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Abstract. Because of the sheer volume of information available in
FLOSS repositories, simple analysis have to face the problems of fil-
tering the relevant information. Hence, it is essential to apply method-
ologies that highlight that information for a given aspect of the project.
In this paper, some techniques from the social sciences have been used
on data from version control systems to extract information about the
development process of FLOSS projects with the aim of highlighting sev-
eral processes that occur in FLOSS projects and that are difficult to ob-
tain by other means. In particular, the collaboration between the FLOSS
community and a company has been studied by selecting two projects
as case studies. The results highlight aspects such as efficiency in the
development process, release management and leadership turnover.

1 Introduction

Software projects are usually the collective work of many developers. In most
cases, and especially in the case of large projects, those developers are formally
organised in a well defined (usually hierarchical) structure, with clear guidelines
about how to interact with each other, and the procedures and channels to use.
Each team of developers is assigned to certain modules of the system, and only
in rare cases they work outside their territory. However, this is usually not
the case in FLOSS projects, where only loose (if any) formal structures can be
recognised. On the contrary, FLOSS developers usually have access to any part
of the software, and even in the case of large projects they can move more or
less freely from one module to another with only some restrictions imposed by
the common uses in the project, and the rules on which developers themselves
have agreed. A large mount of spontaneous interaction structures arise, evolve
and disappear without the intervention of a central control, yielding complex
networks.

Among complex networks, social network analysis (SNA) appear as a
method for analysing the structure and interactions of people and groups of
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people within extensive organisations. A vast amount of scientific works show
applications of these techniques in fields that go from the social sciences to
physics and computer networks [20, 10].

The goal of this paper is to apply classical social network concepts to data
extracted from FLOSS projects, in particular to FLOSS projects that show a
tight collaboration between a company and the FLOSS community. As, even in
the presence of a company, FLOSS projects have a loose management style and
are based heavily on third-party contributions, social network analyses may
provide with some insight into the underlying processes that are responsible
for the development. In this way, we have an ad-hoc network of interpersonal
dependencies that come from the interactions between the nodes that integrate
it. Therefore, this work is mainly descriptive and has the purpose of showing
how the application of techniques of social networks can be useful in scopes
beyond the original ones.

The rest of this paper is organised as follows. The next section describes
related research on this topic. Next, the methodology designed to extract data
from source code management systems and a series of technical aspects on which
we have based our study is presented. Afterwards, a brief historical review of
the main events within the projects will be given and then the results are shown
and discussed. A final section with some conclusions and hints about further
research closes the paper.

2 Related Research

Much attention in the area of research on FLOSS projects has been focused
on the organisational structure of the projects [9, 17, 15], but little attention
to the dynamics of the group of developers. A noteworthy contribution in this
sense, although not directly addressing the evolution of developer communities,
is the onion model [5], which shows how developers and users are positioned
in communities. This model differentiates among core developers (those who
have a high involvement in the project), codevelopers (with specific but fre-
quent contributions), active users (contributing only occasionally) and passive
users [18, 7, 13].

The onion model provides only a static picture of a project, lacking the
time dimension that is required for studying processes, among these the ones of
joining and leaving a project. A more theoretical identification and description
of the roles, including also some dynamics [26], has helped to fill the gap. Ac-
cording to this refinement, a core developer is supposed to go through all the
outlying roles, starting as a user, until she eventually reaches the core team.
Some research has tried to measure how long this process takes for a volun-
teer participant (i.e. somebody who is not hired by a company to work on
the project), obtaining that the time that passes from the first e-mails to the
mailing lists (considered as the first participation) to the first commit (con-
sidered as the developer becoming part of the core group) is in the mean of
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around 30 months [11]. An alternative approach has been proposed [12] after
studying and modelling the processes of role migration for some FLOSS com-
munities, focusing on end-users who become developers. This has lead to the
identification of various paths for the joining process, concluding that the or-
ganisational structure of the studied projects is highly dynamic in comparison
to traditional software development organisations. The attraction of human re-
sources to FLOSS projects has also been analysed [6, 24], with different models
proposed about how developers enter new projects.

