects listing none 
Programming Language 82,969 (73%) 29,946 (27%) 
License Type 84,102 (74%) 28,813 (26%) 
Operating System 78,334 (69%) 34,581 (31%) 
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Table 2. Numbers of Sourceforge projects with and withoug certain attribute data, 
(FLOSSmole, Dec, 2006) 

Table 2 summarizes a few of the most common attribute statistics for Sourceforge 
projects. It is also interesting to discover that of those 74% of projects that list a 
license type, over half use the GPL. 

 

3.4 Advanced Methods 

In our attempt to match FLOSSmole projects by URL, name, or any other 
combination of attributes, we are still performing basic agree/disagree entity 
matching. Our brief review of the database literature on entity matching indicates 
that these methods do work for some cases, but can be optimized and improved. 

 
3.4.1 Frequency-Based Matching 
 
The first improvement made to the agree/disagree entity matching was to consider 
how to apply a form of frequency matching on the name field. Recall that [10] 
explains that rare names (Zbigniew Zabrinsky) are more easily matched than 
common names (James Smith). "Rare" and "common" are determined by an already-
existing set of names and their general frequency rankings in the population. In the 
case of FLOSS projects, there is no such ranking for software project names, but a 
corollary might be that projects with dictionary words for names (e.g. the octopus 
and starfish examples) are more likely to be non-matches than projects with unusual, 
non-dictionary names (e.g. sqlite-ruby or lemonldap). Because there is also a 
difference between the unique unixname and the non-unique display name for each 
project, we ask: which of these fields should be used to consider the frequency 
match? In Section 4, we answer with "both", but we score the matches differently. 

 
3.4.2 Disjoint Sets 
 
The next improvement was to use the notion of a disjoint set, as in 2.2. by listing 
which attribute values would likely never coexist. Initial ideas included the following 
possible disjoint sets: {op_sys=linux, prog_lang=asp}, {date_registered<2001, 
prog_lang=C#}. Not only are these rules fairly weak insofar as there are plenty of 
examples of projects that would violate them for various reasons, but unlike the 
age/salary information in the example case in 2.2, the number of records in 
FLOSSmole which match these disjoint sets is likely to be quite small. We conclude 
that in the FLOSS domain, it is more likely to be the case that duplicates can be 
found through simpler methods than disjoint sets. This is due to three factors: the low 
number of valid disjoint set rules we would be able to construct, the difficulty of 
applying disjoint set rules to our data when so many of the pairs are missing 
metadata on which these disjoint sets would be based (recall section 3.3), and the 
low number of duplicates that would not be identified by other, simpler methods. 
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3.4.3 Confidences or Scoring 
 
One final serious consideration in advanced methods of entity matching and 
duplicate identification was the use of confidences to describe numerically the 
analyst's degree of belief in the accuracy of the merge/match. How should scoring be 
done? We worked backwards from our initial assumption that the end goal of this 
exercise is be able to point from one project to another based on likelihood that they 
are a match. Thus, we planned to consider each pair in turn, then apply a 
confidence/match score (based on the heuristics used) to the record to indicate how 
good the match was. The scoring and results are given in the next section. 

4 Application  

To apply entity matching methods to project data in FLOSSmole, we assume a set of 
heuristics and associated weights for calculating whether the items in a pair are a 
match (Table 3). Match modifiers were determined through trial and error, and based 
on an intuitive sense of which matching criteria were important. 

 
 Match Modifier 
Home Page URLs match +3.00 
Short names match +2.00 
--if yes, is short name in the dictionary (i.e. is it common?) -1.00 
--if not, does Partial Name match? +0.50 
    -- if partial name matches, is partial name in dictionary? -0.25 
Textual descriptions tokens match, per token match +0.10 
Long (display) names match +0.50 
Programming language matches, per token match +0.50 
License matches, per token match +0.50 
Other project metadata matches, per token match +0.50 

Table 3. Scoring table for matching pairs of projects 

A short example of a table designed to hold the FLOSSmole pairs with their 
matching scores across multiple repositories might look like Table 4. Higher scores 
mean the pair is more likely to be a match, but it will be up to an individual analyst 
to decide where to "draw the line" for what score indicates a match. The highest 
score is around 8; the lowest score is 0. As shown in the table, the highest score 
could be higher if more attributes were added. Attributes included are programming 
language, operating system, and license because these are the fields whose values 
were most available and easiest to standardize over a variety of repositories. 
(Compare with attributes like "environment", "interface", or "topic" that are hard to 
standardize.) 
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Table 4. Scoring table for matching pairs of projects 

Pair ID Project Name Source A Project Name Source B Score 

1 phpmyadmin SF 8001 (phpmyadmin) FM 6.9 
2 octopus SF octopus OW 1.0 
3 octopus-ge SF octopus OW 2.6 
4 16120 (octopus) FM octopus OW 1.5 
5 13902 (ant) FM 152 (ant) FSF 4.1 
6 sqlite-ruby SF sqlite-ruby RF 6.9 

Pair 1 shows Sourceforge project phpmyadmin matching an identically-named 
Freshmeat project. These projects share a short name (with low frequency count 
when compared to a dictionary word: +2), long name (+.5), URL (+3), and license 
type (+.5). Several key tokens are the same in each description (+.9: MySQL, PHP, 
Web, administration, alter, drop, database, delete, SQL).  

 
Pair 2 shows Sourceforge project octopus with ObjectWeb project octopus. The 

short project names match (+2), but urls are different. The long project names are 
also different ('Octopus' and 'Enhydra Octopus'). Additionally, because the 
Sourceforge project octopus does not list any project metadata, it can't be matched 
very well with the ObjectWeb project of the same name using these additional 
attributes. Finally, these two entities share the dictionary name 'octopus' (-1). 

