
Domain Drivers in the Modularization of FLOSS
Systems

Andrea Capiluppi
Centre of Research on Open Source Software,

University of Lincoln,
Brayford Campus,

Lincoln,
LN5 7TS,

United Kingdom
acapiluppi@hemswell.lincoln.ac.uk

Abstract. The classification of software systems into types has been achieved
in the past by observing both their specifications and behavioral patterns: the
SPE classification, for instance, and its further supplements and refinements, has
identified the S-type (i.e., fully specified), the P-type (i.e., specified but depen-
dent on the context) and the E-type (i.e., addressing evolving problems) among
the software systems.
In order to detect types, and establish similarities, among Free/Libre/Open
Source Software (FLOSS) systems, this paper considers three modular charac-
teristics (functions, files and folders) and their evolution: how they are evolving
with size, if they are constant across systems, and whether recurring evolution-
ary patterns are observed. Using these various-grained characteristics, a set of
models for the evolution of modularization are extracted from evolving systems,
and then used to extract similarities and types from a wide sample of FLOSS
projects.
This paper provides three contributions: first, it shows that several models are
needed to encompass the variety of modularization patterns; second, it provides
three types of models (uni-variate, bi-variate and tri-variate) for the evolution
of modularization, with significant goodness-of-fit’s. Finally, it shows that two
of these patterns alone can interpolate the modular characteristics of the vast
majority of a random choice of FLOSS projects.

1 Introduction and Related Work

The classification of software systems into types, if properly conducted, can serve
diverse purposes: by classifying and indexing objects or components, for example,
developers can ease the search and location of reusable software [8, 21]. As a matter
of fact, any reuse effort always involves two major steps to achieve its results: first, it
must be able to clearly identify reusable components; second, it must put in place a
library of reusable entities for their selection in future projects [15, 16]. As a necessary
condition for these two steps, a reusable component should be uniquely classified and
described, its functionalities and application domain clearly identified, and its inward
and outwards connections described.

2 Andrea Capiluppi

Classification of software systems has also been achieved in the past with the pur-
pose of assigning common features of frequently observed patterns to categories, like
the SPE program classification [13]. Based on this, a software system can be classi-
fied as S-type, when “the specification is the complete, sole and definitive determinant
of program properties” [12]; a software system is instead classified as P-type when
“the result from the execution of the program is correct in a sense provided by the
problem statement” [12]. Given the definition, a P-type system can be considered as S-
type as long as its underlying problem was stated completely and precisely. Finally, an
E-type system has been described as implementing an application in a “real world do-
main”, and its overall value is only in part dependent on the correctness of the expected
outcome, other aspects being the interaction with users and other components. More
recently, the same SPE classification was adapted to comprise patterns of behavior and
evolution [5].

Finally, from an evolutionary perspective, the classification of software systems
has proven useful to identify the presence of patterns of evolution. In recent works,
either similarity or volatility, (i.e., variety of behaviors, or absence of similarity) has
been used to characterize the evolution of both commercial [1] and FLOSS products [2,
10, 23] and processes [17].

This study builds upon two core concepts of the software engineering knowl-
edge, namely the classification of software systems, as briefly introduced above, and
their modularity [19]. The decomposition of software systems into smaller modules,
each with large internal cohesion and low coupling with others, is an established
framework for software designers and architects. Modules form basic building blocks,
and their dimension are typically accomplished avoiding both too large (i.e. under-
modularization) or too small (i.e. over-modularization) components [20].

This paper studies the evolution of three modular characteristics (source functions
or methods, source files and source folders) with respect to the size of the system in
order both to detect patterns of modular evolution, and to identify clusters or types in
the modularization of 26 FLOSS systems evolution. Since types and patterns are here
expressed in terms of multivariate models, the paper will initially assess whether a sin-
gle model could instead be fitted for all the systems. Later, these empirical models will
be used to interpolate the modular characteristics of two random samples of FLOSS
projects.

This paper is articulated as follows: Section 2 will introduce the definitions and
the empirical hypothesis that this study is based upon, since it proposes multiple, mul-
tivariate models. Section 3 will test the hypothesis by introducing a cross-sectional
analysis: all of the observed systems will be put in the same evolutionary pool, and
a single model will be sought. Section 4 will at first discuss the problem of multi-
collinearity when dealing with multi-variate models. Then it will investigate and dis-
play the models which were extracted from the evolutionary history of the 26 FLOSS
systems. Section 5 will use these models to evaluate the modular characteristics of
a the second sample of FLOSS systems, and to assess which of these models better
formalizes what system. Finally, Section 6 will present the conclusions and illustrate
potential future works.