With respect to abandonment, the number of Debian developers leaving the
project has been studied [22], and how this affects its evolution (i.e. what hap-
pens to software packages that become unmaintained because of the abandon-
ment). The authors propose a half-life parameter, defined as the time required
for a certain group of contributors to fall to half of its initial population, which
is of 7.5 years for the Debian project.

3 Methodology

3.1 Construction of the developers network

The methodology used in this study is based on retrieving data about the
activity of developers from the source code management repository of the
project [19, 27]. In the case of FLOSS projects, this usually means either a
CVS or a Subversion repository, which is mined using CVSAnalY [23]. This
tool retrieves the information about every commit to the repository, and in-
serts it into a database where it can be conveniently analysed. This information
includes, for each commit (modification in a file in the repository): the date,
the username of the developer (commiter), and the number of lines involved.

Once the information has been stored in the database, we proceed to con-
struct the developer network. Each vertex represents a particular developer and
two vertices will be linked by an edge when both they have contributed, at least,
one common software artifact1. Edges may be weighted by means of a weight of

the relationship, defined for instance, as the total number of commits performed
by both developers on artifacts to which both have contributed. Therefore, a
relation between two developers (vertices) exist when both have worked in the
same artifact, and a link will exist between them (edge) whether both have
made, at least, a commit in the same artifact.

3.2 Indexes

When the networks are constructed based on the previous definitions, and the
degrees and costs of relationship have been calculated for linked nodes, we

1 We will consider in this paper software artifacts at the file level, although others
could be chosen, such as directories.
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can apply standard SNA concepts to define a wide range of parameters of the
network that can help characterising the network and its nodes [21]. Beyond
classical parameters, others more sophisticated can be used to extract more
specific information. This paper makes use of these parameters, calculated by
means of Conan [14], which are introduced next:

– Distance centrality [25]: The distance centrality of a vertex, Dc, is a mea-
surement of its proximity to the rest. It is sometimes called closeness cen-

trality as the higher its value the closer that vertex is (on average) to the
others. The distance centrality can be interpreted as a measurement of the
influence of a vertex in a graph because the higher its value, the easier for
that vertex to spread information through that network. Observe that when
a given vertex is far from the others, it has a low degree of relationship (i.e.
a high cost of relationship) with the rest.
Research has shown that employees who are central in networks learn faster,
perform better and are more committed to the organisation. These employees
are also less likely to turn over. Besides, from the point of view of information
propagation, vertices with high centrality are like hills on the plain, in the
sense that any knowledge is put on them is rapidly seen by the rest and
spreads easily to the rest of the organisation.

– Betweenness centrality [8, 2]: The betweenness centrality of a vertex, Bc,
is a measurement of the number of shortest paths traversing that particular
vertex.
The betweenness centrality of a vertex can be interpreted as a measurement
of the information control that it can perform on a graph, in the sense that
vertices with a high value are intermediate nodes for the communication of the
rest. In our context, given that we have weighted networks, multiple shortest
paths between any pair of vertices are highly improbable. The betweenness
centrality is just a measurement of the number of shortest paths traversing a
given vertex.
In the SNA literature vertices with high betweenness centrality are known
to cover structural holes. That is, those vertices glue together parts of the
organisation that would be otherwise far away from each other. They receive
a diverse combination of information available to no one else in the network
and have therefore a higher probability of being involved in the knowledge
generation processes.

– Coordination degree [1, 16]: The coordination degree of a vertex, measures
the ability of this vertex in a graph to interchange information. The coordi-
nation degree of a vertex, has a great importance inside our study, since it
shows the ability of a certain node to receive information of the network and
capture the activity in a project precisely.
There are several manners to model this magnitude, but one of the easiest
ways is to consider the coordination degree to be exponentially related to the
distance between the vertices [16]. In this way, we define the coordination
degree γij between two vertices i and j as γij = e−ξdij , where dij is the
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distance between the two vertices and ξ is a real positive constant, measuring
the strength of the relationship which we call the coordination strength.
Thus, we can define the total coordination degree of a vertex i in a graph as
the sum of all the coordination degrees between that particular vertex and
the rest. Namely, Γi =

∑N

j=1
γij , where N is the order of the graph (the total

number of vertices in that particular graph). The total coordination degree
of a vertex is a measure of the amount of information that the vertex is able
to receive belonging to that particular network.

