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Abstract. This paper presents an experiment performed on three large open 
source applications. The applications were instrumented automatically with a 
total of 10,494 instrumentation points. The purpose of the instrumentation was 
to collect and store data during the execution of each application that later 
could be analyzed off-line. Data analysis, on the collected data, allowed for the 
creation of test cases (test data, test fixtures and test evaluators) in addition to 
finding object message patterns for object-oriented software. 

1 Introduction 

In order to automate software quality assurance to a high(er) extent, one needs to 
look at techniques that are suitable for this purpose. In this respect random testing is 
a likely candidate for automation due to its nature where a minimum of human 
intervention is needed  [1]. Unfortunately, random testing of object-oriented software 
has not been researched widely (for an overview please see [2]). One of the reasons 
for this is surely the fact that random testing traditionally compares well to other 
techniques when it comes to dealing with scalar (pre-defined or primitive) types, 
while usually is seen to have weaknesses dealing with compound (programmer-
defined or higher-level) types. Another reason might be that random testing, again 
traditionally, has been used on small and delimited example. 
 This paper aims to:  

1. Show how object message pattern analysis, from automatically 
instrumented applications, can be used to automatically create test cases. 
(Test cases in this context equal test data, evaluators and fixtures.) 

2. Point to how random testing can be performed on these test cases. 
3. Examine the possible existence of object message patterns in object-

oriented software in addition to the question of general applicability of said 
patterns. 

4. Point out current possibilities for using instrumentation of software items as 
an underlying foundation to automated software testing. 
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 Throughout this paper an empirically descriptive model is used, i.e. explaining a 
phenomenon sufficiently on ‘real-life’ software. Next, related work is presented. 
Following that, the setup of the experiment is presented (Sect. 2) while the results are 
covered in Sect. 3. Finally, this paper ends with conclusions and future work (Sect. 
4). 

1.1 Related Work 

Related work for this paper can be divided mainly into four categories: random 
testing, type invariants, dynamic analysis and patterns in object-oriented software.  

First, random testing [1], which acts a basis for our approach, is a fairly old 
research area which has seen several new contributions lately which directly or 
indirectly affect this paper. 

Second, likely invariants has gained considerable attention following the work of 
Pacheco et al. [3] in addition to Yang et al. [4]. The concept of likely invariants is 
built upon the assumption that one can find different input values, for testing a 
software item, by looking at the actual values the software uses during a test run. 
Our approach does not focus on likely invariants per see but rather class interactions 
(not component interfaces [5]), which in its turn provides the order of the methods 
being executed as well as method signatures and actual input and return values and 
types. 

Third, the concept of dynamic analysis, i.e. analysis of the software based on its 
execution, can in our approach best be described as a see-all-hear-all strategy. This 
way it resembles the omniscient debugger [6] that takes snapshots of every change in 
the state of the running application thus allowing the developer to move backwards 
and forwards when debugging the application. The difference in our approach is that 
every important piece of information during execution, is stored for later off-line 
analysis. 

Finally, an overview of object-oriented software testing, and especially patterns in 
this area, can be found in e.g. [7]. Important to note, in this circumstance, is that the 
word pattern (as used by almost all of the references) has in many ways a different 
meaning compared to how it is used in this paper.   

In order to clarify the concept of patterns, we use the name Object Message 
Patterns for our purposes. Object stands for the fact that the focus is set on object-
oriented software. Message is short for the message-driven perspective as employed 
by object-oriented software and finally, patterns stands for the execution traces as 
found when analyzing software. 

2 Experimental Setup 

In this experiment the focus is set around testing intermediate representations of 
source code from open source software. Today, in industry, many would say that the 
centre of attention is mostly around the Java Virtual Machine and the Common 
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Language Infrastructure (CLI) with its Common Language Runtime (both inheriting 
from the original ideas brought forward by the UCSD P-System’s developers in the 
late 70’s [8]).  

The experiment was performed on three different open source software items: 
Banshee (an open source media player), Beagle (an open source search tool) and the 
Mono C# compiler, Mcs (an open source implementation of the ECMA-334/335 
standard). The selection of the software items was performed with the following in 
mind: 

 
• The application should be written in a language, which can be compiled to an 

intermediate representation (in this case the Common Intermediate Language).  
• The application should be sufficiently large and thus provide a large amount of 

data for later analysis. 
• Separate development teams should have developed the applications. 
 