Domain Drivers in the Modularization of FLOSS Systems 3

2 Definitions

From the theoretical standpoint, modularity of FLOSS projects has been extensively
analyzed [7, 14, 18], and advocated as a necessary condition for appropriately lever-
aging the distributed approach of FLOSS developers. Less frequently it has been eval-
uated empirically, and mostly on fine-granular elements: for example, the modular-
ization (in terms of functions) in FLOSS procedural languages has been compared
to the modularization (in terms of methods) in FLOSS object-oriented languages [6];
also, the common coupling among modules of the Linux kernel has been extensively
analyzed [25].

The terminology and definitions used in this paper are therefore extracted from
similar studies in the past FLOSS literature [3, 9, 10, 22], especially those related to
entities with different levels of granularity. The empirical hypothesis that this paper is
built upon is presented in Section 2.1.

1. Source function: basic unit of source code; this term is used to refer to procedures,
subroutines, but also OO-methods.

2. Source file: any file with at least one source function.
3. Source folder: any folder containing at least one source file [4]. The term module

is used here to refer to source code functions, files and folders.
4. Size: the length of the whole system, of a folder, a file or a function, which can

be evaluated at different levels of granularity, for example: number of folders, of
files, lines of code (LOC) and lines of source code (SLOC) which excludes blank
lines and embedded comments.

5. Application domain: The application domains of the sample has also been studied.
These domains are those used within a well known FLOSS repository (the Source-
Forge site) to effectively cluster the projects. Table 1 summarizes the domains and
the relative keys used throughout the paper.

6. Programming language: this paper will differentiate, for each project, between a
procedural (P) and object-oriented (OO) paradigm. This distinction will be made
based on a prevalence (i.e. more than 80%) of one specific programming language
(and paradigm) over others (4th column of Table 2). In cases where multiple pro-
gramming languages (and paradigms) are present with similar shares, an appropri-
ate notation is used. As an example, the project with Id 5 is composed of C source
files (40%) and the rest of the Dylan (also procedural) programming language.

2.1 Working Hypothesis

Previous studies have been conducted to inform about the presence of correlation be-
tween

a the size of FLOSS systems and
b time of development (in days, weeks or months)

4 Andrea Capiluppi

Table 1. Application domains as used in the SourceForge repository
Application Domain Key

Communications A
Database B

Desktop Environment C
Education D

Formats and Protocols E
Games/Entertainment F

Internet G
Multimedia H

Office/Business I
Other/Nonlisted Topic J

Printing K
Scientific/Engineering L

Security M
Software Development N

System O
Terminals P

Text Editor Q

showing very high goodness-of-fit [2, 10]. It is argued here that these models
present severe pitfalls: the set of resulting models not only lacks information on how
modularization is achieved, but also establishes a relation between an internal attribute
(i.e. size, in SLOCs) and an external measurement (i.e. time, in days, weeks or months).
This paper will explore evolutionary models comprising an internal dependent variable
(size), and internal independent variables (number of source folders, files and func-
tions). This will in turn remove any modeling distortions resulting from long periods
of inactivity or peaks of activity (as seen in FLOSS systems in proximity of major
releases [9]).

The working hypothesis underlying this study states that a single modularization
model cannot encompass the variety of FLOSS observed evolutionary patterns. In
terms of null hypothesis (H0), the model [m0]

size = a∗ f olders+b∗ f iles+ c∗ f unctions+d [m0]

will produce an adequate goodness-of-fit for all the selected FLOSS projects. The
empirical evaluation of this will be achieved analyzing the level of significance of the
four parameters (a, b, c and d), i.e. evaluating their t-value’s and p-value’s.

The alternative hypothesis, H1, requires that several models are necessary to fit the
modularization patterns of FLOSS projects. As a summary, Table 3 displays the null
and the alternative hypotheses, their description, and how they will be tested.