– Centrality Eigenvector [4, 3]: Eigenvector centrality is a measure of the
importance of a node in a network. It assigns relative scores to all nodes in
the network based on the principle that connections to high-scoring nodes
contribute more to the score of the node in question than equal connections
to low-scoring nodes.
Eigenvector centrality is defined as the principal eigenvector of the adja-
cency matrix defining the network. The defining equation of an eigenvector is
λv = Av where A is the adjacency matrix of the graph, lambda is a constant
(the eigenvalue) and V is the eigenvector. The equation lends itself to the
interpretation that a node that has a high eigenvector score is one that is
adjacent to nodes that are themselves high scorers.
The idea is that even if a node influences just one other node, who sub-
sequently influences many other nodes, then the first node in that chain is
highly influential. Hence, the eigenvector centrality may give good advice
about leadership in the project under study.

4 Case studies: Evolution and Mono

We have selected two FLOSS projects in order to apply the social network anal-
ysis techniques on them and to show what kind of information we can extract
with such a type of analysis. In both projects, there is a high involvement of a
company (Ximian) that has assigned several employees to the development of
the project and there is a surrounding FLOSS community whose contributions
are always welcome.

4.1 Evolution

Evolution is the official personal information manager and work group informa-
tion management tool for GNOME. It combines e-mail, calendar, address book,
and task list management functions.

The origin of the project goes back to 1998, when it was started by some
GNOME volunteers. But it is not until a company called Helix Code identified
it as a strategic project that it did not win in importance. In October 1999,
Helix Code became Ximian Inc. due to trademark problems. Evolution, then,
was mainly developed by Ximian employees although in strong collaboration
with the GNOME community for several years. Finally, Ximian was acquired
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by Novell in September 2004 and the maintenance of the then-mature Evolution
tool was “outsourced” to Novell employees in India. Since then, contributions
by the GNOME community are much lower, also in part because of the mature
state of the tool.

There are other noteworthy events in the history of Evolution summarised
in table 1.

Event Date

First commits early 1998
Ximian takeover October 1999
Version 0.0 July 2000
Version 1.0 February 2001
Takeover by Novell October 2003
Death of main developer January 2004
Version 2.0 October 2004
Version 2.2 April 2005
Version 2.4 October 2005
Version 2.6 April 2006
Version 2.8 October 2006

Table 1. Most important events in the history of Evolution.

4.2 Mono

Mono is a project led by Novell (formerly by Ximian) to create an ECMA
standard compliant .NET compatible set of tools, including among others a
C# compiler and a Common Language Runtime. Mono can be run on Linux,
FreeBSD, UNIX, Mac OS X, Solaris and Windows operating systems.

The dates of some of the most important events for Mono appear sum-
marised in table 2.

5 Results

We have applied the SNA indexes to the two projects; results will be shown
in this section. The samples have been taken from the first activity in each
versioning system of the projects up to January 2007. Time slots of three months
have been taken and two developers who have made at least one commit to any
file within the same directory will be linked. This link will be weighted by the
number of commits that both have in that time slot in the given directory. The
interpretation of the following figures (each figure corresponds to a different
measurement) is the following one: the horizontal axis is time, whereas the
vertical z axis represents the result for a given measure. Therefore, each line in
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Event Date

First commits mid-2001
First version of Gtk# checked into CVS September 2001
Version 0.7 September 2001
Version 0.9 February 2002
GTK+ 2.2 December 2002
.NET Framework 1.1 April 2003
Version 1.0 June 2004
GNOME 2.10 March 2005
GTK+ 2.8 August 2005
.NET Framework 2.0 November 2005
Version 1.2 November 2006

Table 2. Most important events in the history of Mono.

the figure corresponds to the evolution over time of the values of a developer.
We had to filter out less active developers as graphs that include all of them
are hard to read. Hence, only the top 40 developers will be displayed.