In the end, Banshee, Beagle and Mcs, were considered to fit the profile for the 

case study. For each application, one use case was selected which would be executed 
after the application had been instrumented: 

 
• Banshee: Start application, select media file, play media file, stop 

playback, shut down application. 
• Beagle: Start search daemon in console (background process), perform 

query in console, close the GUI which presents the search results, stop 
search daemon. 

• Mcs: Compile a traditional ‘Hello World’ application. 

Table 1. An overview of the experiment showing the number of LOC (lines including 
comments, white spaces, declarations and macro calls), the size of the assemblies (in KB), the 
number of classes that were instrumented and the number of instrumentation points (IP), for 
each application. In addition the time to instrument (TTI) and execute (TTE) with and without 
instrumentation for each application is presented (in seconds). 

App. LOC IL (KB) #Classes #IP TTI TTE w. instr. TTE w/o instr. 
Banshee 53,038 609 414 2,770 28 424 63 
Beagle 146,021 1,268 1,045 5,084 71 74 6 
Msc 56,196 816 585 2,640 166 34 0.8 

 
After the selection of the candidate applications was accomplished the actual 

instrumentation took place (see Table 1 for some descriptive statistics). To begin 
with, each valid class in the Software Under Test (SUT), disregarding abstract, 
extern and interface annotated signatures, in every assembly (exe and dlls), had 
instructions inserted in each method which would collect runtime input and return 
value(s) and type(s), as well as the caller (i.e. what invoked the method). All this 
data, together with a time stamp, was then stored during runtime in an object 
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database while the SUT was executed following one of the before mentioned use 
cases. That is to say, each time a method was executed, during the execution of a use 
case, an object containing all the values necessary to recreate that state (with its 
connections), was stored in the object database (i.e. a form of deep copy was saved). 
Having to serialize the data beforehand would be too resource intensive for obvious 
reasons not to mention posing some difficulties from a technical perspective. 

Next, the content of the object database was analyzed looking for patterns and 
discovering likely critical regions. The selected paths could then be used for creating 
a test case (using the actual runtime values as test data and test evaluators). The 
execution of the use cases, as well as the instrumentation of the assemblies, was 
performed on Linux 2.6.15, Mac OS X 10.4.4 and Windows XP SP2 using Cecil 0.3 
(open source assembly manipulator), AspectDNG 0.47 (open source tool to support 
aspect oriented programming) and the open source (in-memory) object database 
engine db4o 5.2. 

3 Results 

The intention of performing Object Message Pattern Analysis (OMPA) on data in 
this experiment was to find and generalize patterns that later could be used for 
testing the SUT. In addition to this the hypothesis is that patterns, if found, could be 
generally applicable to most, if not all, object-oriented software. Since the analysis 
was performed manually a limitation on the number of analyzed objects was needed. 
Thus, 300 objects (in a call sequence) from each application were analyzed from an 
arbitrary point in the object database (selected by a pseudo-random generator as 
found on pp. 283–284 in [9]). In the end, eight object message patterns were found 
during the analysis of the data stored in the object database (Tables 2–3, 
respectively). 

The patterns found are of two different categories. Four patterns belong to, what 
has by us been defined as object unit patterns. Object unit patterns constitute of a 
sequence of method invocations on one object, i.e. methods in an object has been 
executed in a certain order. Object trace patterns, on the other hand, are slightly 
different. They cover the path of execution through more than one object. 

Object Unit Patterns. Four object unit patterns were found during the OMPA 
(Table 2); these patterns exercised only one object consistently over time and were 
found in all three applications (needless to say, the names of the objects and classes 
differed in all three applications, but the pattern can nevertheless generally be 
applied on all three applications). 

The first pattern, the Vault pattern (Table 2), is a straightforward pattern which is 
executed by first invoking a constructor then invoking a setter and, finally, multiple 
times, a getter (before a destructor is invoked). This can be seen as a very 
rudimentary pattern for storing data in an object which then is fetched by one or 
many objects, and as such is suitable to always execute in a testing scenario, i.e. data 
is stored in a simple vault. During the analysis the intermediate representation was 
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used for examining if a method was defined as a getter or setter (property) by 
searching for the keyword .property. There is of course a possibility that a 
method is acting as getter or setter while not being defined as such, but in this 
analysis these types of methods are disregarded and an emphasize is put on the 
proper definition of a getter or setter according to the CIL. 

Next, the Storage pattern is an evolved Vault pattern and the combinations of 
setter and getter invocations can be many (Table 2). Hence, the Storage pattern can 
be constructed in different ways and a combinatorial approach might be suitable in a 
testing scenario (compared to the Vault pattern which is very straightforward), i.e. 
data is stored in storage and the storage has (many) different ways of adding or 
offering content. The reason for distinguishing between Vault and Storage is that a 
Vault was common during OMPA and as such should always be used when testing 
object-oriented software, while Storage, on the other hand, is a more complex pattern 
(more steps performed) and as such needs additional analysis. 

