

Extracting Generally Applicable Patterns
from Object-Oriented Programs for the

Purpose of Test Case Creation

Richard Torkar, Robert Feldt, and Tony Gorschek
Blekinge Institute of Technology,

School of Engineering,
372 25 Ronneby, Sweden

{rto|rfd|tgo}@bth.se

Abstract. This paper presents an experiment performed on three large open
source applications. The applications were instrumented automatically with a
total of 10,494 instrumentation points. The purpose of the instrumentation was
to collect and store data during the execution of each application that later
could be analyzed off-line. Data analysis, on the collected data, allowed for the
creation of test cases (test data, test fixtures and test evaluators) in addition to
finding object message patterns for object-oriented software.

1 Introduction

In order to automate software quality assurance to a high(er) extent, one needs to
look at techniques that are suitable for this purpose. In this respect random testing is
a likely candidate for automation due to its nature where a minimum of human
intervention is needed [1]. Unfortunately, random testing of object-oriented software
has not been researched widely (for an overview please see [2]). One of the reasons
for this is surely the fact that random testing traditionally compares well to other
techniques when it comes to dealing with scalar (pre-defined or primitive) types,
while usually is seen to have weaknesses dealing with compound (programmer-
defined or higher-level) types. Another reason might be that random testing, again
traditionally, has been used on small and delimited example.
 This paper aims to:

1. Show how object message pattern analysis, from automatically
instrumented applications, can be used to automatically create test cases.
(Test cases in this context equal test data, evaluators and fixtures.)

2. Point to how random testing can be performed on these test cases.
3. Examine the possible existence of object message patterns in object-

oriented software in addition to the question of general applicability of said
patterns.

4. Point out current possibilities for using instrumentation of software items as
an underlying foundation to automated software testing.

282 Richard Torkar, Robert Feldt, and Tony Gorschek

 Throughout this paper an empirically descriptive model is used, i.e. explaining a
phenomenon sufficiently on ‘real-life’ software. Next, related work is presented.
Following that, the setup of the experiment is presented (Sect. 2) while the results are
covered in Sect. 3. Finally, this paper ends with conclusions and future work (Sect.
4).

1.1 Related Work

Related work for this paper can be divided mainly into four categories: random
testing, type invariants, dynamic analysis and patterns in object-oriented software.

First, random testing [1], which acts a basis for our approach, is a fairly old
research area which has seen several new contributions lately which directly or
indirectly affect this paper.

Second, likely invariants has gained considerable attention following the work of
Pacheco et al. [3] in addition to Yang et al. [4]. The concept of likely invariants is
built upon the assumption that one can find different input values, for testing a
software item, by looking at the actual values the software uses during a test run.
Our approach does not focus on likely invariants per see but rather class interactions
(not component interfaces [5]), which in its turn provides the order of the methods
being executed as well as method signatures and actual input and return values and
types.

Third, the concept of dynamic analysis, i.e. analysis of the software based on its
execution, can in our approach best be described as a see-all-hear-all strategy. This
way it resembles the omniscient debugger [6] that takes snapshots of every change in
the state of the running application thus allowing the developer to move backwards
and forwards when debugging the application. The difference in our approach is that
every important piece of information during execution, is stored for later off-line
analysis.

Finally, an overview of object-oriented software testing, and especially patterns in
this area, can be found in e.g. [7]. Important to note, in this circumstance, is that the
word pattern (as used by almost all of the references) has in many ways a different
meaning compared to how it is used in this paper.

In order to clarify the concept of patterns, we use the name Object Message
Patterns for our purposes. Object stands for the fact that the focus is set on object-
oriented software. Message is short for the message-driven perspective as employed
by object-oriented software and finally, patterns stands for the execution traces as
found when analyzing software.

2 Experimental Setup

In this experiment the focus is set around testing intermediate representations of
source code from open source software. Today, in industry, many would say that the
centre of attention is mostly around the Java Virtual Machine and the Common

Extracting Generally Applicable Patterns from Object-Oriented Programs for the
Purpose of Test Case Creation

283

Language Infrastructure (CLI) with its Common Language Runtime (both inheriting
from the original ideas brought forward by the UCSD P-System’s developers in the
late 70’s [8]).

The experiment was performed on three different open source software items:
Banshee (an open source media player), Beagle (an open source search tool) and the
Mono C# compiler, Mcs (an open source implementation of the ECMA-334/335
standard). The selection of the software items was performed with the following in
mind:

• The application should be written in a language, which can be compiled to an

intermediate representation (in this case the Common Intermediate Language).
• The application should be sufficiently large and thus provide a large amount of

data for later analysis.
• Separate development teams should have developed the applications.

In the end, Banshee, Beagle and Mcs, were considered to fit the profile for the

case study. For each application, one use case was selected which would be executed
after the application had been instrumented:

• Banshee: Start application, select media file, play media file, stop

playback, shut down application.
• Beagle: Start search daemon in console (background process), perform

query in console, close the GUI which presents the search results, stop
search daemon.