5.1 Analysis of Evolution

If we analyse figure 1(a) representing the coordination degree, four phases can
be clearly identified. An initial stage, until the takeover by Ximian, with a
weak activity typical of a project in its early days. A second stage, until the
1.0 release, where the work shows the highest gain in the history of the project,
typical of the effort for developing a first stable version. Since then and until
the takeover by Novell, a significant stagnation is originated due to a mainte-
nance and debugging period. Finally, and because of the fact that a periodic
release policy is introduced, peaks of work of two different dimensions can be
observed alternating in time. The highest peaks correspond to new releases,
with a high number of commits corresponding to new developments, transla-
tions and documentation. Meanwhile, the lows are due to stages of development
and maintenance in which the kind of activity is different, being reflected in a
smaller number of commits. It is therefore significant that time-based release
management (i.e. a new version will be released every 6 months) seems to boost
the development in general terms in comparison to feature-based release man-
agement (a new version will be made public when all features to be included
are finished).

In addition to the own activity of a project, the average coordination degree

of a network provides a measurement of the efficiency if we compare it with
other values, such as the number of commits or the number of active developers.
Figure 1(b) provides this comparison.

If we pay attention to the curves of the average coordination degree (cd
mean) and the number of active developers (nodes), we can notice different
moments at which one is over the other. The interpretation of these relative
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positions is the following: when the average coordination degree of the network is
over the number of developers, the network structure is efficient. However, when
the curve of the number of developers is over the average coordination degree,
the social structure of the network is not efficient. In this way we can observe two
stages with low efficiency in the network, one of them from the beginning of the
project until the takeover by Ximian, the other one from the time when periodic
releases where introduced (2004) until today. In between, since the takeover by
Ximian in 1999 and up to the release of version 2.0 (in 2004), the network
has an efficient structure. This evidences that a corporate involvement in the
development of a FLOSS project may result in a more efficient development,
but that both the involved company and the community have to find ways
to allow the other party to participate properly. The first phase, where there
was no involvement of the company, or the last one, where it seems that the
company has chosen to move away from community have lead to an inefficient
structure.

Figure 2(a) gives the evolution over time of the betweenness centrality for
each developer. This figure is useful to identify who is the leader of the project
at any given time, but also allows to predict who could be the following leader.
If we attend the leadership curve in a particular moment, we can look for the
curve just underneath. Usually, as the leader succession takes place gradually,
we could figure out who is going to be the next leader of the project if the
current one reduces his activity substantially.

Figure 2(b) is a bar chart with the main leaders of the project for every time
period. The measure that has been used is the weighted betweenness (the same
as in Figure 2(a)). For the computation of this measure, we have to count the
shortest paths that cross a vertex, so this measure is dependant on the number
of developers in the network. For this reason, although the maximum values
evolve at the same pace as the number of developers grows, it is an efficient
measurement. From these results, three different stages can be observed. The
two first stages in which ”unammx” and ”ettore” lead the project during several
years, and one third stage since mid-2003 in which different leaders succeed
themselves in short periods of time (all of them less than one year).

As noted before, the eigenvalue can be interpreted like a numerical assign-
ment of the relevance of a node in the network. According to this interpretation,
the higher the value of a given node, the higher its relevance. In figure 3(a) we
can observe the evolution over time of this measure for each developer. At ev-
ery moment, we can identify the main leader(s) of the project. If we compare
the outline of the curve with the coordination degree or with the values of be-

tweenness, it is possible to notice that the values of this measure do not depend
on the number of developers, and therefore, the activity of the project is not
reflected in the outline of the curves.

If we attend to the figure 3(b), we can find again the main leaders in every
time slot, this time using the eigenvalue. If we compare these results with the
ones obtained for the betweenness, we will see high similarities as expected.
However, we must emphasise the differences in some time slots in which the
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(a) Evolution of the Coordination Degree for Evolution

(b) Coordination Degree comparative for Evolution

Fig. 1. Coordination Degree values and a comparative for top 40 commiters in Evo-
lution.

identified leader differs. This is because the betweenness focuses on the con-
trol of the information flows whereas the eigenvalue provides a node valuation
from the point of view of centrality. Thus, the periods where leaders remain
the main contributors to a project are smaller for the second value, because a
greater effort has to be carried out to keep this privileged position. In the same
way, the number of different persons who achieve the leadership is higher using
eigenvalues. So, we can see that gaining control over information flows in the
project is an easier task than obtaining a high influence on the network.

