

PMLite: An Open Source Solution for
Process Monitoring

Alberto Colombo, Ernesto Damiani, and Fulvio Frati
Department of Information Technology - University of Milan

via Bramante 65, 26013 Crema (CR) – Italy
{colombo, damiani, frati}@dti.unimi.it

Abstract. Process Monitoring represents a big challenge for organizations that
aim to manage software projects adopting different development paradigms. In
fact, across-process enterprise-level measurement campaigns can be difficult
to enact since process attributes to retrieve are semantically diverse and may
be difficult to integrate. In this paper, we present PMLite (Process Monitoring
Lite) an open source solution to this problem. PMLite is based on an open me-
tamodel and paves the way to the definition of ad-hoc open monitoring
frameworks.

Keywords open source, process monitoring, PMLite, open metamodel

1. Introduction

 Adopting multiple development processes is becoming common in an increasing
number of organizations and communities. Different commercial agreements, or dif-
ferent development scenarios, lead to the adoption of a paradigm rather than a differ-
ent one; as for instance, a development community could use an agile process to de-
velop an open source Enterprise Resource Planning application, where a commercial
software house working for a government agency would most probably follow struc-
tured Uniform Process (UP) or a waterfall-like process, often formalized in the sup-
ply agreement itself.
 Such a situation suggests a new vision about software process monitoring: man-
agers need to have a global view of performance, although development activity may
be based on different processes that, at a first sight, are incomparable and whose per-
formance data are hard to integrate.

 Many research works have attempted a formalization of the notion of software
development process and of the associated measurement framework. Piattini et al.
[7] describes the advantages of using MOF and XMI to represent development proc-
esses, giving an overview of MOF and XMI languages and an example of repository
for software development process, while Ventura Martins et al. [5] presents the Pro-
jectIT Initiative, that provides a complete software development workbench and
shows an example of development process metamodel. All the approaches above are
related to the SPEM (Software Process Engineering Metamodel) specification [4]

58 Alberto Colombo, Ernesto Damiani, and Fulvio Frati

proposed by Object Management Group (OMG), that describes a concrete software
development process or a family of related software development processes.

 Other existing standard frameworks, such as UML and CWM (Common Ware-
house Model) have been used to generate metadata describing complex systems, and
can be used for development process representation as well.

 Starting from these standards and research works, our group has formalized and
tested a metamodel [2] for measuring and assessing generic development process
models (see Section 2). In this paper, we highlight the progress of our researches
presenting the open source application PMLite (Process Monitoring Lite) [6], avail-
able on SourceForge, that fully embraces our methodology. The tool has been devel-
oped as a proof-of-concept of our approach, and could be adopted in small medium
enterprises that need a lightweight across-process monitoring tool.

 The paper is organized as follows. Section 2 provides an overview of the meta-
model that defines the structure of the tool, whereas Section 3 describes in details
PMLite implementation. Finally, Section 4 shows future extensions of our work and
Section 5 draws our conclusions.

2. Defining a Metamodel for Process Monitoring

 The first step to define a common environment, for measuring different devel-
opment process, is to produce a general schema, a metamodel, that will describe the
underlying structure of processes and the relative measuring framework. We start
from the work of Piattini et al. in [7], that uses MOF and XMI to represent software
processes. In particular, MOF (Meta-Object Facility) [3] is a standard supported by
OMG [5] that defines a generic pattern for the construction of systems based on
metadata. MOF can be described by its four levels structure: starting from the top
there is i) the definition of all the concepts and attributes of the language itself, used
to build a ii) metamodel, that defines the structure and semantic of the metadata re-
lated to a generic environment; then, this metamodel is used to create iii) models,
that depict specific objects and describe the structure for iv) the user data.

PMLite: An Open Source Solution for Process Monitoring 59

Fig. 2.1 Our modular meta-model. The yellow, green, and red colors correspond to Process,

Measurement, and Trigger modules.

Following the MOF approach, we define the development process and the meas-
urement framework metamodels that are used as basis to model specific development
processes and measurement frameworks, and a simple trigger layer to connect the
two metamodels. The whole metamodel is presented in Fig. 2.1 where the colors
define the individual models.

 A complete description of any elements of the metamodel could be found in
[2]; for the sake of conciseness, in this paper we limit the description only to the
elements that would be directly involved in PMLite development.

Metamodel description.

 The three colors in Fig. 2.1 define the three parts of our modular metamodel. It
is important to note how the process module is independent from the measurement
one, thanks to decoupling via the trigger layer. Such decoupling allows to apply the
same measurement framework to projects implementing different development proc-
esses, and, consequently, to elaborate across-process assessment.