The Worker pattern at first glance looks like bad design. An object gets 
instantiated, and immediately filled with data. A method is next invoked which 
manipulates the data, returns the manipulated data and, finally, a destructor is 
invoked. The reason for this design might be to make sure that the method’s 
implementation is accessible by different objects (extended) since it is declared 
public. If one had opted for a method declared as private or even 
protected, which could be invoked when the getter is invoked, then there would 
be no simple way to reuse the implementation. 

Finally, the Cohesion pattern is a pattern that executes one or more methods in 
one object. It does this without a priori setting any values and the order of executing 
the methods is not always important, i.e. each and every method was found to be (by 
analyzing objects in the object database) an atomic unit with no dependency on other 
methods in the class and as such the word cohesion (united whole) was found to be 
appropriate to use. 

Table 2. Different object unit patterns found in all three applications. The first column shows 
the name selected for the pattern and the second column the actual pattern. Abbreviations used: 
ctor and ~ctor is short for constructor and destructor respectively, while setter and getter is a 
method which sets or gets data stored in the object. 

Name Pattern 
Vault ctor → setter → 1…n getter → �ctor 
Storage ctor → setter → 1…n getter → 1…n setter → … → �ctor 
Worker ctor → setter → method invocation → �ctor 
Cohesion ctor → 1…n method invocation → �ctor 

  
Object Trace Patterns. Looking at the object trace patterns, one can see four 

patterns that can be generally applicable (see Table 3 on next page); these patterns 
exercise several objects and constitutes sequences of object:method invocations. 
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A fairly common pattern that seems to come up on a regular basis is the 
Cascading pattern. This pattern instantiates object after object, which all can be of 
different or same types. The approach seems to be quite common when object-
oriented applications are starting up, but in addition shows up in several phases of an 
application’s lifetime (from start up to shutdown). 

Next, the Storing pattern and the Fetching pattern showed up many times as well. 
These patterns are directly connected to the object unit Storage and Vault patterns, 
and as such can be combined in many ways. 

The final pattern is the Dispatch pattern. The Dispatch pattern simply invokes 
one method after another (not a constructor though). In most cases the Dispatch 
patterns ends up with executing the Storing or Fetching pattern as a final step. 

Table 3. Different object trace patterns found in all three applications. Abbreviations used: 
ctor and ~ctor is short for constructor and destructor respectively, while setter and getter is a 
method which sets or gets data stored in the object. An alphabetical character in front of the 
abbreviation, i.e. A:ctor, indicates that a type A object’s constructor is invoked. 

Name Pattern 
Cascading A:ctor → B:ctor → C:ctor → … 
Storing A:ctor → B:ctor; A:method → B:setter 
Fetching A:method → B:getter 
Dispatch A:method → B:method → C:method → … 

3.1 Test Case Creation 

Applying test case creation on the example (and on data in the experiment) is fairly 
straightforward when all entities needed can be found in the object database, i.e. the 
following data is available: methods’ name, input type and values, and return type(s) 
and value(s). 

In addition, information regarding the caller can be extracted from the object 
database by simply examining the caller value in the current method being executed 
(a value stored in the database) or by examining the time stamp for each stored entity 
in the database. 

The above information provides us with an opportunity to automatically create 
test cases and, in the end, have a simple smoke test or regression test mechanism, 
depending on the aim of our testing efforts. In short, the software item is executed, 
test cases are created from the database, patterns are extracted from the database and 
the SUT is validated. Obviously, the end goal is to make this a fully automatic 
process. 
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4 Conclusions and Future Work 

This paper presented eight software object message patterns, for testing object-
oriented software. As such it indicates in our opinion that the first steps have been 
taken on the road to extract generally applicable object message patterns for the 
purpose of testing object-oriented software. In this case study, the patterns are 
accompanied with automatically generated test cases whose entities (test data, test 
fixture and test oracle) are retrieved from a database which stores runtime values that 
are collected when executing a use case on the SUT. These test cases are then stored 
and used as a simple regression testing mechanism, hence avoiding manual, error-
prone and tedious test case creation. 
 In the future a replication of this study should be made were the focus would be 
put on large applications and extensive data collection (i.e. collecting more or all use 
cases during the system testing phase). In addition, a number of issues with respect 
to optimization must be solved and the analysis must be performed fully 
automatically for this approach to be beneficial. 
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