
Di↵erent Bug Fixing Regimes?

A Preliminary Case for Superbugs

⇤

Jean-Michel Dalle1 and Matthijs den Besten2

1 Université Pierre et Marie Curie, Paris, France; jean-michel.dalle@upmc.fr
2 University of Oxford, Oxford, UK; matthijs.denbesten@oerc.ox.ac.uk

Abstract. The paper investigates the processes by which bugs are fixed
in open-source software projects. Focusing on Mozilla and combining
data from both its bug tracker (Bugzilla) and from its CVS, we suggest
that: a) Some bugs resist beyond the first patch applied to the main
branch of the source code in relation to them, which we denote as su-
perbugs; b) There might exist di↵erent bug fixing regimes; c) priority

and severity flags as defined in bug repositories are not optimized for
superbugs and might lead to a involuntary side e↵ects; d) The survival
time of superbugs is influenced by the nature of the discussions within
Bugzilla, by bug dependencies and by the provision of contextual ele-
ments.

There have always been claims according to which open-source software would
be structurally able to implement more e�cient development methodologies
along several dimensions, and notably vis-à-vis reliability. “Given many eyeballs,
all bugs are shallow” [4]. In other words, the visibility and accessibility of the
source code, in addition to extended peer review processes associated with the
existence of a community, would be key to a superior reliability.

However, it is probably honest to say that these claims have never received a
true empirical validation, although most data that relate to open-source devel-
opment is archived online and thus freely available to both open-source projects
and academia. Furthermore, a recent study by Coverity2, a Stanford spin-o↵
company whose technologies allow for the automatic analysis of source code
to identify some of its defects, has stressed that mission- and safety-critical
proprietary applications were able to reach reliability levels above the most re-
liable open-source projects. Beyond the straightforwardness of this finding, it
still contributes to upgrade the general view on the reliability levels that dif-
ferent open-source projects were able to reach, while quality and reliability are
becoming a major concern for open-source software.

Are there indeed general elements in the open-source development method-
ology that would allow for an intrinsic superiority of open-source in terms of
⇤ The work presented here has benefited from discussions with Patrick Brézillon, Paul

A. David, Laurent Daudet, Fabrice Galia, Hela Masmoudi and others. The support
of Calibre, an EU FP6 project, and of NSF project NOSTRA in the early phases
of this research are also gratefully acknowledged.

2 http://scan.coverity.com/

2 Jean-Michel Dalle and Matthijs den Besten

reliability and defect density? There is a strong case here for empirical studies,
in a more general context of inquiries about open-source software development
based on mining available online archives. Indeed, bug fixing processes in open-
source software have already received some attention [1, 2, 3, 5]. Following this
literature, we further suggest that more could be learnt by mining data from
both bug trackers and code repositories, i.e. the interactions between what hap-
pens in Bugzilla and what happens in the CVS. We suggest that there might
exists several di↵erent fixing regimes, and that, among the bugs that tend to
resists beyond the first attempts to fix them, there exist superbugs — as we
propose to denote them, in a direct analogy with antibiotic-resistant bacterias
— for the fixing of which the exchange of context elements between users and
developers might be key.

Data We focus here on Mozilla, not only as a prominent example of a success-
ful open-source software project that has already been the subject of various
empirical research investigations, but also because it is in the context of Mozilla
that the well-know bug repository Bugzilla originates. We combine Mozilla CVS
data with Bugzilla data. Namely, for each bug number in Bugzilla, we look for
this number in commits to the main branch of Mozilla’s CVS, using a heuristic
script that we have developed to this purpose. We then combine, for each bug
number, some of its characteristics inferred from Bugzilla with other character-
istics inferred from retrieved CVS data.