60 Alberto Colombo, Ernesto Damiani, and Fulvio Frati

 The yellow blocks identify the development process module. The first node is
the element Organization, that describe the overall organization and allows enter-
prise-level measurement campaigns. Each organization manages a set of Project
classes, each one realized by its own set of Phases, that are characteristic of a par-
ticular development paradigm. Each phase has its own set of Activity nodes, that ef-
fectively describes the task put in action during whole process. Furthermore, each
phase could be linked to another phase to describe iterative models.

 The green module describes the structure of the measurement framework. The
framework is based on the Goal-Question-Metric (GQM) approach [1], which drives
the creation of a measurement system starting first, from the identification of the
goals of the measures, then of the questions that will evaluate them through a set of
specific metrics. The first element, Information Need, is the container node of the
module and describes the information need over which the measurement is based and
it is used as conceptual link for the two modules. Then, following the GQM ap-
proach, the entity Measurable Concept defines the areas, i.e. goals, over which the
analysis is based. The Measurable Attributes node defines the attributes to measure
in order to accomplish analysis goals. Further, this element provides the way how
these attributes could be gathered; indeed, there is a strict relation between Work
Product and Measurable Attribute classes, since the latter are attributes that could be
extracted from the former. The Measure class describes the value of the measured
attributes and it is strictly related to KPI (Key Performance Indicator) and Metric
nodes, that define an elaboration of the measure instances in order to provide indica-
tors that, respectively, lower the cardinality of the measures and qualitatively evalu-
ate the results.

 Finally, the red module isolates the trigger representation, which simply defines
the Trigger entities, i.e. a plug-in, that physically extracts the attributes values from
the work products, storing data in the Triggered Value class. As said above, triggers
allow modules to be independent one from each other, since they know which attrib-
utes to extract and in which work product they have to be physically extracted and in
which way.

Instance example: the Scrum agile process.

 Our open metamodel has been designed as general as possible, in order to be
able to model processes that embrace different paradigms. To demonstrate such
property, in Fig. 2.2 we present an instance of the metamodel describing the agile
process Scrum [2,8].

 We choose an agile development process to show the flexibility of our approach;
in fact, agile processes, and in particular Scrum, are intrinsically unpredictable, al-
though a control mechanism is used to guarantee flexibility, responsiveness, and reli-
ability of the results. These characteristics could make difficult the implementation
of such a rigorous measurement framework. Thanks to the independence between
process and measurement module, our metamodel could seamlessly superimposes a
measurement framework to agile-based projects.

PMLite: An Open Source Solution for Process Monitoring 61

Fig. 2.2 Model of the agile development process Scrum.

3. PMLite: Process Monitoring Lite

The requirements that have driven the development of PMLite are essentially
three.

62 Alberto Colombo, Ernesto Damiani, and Fulvio Frati

First of all, we wanted to develop a web-based application that fully adopts and
verifies our open metamodel representation, allowing managers to model any type of
process and organize measurement campaigns to gather all needed attributes.

Secondly, we wanted PMLite to be essentially an easy-to-use tool, with a gentle
learning curve, that could be adopted also in small software houses and open source
development groups, without any particular installation effort. For this reason, we
choose to propose a data collecting technique based on surveys instead of automatic
probes, lowering installation problems and development effort. Furthermore, the
huge number of applications used during software development and during support
activities makes difficult to implement automatic probes that will extract measurable
attribute from a suitable set of applications work products.

Finally, PMLite is a first step toward developing a complete process monitoring
platform, which could exploit our metamodel approach for generic monitoring ge-
neric business processes.

Fig. 2.1 Conceptual structure of PMLite.

3.1. PMLite Description

The conceptual structure of PMLite is depicted in Fig. 2.1. Both web pages and
data storage have been designed basing on the metamodel structure and classes, and
the supplied activities start from defining, for any project, activities and phases of the
relative development process, the measurable attributes to be retrieved, and the ques-
tions that compose the surveys.

PMLite: An Open Source Solution for Process Monitoring 63

Fig. 3.2 PMLite homepage.

64 Alberto Colombo, Ernesto Damiani, and Fulvio Frati

Fig. 3.3 Interface for the insertion of a new activity.

To better describe the structure of the tool, we concentrate on three key actions:
i) definition of the process, ii) definition of the survey, and iii) execution of the sur-
vey.

Definition of the process.

The homepage of PMLite (Fig. 3.2) allows the access to specific functions of the
application.

The first step is the definition of the specific development processes in terms of
phases, activities (see Fig. 3.3), and relationships between phases and related activi-
ties. Further, the tool allows to define the transitions between the activities them
selves. In this way, the process is well defined and projects can be linked to the spe-
cific process.