 
Pair 3 shows the project octopus-ge on Sourceforge and project octopus on 

ObjectWeb. These projects share a beginning partial string match, octopus* (+1) but 
it is a dictionary word (-.5). They share one programming languages (+.5), a license 
type (+.5), and one operating system (+.5). The textual description of the projects 
increases the score, since both use the strings 'Enhydra Octopus', 'extraction', 
'transformation', 'load*', 'ETL', and 'XML' (+.6). However, a closer read of the 
textual description field by a human being reveals that the Sourceforge project is 
actually a graphical editor for the ObjectWeb project. They are related projects, but 
not the same project. The combination of no ULR score and low scores for the 
textual matches has (accurately) kept this project from a high score. 

 
Pair 4 shows the attempted match between that same octopus project at 

ObjectWeb but now paired with the octopus project at Freshmeat. The projects have 
the same short name (+2 for similarity, -1 for dictionary), but different URLs, totally 
different textual descriptions, and share only the license type in common (GPL, +.5). 
Indeed, manual checking of this result shows that these two projects are not related. 

 
Pair 5 shows the Freshmeat project ant matching with the Free Software 

Foundation project ant as follows: short name (+2), url (+3). However, the display 
names for this project are different ('ant' on FSF and 'apache ant' on FM). In addition, 
the common dictionary name 'ant' lowers the score somewhat (-1). Note that while 
there is only one significant matching token in the textual description (the word 
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"Java", +.1), the entire first sentence of the two projects is identical. This indicates a 
strong need to refactor the scoring algorithm for textual descriptions. 

 
Pair 6 shows that SQLite-ruby project listed nearly identical information on both 

Sourceforge and Rubyforge. They share: the project home page (+3), short name 
(+2), the display name (+.5), one programming language (+.5), the operating system 
(+.5), and 4 significant text tokens (+.4), yielding a total score of 6.9. 

5 Limitations, Recommendations, and Future Work 

Based on the application shown in Section 4, entity matching is an interesting 
exercise, but is certainly problematic. One of the most obvious problems is the 
scoring modifiers given in Table 2; there is a distinct possibility that a pair of 
projects could achieve a score of 4.0 by having a partial non-dictionary name match 
(+.5), five attributes in common (+2.5), and a handful of well-chosen tokens in the 
textual description (+.5), and yet these projects could be completely unrelated. Yet, it 
is not enough to simply require a score higher than 5.0 for a match; according to the 
table, the ant project pair on Freshmeat and FSF also received a score of 4.1, and it is 
a legitimate match.  

 
This leads to a discussion of how to set scoring thresholds. Perhaps there could 

be a "yes" category for projects scoring above a certain value, a "no" category for 
projects scoring below a certain value, and a middle category for questionable 
scores. These questionable scores may take human intervention to resolve. It will be 
necessary to constantly tweak the scoring system and thresholds so that there are not 
too many false positives, false negatives, or values needing human intervention. 

 
There are also numerous ways to improve the definitions of token matches within 

textual descriptions. For instance, in the case of ant, there were very few singularly 
meaningful tokens in the textual descriptions, but the description as a whole matched 
perfectly. The use of dictionary word definitions for frequency matching may need to 
be refactored also. The ant match lost points because of this. Also, should non-
dictionary strings that are also common in software development ("lib", "db", "php") 
be added to the dictionary? Partial matches were also problematic. How should the 
word be broken: by leading strings, ending strings, or middle-of-word strings? Also, 
if a project name matches by 14 letters, should that get a higher score than a pair that 
only matches by three letters? Is it possible that those three letters could be highly 
significant? 

 
Next, what about multi-way matches? We have given little attention to the 

problem (as presented in [6]) of how to merge multiple confidence scores after 
they've been created. Consider a project such as sqlite-ruby that appears on 
Sourceforge, Rubyforge, Freshmeat, and the FSF directory. What is the appropriate 
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way to integrate its multiple scores? Sqlite-ruby is likely to have high scores on all 6 
pair combinations, so a simple average might work, but what about a project like ant 
whose scores may vary more? 

 
Section 3 mentioned the possibility of matching projects based on the lists of 

developers on each project. Before doing this, it would be necessary to use similar 
entity matching methods to actually match developer entities as well. As is so well-
described in [9], matching developers also leads to a few additional complexities: 
"real" emails are most often not available for public lists of developers on code 
repositories, name matching with developers could be even more complex than 
matching on names for projects because of similarities in names and spellings, and of 
course, developer privacy is always a concern when integrating disparate personal 
data. It is instructive that the authors in [9] do also rely on heuristics to make their 
matches, and that they limit their matches to a single group of actors in the GNOME 
project, albeit over numerous data sources within that project (mailing lists, CVS 
repositories, etc.) 

 
One final recommendation for future work is to remember some of the work 

being done on sites like Krugle6, Swik7, and the Galactic Project Registry8 to 
standardize the notion of a project name. Krugle is a source code search engine that 
actually uses some FLOSSmole data to populate its list of projects. Swik is a wiki of 
information about individual open source projects; it gets some of its initial 
information from FLOSSmole as well. The Galactic Project Registry is attempting to 
put together a plan for being "the One True Known Up-To-Date Source" for project 
names and DOAP (description of a project) information on each project. Each of 
these projects probably would benefit from this work in entity matching and 
duplicate identification across repositories, and perhaps they can contribute to the 
conversation about the best way to achieve this goal. 
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