We limit ourselves to relatively old data to avoid censoring biases: i.e. we
suppose that a su�ciently long time has elapsed so that we can neglect bugs
that would not have been fixed yet. We also did some preliminary cleaning
up of the database, removing the first 1000 smaller bug numbers, so as to
avoid transitory initial conditions and to control the fact that smaller number
have a higher probability to be found in the CVS using our script while not
corresponding to bug numbers. As a result of preliminary univariate analysis,
we removed some outliers, and typically removed from our sample all bugs that
would correspond to either more than 1000 files fixed, that would depend from
more than 25 other bugs, and that would be associated with a bug report open
in Bugzilla for more than 1500 days before the first patch associated with the
corresponding bug number is committed to the CVS. Furthermore, we removed
from most of the analysis presented in this paper all bugs whose severity had
been set to “enhancement” as they would rather correspond to feature requests
properly speaking. Finally, we limited ourselves to all bugs whose resolution had
been set as fixed, compared to others resolution types. Ultimately, our database
includes approximately 17000 bugs.

Superbugs First of all, many bugs tend to “live” for a long time after the
code is first patched in relation to them. There are for instance 650 bugs in our
sample that were patched between 10 and 100 days after the first patch was
applied in relation to them to the main branch of the code base. Compared to
previous studies, these bugs are not simply associated with long discussions in
bug tracking system, but also with patches associated with them appearing for

A Preliminary Case for Superbugs 3

a long period of time in the code main branch. Although a considerable fraction
of the bugs are corrected on the first day in which the code of the main branch
is patched in reference to them, this “long tail” e↵ect is however important.
That is to say, some bugs seem to be resistant to the “treatments” that they
initially receive: in that sense, we suggest to call them superbugs, in an analogy
with other resistant life forms that are now developing in hospitals. Compared
to other unusual software bugs such as Heisenbugs, superbugs belong to a more
general category that might include some of these more peculiar ones.

Moreover, there seem to exist di↵erent fixing regimes: The hazard function
that fits to our data (details upon request) has a ‘bathtub’ shape. A shape well-
know in engineering and generally associated with the existence of 3 di↵erent
regimes: an initial phase, a flat middle one, and a last so-called ‘wear out’ one
— in our case below 10 days, between 10 and 100 days, and above 100 days.
Within the latter category, it might be that there would even exist another
regime above 1000 days. It is absolutely clear to us that this categorization
is very tentative, being based only on one open-source project, and we very
much hope that future investigations will refine it. However, as a first step to
progress in the exploration of bug fixing regimes, we suggest to denote bugs
fixed in 10 days or less after a first patch has been applied in the main branch
in relation to them simply as resistant bugs, while bugs fixed in more than 10
days could be characterized as superbugs. And since the latter category could
itself include di↵erent regimes, we will denote as hyberbugs bugs fixed in more
than 100 days and 1000 days or less, leaving bugs fixed above 1000 days for
future investigations.

Fixing Time: severity and priority flags What factors a↵ect the fixing time
of bugs in all three regimes? Obvious candidates are the two variables that are
set by bug reporters and developers, respectively, to characterize bugs, namely,
severity and priority. severity is set by bug reporters under explicit guidance
not to use the blocker and critical levels (severity = 6 and 5, respectively) out of
purpose, while the variable priority is set by developers. Our analysis of our data
(available upon request) shows that there is no distinguishable pattern, except
for severity = 1 (trivial) and 2 (trivial). trivial would seem to result globally in a
relatively lower survival probability while minor results in a relatively higher one.
These results are confirmed when plotting similar graphs for each of the resistant
bug, superbug, and hyperbug regimes: however, more precisely, the minor e↵ect
is more apparent for superbugs and hyperbugs, and the trivial e↵ect for resistant
bugs. One hypothesis here is that, due also a limited number of bugs associated
with severity 1 and 2 that tends to show that these two categories aren’t used
very often by developers, trivial bugs might be eliminated more rapidly precisely
because of their triviality i.e. easiness to correct , thus in the resistant bug
regime, whereas bugs flagged as minor would on the contrary could tend to be
neglected compared to others of higher severity, an e↵ect that would naturally
be more pronounced as times goes on, i.e. for superbugs and hyperbugs. If
so, it might be worth simplifying the number of severity categories in bugzilla