• Mcs: Compile a traditional ‘Hello World’ application.

Table 1. An overview of the experiment showing the number of LOC (lines including
comments, white spaces, declarations and macro calls), the size of the assemblies (in KB), the
number of classes that were instrumented and the number of instrumentation points (IP), for
each application. In addition the time to instrument (TTI) and execute (TTE) with and without
instrumentation for each application is presented (in seconds).

App. LOC IL (KB) #Classes #IP TTI TTE w. instr. TTE w/o instr.
Banshee 53,038 609 414 2,770 28 424 63
Beagle 146,021 1,268 1,045 5,084 71 74 6
Msc 56,196 816 585 2,640 166 34 0.8

After the selection of the candidate applications was accomplished the actual

instrumentation took place (see Table 1 for some descriptive statistics). To begin
with, each valid class in the Software Under Test (SUT), disregarding abstract,
extern and interface annotated signatures, in every assembly (exe and dlls), had
instructions inserted in each method which would collect runtime input and return
value(s) and type(s), as well as the caller (i.e. what invoked the method). All this
data, together with a time stamp, was then stored during runtime in an object

284 Richard Torkar, Robert Feldt, and Tony Gorschek

database while the SUT was executed following one of the before mentioned use
cases. That is to say, each time a method was executed, during the execution of a use
case, an object containing all the values necessary to recreate that state (with its
connections), was stored in the object database (i.e. a form of deep copy was saved).
Having to serialize the data beforehand would be too resource intensive for obvious
reasons not to mention posing some difficulties from a technical perspective.

Next, the content of the object database was analyzed looking for patterns and
discovering likely critical regions. The selected paths could then be used for creating
a test case (using the actual runtime values as test data and test evaluators). The
execution of the use cases, as well as the instrumentation of the assemblies, was
performed on Linux 2.6.15, Mac OS X 10.4.4 and Windows XP SP2 using Cecil 0.3
(open source assembly manipulator), AspectDNG 0.47 (open source tool to support
aspect oriented programming) and the open source (in-memory) object database
engine db4o 5.2.

3 Results

The intention of performing Object Message Pattern Analysis (OMPA) on data in
this experiment was to find and generalize patterns that later could be used for
testing the SUT. In addition to this the hypothesis is that patterns, if found, could be
generally applicable to most, if not all, object-oriented software. Since the analysis
was performed manually a limitation on the number of analyzed objects was needed.
Thus, 300 objects (in a call sequence) from each application were analyzed from an
arbitrary point in the object database (selected by a pseudo-random generator as
found on pp. 283–284 in [9]). In the end, eight object message patterns were found
during the analysis of the data stored in the object database (Tables 2–3,
respectively).

The patterns found are of two different categories. Four patterns belong to, what
has by us been defined as object unit patterns. Object unit patterns constitute of a
sequence of method invocations on one object, i.e. methods in an object has been
executed in a certain order. Object trace patterns, on the other hand, are slightly
different. They cover the path of execution through more than one object.

Object Unit Patterns. Four object unit patterns were found during the OMPA
(Table 2); these patterns exercised only one object consistently over time and were
found in all three applications (needless to say, the names of the objects and classes
differed in all three applications, but the pattern can nevertheless generally be
applied on all three applications).

The first pattern, the Vault pattern (Table 2), is a straightforward pattern which is
executed by first invoking a constructor then invoking a setter and, finally, multiple
times, a getter (before a destructor is invoked). This can be seen as a very
rudimentary pattern for storing data in an object which then is fetched by one or
many objects, and as such is suitable to always execute in a testing scenario, i.e. data
is stored in a simple vault. During the analysis the intermediate representation was

Extracting Generally Applicable Patterns from Object-Oriented Programs for the
Purpose of Test Case Creation

285

used for examining if a method was defined as a getter or setter (property) by
searching for the keyword .property. There is of course a possibility that a
method is acting as getter or setter while not being defined as such, but in this
analysis these types of methods are disregarded and an emphasize is put on the
proper definition of a getter or setter according to the CIL.

Next, the Storage pattern is an evolved Vault pattern and the combinations of
setter and getter invocations can be many (Table 2). Hence, the Storage pattern can
be constructed in different ways and a combinatorial approach might be suitable in a
testing scenario (compared to the Vault pattern which is very straightforward), i.e.
data is stored in storage and the storage has (many) different ways of adding or
offering content. The reason for distinguishing between Vault and Storage is that a
Vault was common during OMPA and as such should always be used when testing
object-oriented software, while Storage, on the other hand, is a more complex pattern
(more steps performed) and as such needs additional analysis.

The Worker pattern at first glance looks like bad design. An object gets
instantiated, and immediately filled with data. A method is next invoked which
manipulates the data, returns the manipulated data and, finally, a destructor is
invoked. The reason for this design might be to make sure that the method’s
implementation is accessible by different objects (extended) since it is declared
public. If one had opted for a method declared as private or even
protected, which could be invoked when the getter is invoked, then there would
be no simple way to reuse the implementation.