Then, managers have to define the attributes over which the analysis will be
based. The tool makes simple the insertion of measurable attributes (see Fig. 3.4) but
the procedure of specification of them is critical, since they will be the basis for the

PMLite: An Open Source Solution for Process Monitoring 65

definition of questions, of surveys, and, consequently, of the whole measurement
framework. At the time being, an attribute is only characterized by its name and de-
scription.

Definition of the survey.

In its full implementation, the metamodel requires attributes to be retrieved by
automatic extractors (i.e. instances of trigger classes). However, for the reasons ex-
plained above, PMLite simulates the automatic triggers via specific question sets;
users interact with PMLite by answering to the questions associated to the current
activity.

PMLite gives specific interfaces to fulfil these actions. In particular, the interface
in Fig. 3.5 presents a complete set of questions. Each question is characterized by a
text and three possible types of answers (clear text, single choice, and multiple
choices). Each question is then gathered in a specific Question Set, which, in turn, is
associated to a specific process phase or activity. This allows the system presenting
to developers the questions sets concerning the specific development action they are
performing.

66 Alberto Colombo, Ernesto Damiani, and Fulvio Frati

Fig. 3.4 Interface for the insertion of a new attribute.

PMLite: An Open Source Solution for Process Monitoring 67

Fig. 3.5 Interface for the management of questions.

Execution of the survey.

As said above, each questions set is relative to a specific phase or activity of a
process, therefore it is important that the tool will presents to users the questions that
are specific of the activity or the phase they are working on. In the interface in Fig.
3.6 first, developers choose the current activity or phase, then, PMLite presents to
them the relative series of questions.

The approach followed in developing PMLite, at a first sight, could seem too in-
trusive, since developers have to manually interact with the survey interface any time
they start a new activity or a new process. However, this allows adopting PMLite
even in lightweight development environments where no configuration management
or event tracking is available.

Fig. 3.6 Interface for the execution of the surveys.

4. Future Works

PMLite is only the first step in the development of a complete and automatic
process monitoring environment, which will be fully transparent and non-intrusive
for the developers, but allows us to test and proof our approach.

68 Alberto Colombo, Ernesto Damiani, and Fulvio Frati

Our metamodel has been fully exploited for the designing of the structure of a
more complete monitoring open source tool, Spago4Q [9].

We plan to exploit PMLite also for the definition and as proof-of-concept of spe-
cialized GQM, as for instance for the quality assessment of Open Source products
and for the complexity evaluation of business process.

5. Conclusions

In this paper we presented our new open source tool, PMLite, which implements
our study [2] of a metamodel to completely formalize an enterprise-level process
monitoring framework. PMLite is directed to these organizations that manage pro-
jects adopting different development processes and want to have a snapshot of the
global status of the current works. The methodology proposed, although could seems
intrusive for developers, has the unique strength of being adaptable not only for de-
velopment process monitoring, but also for generic process representations.

Acknowledgments

This work was supported in part by the European Union within the SecureSCM project in the FP7-
ICT Programme under contract n. AO213531, and by contract/grant sponsor FIRB research fund of
MIUR, research project TEKNE (contract/grant n.RBNE05FKZ2).

References

[1] Basili VR (1992) Software modeling and measurement: The goal question metric paradigm.
In MD University of Maryland, College Park, editor, Computer Science Technical Report Se-
ries, CS-TR-2956 (UMIACSTR-92-96)

[2] Bellettini C, Colombo A, Damiani E, Frati F (2007) A metamodel for modeling and measur-
ing scrum development process. In Springer Berlin, editor, Agile Processes in Software En-
gineering and Extreme Programming - Lecture Notes in Computer Science, 4536:74-83

[3] OMG Group (2008) Mof - metaobject facility. www.omg.org/mof/. Accessed January 2008.
[4] OMG Group (2008) Spem software process engineering metamodel.

 www. omg.org/technology/documents/formal/spem.htm. Accessed January 2008
[5] Ventura Martins P, Rodrigues da Silva A (2005) Pit-p2m: Projectit process and project

metamodel. In Proc. of OTM Workshops, Cyprus, 516-525
[6] PMLite (2007) Process monitoring lite. sourceforge.net/projects/ pm-lite/. Accessed January

2008.
[7] F. Ruìz, A. Vizcaìno, F. Garcìa, and M. Piattini (2003) Using xmi and mof for representation

and interchange of software processes. In Proc. of 14th International Workshop on Database
and Expert Systems Applications (DEXA'03), Prague, Czech Republic

[8] K. Schwaber (1995) Scrum development process. In Proc. of OOPSLA'95 Workshop on
Business Object Design and Implementation, Austin, TX, US

[9] Spago Solutions (2007) Spago4q. www.spago.org/. Accessed January 2008