4 Jean-Michel Dalle and Matthijs den Besten

by typically avoiding minor and flagging bugs as trivial or normal or higher.
Furthermore, the only distinguishable pattern for priority is for priority = 5 (P5):
bugs flagged at a very low priority tend to be patched earlier. This surprising
finding is probably to be related to a di↵erent use of priority flags under di↵erent
regimes. There are no P5 bugs among hyperbugs. An explanation for this would
be that working on bugs of low priority is abandoned: not that these bugs are
necessarily fixed, but they do would not survive for lack of interest . The fact
that the priority variable is set by developers, compared to the severity variable
by bug reporters, would tend to support this explanation.

Fixing Time: survival analysis It is possible to fit predictive models of the
fixing time of bugs in all 3 regimes. The linearity of the survival function in
loglog vs. log scale suggest that using a Weibull distribution approximation is
reasonable as a first step, although the actual distribution is most probably of
a power-law or similar nature at least for resistant bugs and superbugs Table 1
synthesizes results of survival analysis regressions (detailed results available on
request).

First, both priority and severity appear e↵ective for resistant bugs, and less
so for superbugs and hyperbugs. Some of the priority levels influence survival
time counter-intuitively on the full sample, which we again interpret as resistant
bugs and superbugs with low priorities being abandoned. The highest two levels
of priority (and when priority is missing) tend to reduce the survival time of
superbugs compared to P5. With due cautiousness due to the improper fit of
the model, two levels of severity, minor and major, seem to have an influence in
increasing and decreasing, respectively, the survival time of hyperbugs compared
to blocker level. The minor e↵ect, already presented above, is indeed also present
on the full sample. The interpretation of the negative major e↵ect on hyperbugs
and of the negative critical e↵ect on the entire sample are less clear. More
interestingly perhaps, di↵erent levels of severity influence the survival time of
bugs di↵erently: normal has a less pronounced e↵ect than critical, major and
minor, compared again to blocker. Two di↵erent e↵ects might be at play here:
a minor e↵ect, again, associated with neglect, and maybe a di�culty e↵ect,
critical and major being just more di�cult to fix or implying more cautiousness,
discussions and care.

Second, both resistant bugs and superbugs are a↵ected by dependencies,
again counter-intuitively: bugs that block many other bugs appear to be fixed
less rapidly, while bugs that depend upon many others are fixed more rapidly.
We interpret the first part of this finding as a probable consequence of the
di�culty of fixing bugs that block many others: that is, the fact that a bug
blocks several others indirectly is an evidence of interdependencies that render
its fixing lengthier. The second part of this finding is less clear. It might be,
since bug report networks play an important role in bug fixing processes as has
been recently suggested [5], that bugs inserted in bug report networks would
tend to attract more attention from developers: and dependent bugs would be
fixed relatively rapidly once the bugs that blocked them would have been fixed,

A Preliminary Case for Superbugs 5

Table 1. Significance and impact of variables controlling for bug fixing regimes. The
source of the data is indicated with B for Bugzilla and C for CVS.

Parameter Bugs SuperBugs HyperBugs Full Sample (Parameter Description)

#Bugs 25965 650 290 16924
Intercept (�)*** (+)*** (+)*** (�)***
tpsStart

BC (�)** (+)*** (first commit � opening date)

nauth

C (+)*** (+)*** (+)*** (+)*** (maintainers mentioning bug)

nfile

C (�)*** (�)*** (files touched by bug-commits)

ncome

C (+)*** (+)*** (commit-comments per bug)

ncomi

C (+)*** (+)*** (commits per bug)

sadd

C (�)** (�)** (�)** (added lines of code per bug)

sdel

C (�)** (+)** (removed code per bug)

ccsz

B (�)*** (�)*** (# addresses in cc-list)

attac

B (�)** (attachments per bug)

patc

B (+)*** (attachments marked “patch”)

depen

B (�)*** (�)** (�)*** (bug dependencies)