Finally, the Cohesion pattern is a pattern that executes one or more methods in
one object. It does this without a priori setting any values and the order of executing
the methods is not always important, i.e. each and every method was found to be (by
analyzing objects in the object database) an atomic unit with no dependency on other
methods in the class and as such the word cohesion (united whole) was found to be
appropriate to use.

Table 2. Different object unit patterns found in all three applications. The first column shows
the name selected for the pattern and the second column the actual pattern. Abbreviations used:
ctor and ~ctor is short for constructor and destructor respectively, while setter and getter is a
method which sets or gets data stored in the object.

Name Pattern
Vault ctor → setter → 1…n getter → �ctor
Storage ctor → setter → 1…n getter → 1…n setter → … → �ctor
Worker ctor → setter → method invocation → �ctor
Cohesion ctor → 1…n method invocation → �ctor

Object Trace Patterns. Looking at the object trace patterns, one can see four

patterns that can be generally applicable (see Table 3 on next page); these patterns
exercise several objects and constitutes sequences of object:method invocations.

286 Richard Torkar, Robert Feldt, and Tony Gorschek

A fairly common pattern that seems to come up on a regular basis is the
Cascading pattern. This pattern instantiates object after object, which all can be of
different or same types. The approach seems to be quite common when object-
oriented applications are starting up, but in addition shows up in several phases of an
application’s lifetime (from start up to shutdown).

Next, the Storing pattern and the Fetching pattern showed up many times as well.
These patterns are directly connected to the object unit Storage and Vault patterns,
and as such can be combined in many ways.

The final pattern is the Dispatch pattern. The Dispatch pattern simply invokes
one method after another (not a constructor though). In most cases the Dispatch
patterns ends up with executing the Storing or Fetching pattern as a final step.

Table 3. Different object trace patterns found in all three applications. Abbreviations used:
ctor and ~ctor is short for constructor and destructor respectively, while setter and getter is a
method which sets or gets data stored in the object. An alphabetical character in front of the
abbreviation, i.e. A:ctor, indicates that a type A object’s constructor is invoked.

Name Pattern
Cascading A:ctor → B:ctor → C:ctor → …
Storing A:ctor → B:ctor; A:method → B:setter
Fetching A:method → B:getter
Dispatch A:method → B:method → C:method → …

3.1 Test Case Creation

Applying test case creation on the example (and on data in the experiment) is fairly
straightforward when all entities needed can be found in the object database, i.e. the
following data is available: methods’ name, input type and values, and return type(s)
and value(s).

In addition, information regarding the caller can be extracted from the object
database by simply examining the caller value in the current method being executed
(a value stored in the database) or by examining the time stamp for each stored entity
in the database.

The above information provides us with an opportunity to automatically create
test cases and, in the end, have a simple smoke test or regression test mechanism,
depending on the aim of our testing efforts. In short, the software item is executed,
test cases are created from the database, patterns are extracted from the database and
the SUT is validated. Obviously, the end goal is to make this a fully automatic
process.

Extracting Generally Applicable Patterns from Object-Oriented Programs for the
Purpose of Test Case Creation

287

4 Conclusions and Future Work

This paper presented eight software object message patterns, for testing object-
oriented software. As such it indicates in our opinion that the first steps have been
taken on the road to extract generally applicable object message patterns for the
purpose of testing object-oriented software. In this case study, the patterns are
accompanied with automatically generated test cases whose entities (test data, test
fixture and test oracle) are retrieved from a database which stores runtime values that
are collected when executing a use case on the SUT. These test cases are then stored
and used as a simple regression testing mechanism, hence avoiding manual, error-
prone and tedious test case creation.
 In the future a replication of this study should be made were the focus would be
put on large applications and extensive data collection (i.e. collecting more or all use
cases during the system testing phase). In addition, a number of issues with respect
to optimization must be solved and the analysis must be performed fully
automatically for this approach to be beneficial.

References

1. Hamlet, D.: Random testing. In: Marciniak, J.J. (ed.): Encyclopedia of software
engineering. John Wiley & Sons, New York (1994) 970-978

2. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co., Inc. (1999)

3. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-Directed Random Test
Generation. Proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society (2007)

4. Yang, J., Evans, D.: Dynamically inferring temporal properties. Proceedings of the
5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering. ACM, Washington DC, USA (2004)

5. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. SIGSOFT Softw. Eng. Notes 27 (2002) 218-228

6. Lewis, B., Ducasse, M.: Using events to debug Java programs backwards in time.
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. ACM, Anaheim, CA, USA
(2003)

7. Lange, M.: It’s Testing Time! Proceedings of the 6th European Conference on
Pattern Languages of Programming and Computing, Irsee, Germany, UVK
Universitatsverlag Konstanz GmbH (2001)

8. Institute for Information Systems, UCSD, University of California: UCSD
PASCAL System II.0 User’s Manual. (1979)

9. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes
in C: the art of scientific computing. Cambridge University Press (1988)