5.2 Analysis of Mono

The activity of Mono is marked clearly by five events that can be appreciated
in Figure 4(a). The first one is the Mono 0.7 release (first unstable version)
that additionally happens at the same time as the initial check-in of the GTK#
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(a) Evolution of the Weighted Betweenness for Evolution

(b) Weighted Betweenness comparative for Evolution

Fig. 2. Weighted Betweenness values and a comparative for top 40 commiters in
Evolution.

module in the repository. Then a progressive increase of the activity took place,
reaching its highest peak in the middle of 2003. An external fact caused an
extraordinary activity: the .NET1.1 release, which Mono had to react to be able
to support this specification in its next version. This adaptation was completed
in Mono 1.0 in 2004. In 2005 another noteworthy moment took place, when
the Mono team started to adapt the .NET 2.0 specifications.

The development of Mono does not have a continuous growth, but it shows
momentary efforts to achieve the .NET functionality. This kind of development
is reflected in its social structure as it is not efficient most of the time. As it can
be observed from Figure 4(b) while the number of developers grows smoothly,
their activity has several peaks. In any case, compared to the previous case
study, we can conclude that in this case Ximian has not achieved such a high
community involvement in Mono as in Evolution.
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(a) Evolution of the Eigenvalue for Evolution

(b) Eigenvalue comparative for Evolution

Fig. 3. Eigenvalue values and a comparative for top 40 commiters in Evolution.

The Mono project is composed currently of over 80 developers. As it can be
seen from Figure 5(a), and a large difference between the values of the main
leader and the ones for the rest of developers exist. The yellow line belongs
to Miguel de Icaza, the founder of the project, while the red one to Gonzalo
Paniagua, a Novell-hired developer, and the green lines correspond to Raja R.
Harinath and Ben Maurer, also Novell employees. Miguel de Icaza is clearly the
main leader in Mono as he has the maximum value in 16 quarters, in the early
stages and also recently. Gonzalo Paniagua had a more prominent role in the
first half of the project as well as in the last phases.

If we use eigenvalues (see Figure 6(a)), the difference between the project
leaders and the rest of developers are not that high as found using betweenness.
In any case, if we compare Figure 6(b) with figure 5(b) the main leaders con-
tinue being the same. Even though, eigenvalue helps us obtaining additional
information on the development community as it allows to rank developers by
their activity and their position in the network.
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(a) Evolution of the Coordination Degree for Mono

(b) Coordination Degree comparative for Mono

Fig. 4. Coordination Degree values and a comparative for top 40 commiters in Mono.

6 Conclusions and further work

In this paper a descriptive study of several social networks of FLOSS projects
where a company and the community collaborate has been presented. We have
seen that although there is access to the interactions that developers have in the
source code management system, the amount of information is that high that
we require additional methods to properly analyse the community and extract
facts and information from it.

Thanks to the use of social networks analysis techniques we have been able
to obtain some information on these projects, in particular, that time-based
release management seems to animate the development of projects or that the
collaboration between the company and the community can, if properly han-
dled, drive a more efficient development. Future research should be devoted
to analyse the differences between the studied projects to try to find out the
aspects that drive one of the case studies (Evolution) to have at least for some
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(a) Evolution of the Weighted Betweenness for Mono

(b) Weighted Betweenness comparative for Mono

Fig. 5. Weighted Betweenness values and a comparative for top 40 commiters in
Mono.

time an efficient development, while this is an exception for the other project
(Mono) under study.

In addition, we have identified the most important nodes (developers) in
the project and have observed them from from several points of view (leader-
ship, information control flows, etc.) and how they evolve over time. In both
case studies, the most prominent positions where held by company employees,
showing a low turnover over the years. Future work could be devoted to find
out if this behaviour is similar in community-led projects.

All in all, this paper demonstrates that the techniques from the social net-
works analysis field can be of great interest for the study and characterisation of
any kind of network and with particular interest in the study of how the software
industry can interact with the FLOSS community entering the development of
projects.
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(a) Evolution of the Eigenvalue for Mono

(b) Eigenvalue comparative for Mono

Fig. 6. Eigenvalue values and a comparative for top 40 commiters in Mono.
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