bloc

B (+)*** (+)** (+)*** (bug blocks)

comm

B
(number of comments)

comau

B (+)* (+)*** (# commentators)

comli

B
(# lines of comments)

priority

B 0 (�)*** (�)* (+)***
priority

B 1 (�)*** (�)* (+)***
priority

B 2 (�)*** (�)** (+)**
priority

B 3 (�)*** (+)***
priority

B 4 (�)*** •

priority

B 5 • • n/a •

severity

B 1
severity

B 2 (+)*** (+)** (+)*
severity

B 3 (+)**
severity

B 4 (+)*** (�)*
severity

B 5 (+)*** (�)**
severity

B 6 • • • •

at least compared to all bugs that do not depend upon any other and specially
bugs that are not part of a bug network.

Third, the number of developers (nauth) contributing to the code is pos-
itively related to survival time. Resistant bugs to which more numerous and
di↵erent commits are related (ncome, ncomi) also tend to be fixed less rapidly,
and similar e↵ects hold for resistant bugs when more numerous people partic-
ipated in the bugzilla discussion (comau). On the contrary, tpsStart, i.e. the
length of the discussions and experimentations before a first patch is applied
to the main branch, reduces the survival time of resistant bugs. Similarly, ccsz

(number of developers who were copied when updates were made to the bugzilla
system) also reduces the survival time of resistant bugs. Both of these e↵ects
disappear for superbugs. On the full sample, ccsz is also significant, and still

6 Jean-Michel Dalle and Matthijs den Besten

negative, while tpsStart is significant, but positive. Evidence is therefore mixed
here about the e↵ect of “eyeballs” on fixing time. The number of active partic-
ipants in the discussion tends to slow down fixing, but this might just reflect
how complex to fix a bug is. Conversely, longer discussions (tpsStart) and the
number of observers (ccsz) would tend to allow for a solution to be found more
rapidly at least for resistant bugs.

Fourth, the fixing of superbugs is not a↵ected by most of the variables
that influence fixing resistant bugs. On the contrary, they are sensible to the
number of lines deleted — maybe as a consequence of simply removing the part
of the code that created a superbug? — and also to the number of attachments
and to the number of patches sent in the Bugzilla discussion: the higher the
number of patches sent, the longer it takes to fix a superbug; conversely, the
higher the number of attachments, the lower the survival time of a superbug.
A straightforward interpretation for the former finding is that the number of
patches might be a consequence of how di�cult it is to fix a given superbug.
About the puzzling latter finding, it should be noted that attachments are often
screen captures and other contextual elements: a superbug would then tend to
be fixed more rapidly as soon more elements of context would be contributed to
the discussion. This would be for instance in line with the fact that intermittent
failures generally tend to be di�cult engineering problems, whose intermittence
is often due to missing contextual elements. An open question here is whether
the provision of contextual elements earlier during the bugzilla discussion would
have prevented the transformation of normal bugs into superbugs.

Conclusion We believe that understanding how superbugs could be fixed more
rapidly could be of special relevance vis-à-vis the reliability of open-source soft-
ware. priority and severity variables as currently defined in bug repositories do
not appear optimized yet in this respect. We suggest that analyzing the for-
mation of bug report networks, clarifying the nature of the discussion in bug
repositories between participants assuming di↵erent roles, and understanding
how contextual elements are brought into bug repository discussions are also
interesting research avenues.

References

1. K. Crowston, J. Howison, and H. Annabi. Information systems success in free and
open source software development. Software Process, In Press.

2. K. Crowston and B. Scozzi. Coordination practices for bug fixing within FLOSS
development teams. In Proc. CSAC, 2004.

3. A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source
software development. ACM Trans. Softw. Eng. Methodol., 11:309–346, 2002.

4. E. S. Raymond. The cathedral and the bazaar. First Monday, 3, 1998.
5. R. J. Sandusky, L. Gasser, and G. Ripoche. Bug report networks. In Proc. ICSE

Workshop Mining Software Repositories, 2004.