Domain Drivers in the Modularization of FLOSS Systems 5

Table 2. Summary of Programming paradigms and Application Domains
Id Project Releases Language Domain

1 abiword 82 OO/P Q
2 arla 68 P G
3 gaim 98 P A
4 ganymede 42 OO G
5 gdylan 17 PP M
6 ghemical 21 OO L
7 gimp_print 117 OO K
8 gimp_stable 34 OO H
9 gimp_dev 96 OO H
10 gist 19 OO G
11 grace 36 P L
12 htdig 17 P G
13 ksi 14 P M
14 lcrzo 56 P G
15 motion 81 P H
16 mplayer 77 P H
17 mrtg 77 P G
18 mutt 91 P A
19 netwib 35 P G
20 rrdtool 35 PP O
21 siagoffice 46 P I
22 vovida 14 OO/P A
23 wine_stable 20 P O
24 wine_unstable 90 P O
25 xfce 67 P C
26 xmms 29 P H

Table 3. Summary of the research hypotheses
Type Description Measures
H0 Single model [m0] for all FLOSS sys-

tems
t-value’s of a,b,c,d large; p-value’s of
a,b,c,d ≤ 0.2

H1 Multiple models needed t-value’s of a,b,c,d small; p- value’s of
a,b,c,d > 0.2

3 Cross-Sectional Analysis

A cross-sectional study design [11] is used in this section for validating and testing the
research hypothesis. This type of statistical test is ideal for the proposed hypothesis,
since it builds a very basic form of understanding of the data. In this case, it helps in
detecting whether a generic, overall model can be established between the dependent
variable (size, in LOCs) and the modular characteristics (source folders, files and func-
tions). In a cross-sectional analysis, either the entire population or a subset is selected,

6 Andrea Capiluppi

in a single snapshot (i.e. no longitudinal analysis is performed): in the case depicted
by this paper, the overall population of the 26 FLOSS projects was put in the same
statistical pool to detect a unique relationship.

3.1 Design of the Experiment

The purpose of the investigation is to assess the significance of the modularization
model [m0]: each of the parameters (a,b,c and d) will be extracted from the data of
all the systems, together with its level of confidence, in terms of t-value and p-value.
This was repeated several times, in a stratified approach: the steps below summarize
the design and implementation of the statistical analysis.

1. At first, the systems in Table 2 were ordered by number of available releases, and
a lower limit was set as a minimum to conduct the study: a minimum threshold
of 29 releases was selected as the first cross-section (first row of Table 4), as it
appeared to be large enough to collect statistical data.

2. All the systems with exactly or more than 29 releases (therefore excluding projects
with ID’s 5, 6, 10, 12, 13, 22, 23 from Table 2) were listed, and their latest 29
releases, with their data on source folders, files and functions, comprising 551
data points, formed the first population, for which the first multi-variate regression
model was calculated. The coefficients of the model, as well as the determination
coefficient (R2) were evaluated (4th, 5th, 6th and 3rd columns of Table 4).

3. As a second step, the number of releases closest and larger than 29 was selected
as the next threshold (i.e., 34). As done previously, all the systems with exactly or
more than this threshold of releases were considered (hence excluding project with
ID 8 from Table 2), forming a pool of 612 data points. As before the coefficients
of the multi-variate regression were evaluated, together with the R2 factor.

4. The same approach was applied, recursively, for the ordered number of releases as
cross-sections. A decreasing number of projects participated to the various studies,
and different pools of data points (2nd column of Table 4) were considered, as per
definition of cross-sectional design.

5. At the end of all the iterations, the mean and the variance of the coefficients were
evaluated, and later used to evaluate the t-value and the p-value of each attribute.

3.2 Results of the Cross-Sectional Study

The results of the set of steps as briefly summarized above analysis are displayed in
the last four rows of Table 4: the t-value’s and p-value’s are reported for each of the
independent variables (folders, files and functions) and the intercept (“Const”). The
only confidence achievable is on the two regressed parameters “Funct” and “Const”,
while the parameters of “Folder” and “File” have a low t-value and a high p-value.

As per the definitions given in Table 3, it is possible to reject the null hypothesis
H0: from the sample of 26 FLOSS projects, it’s not possible to extract one single mod-
ularization model. The variety of observed behaviors (in terms of modularization) of
the selected systems requires a larger set of models: in the next sections, each FLOSS

Domain Drivers in the Modularization of FLOSS Systems 7

project will be analyzed to discover one or more patterns of evolution of modulariza-
tion, and the problem of multi-collinearity will be discussed.

Table 4. Cross-sectional design study – results
Cross-Sections Data points R2 Dir File Funct Const

29 551 0.957 422.08 77.76 32.39 26519.83
34 612 0.957 330.94 70.5 33.48 28873.35
35 595 0.958 627.72 65.36 31.31 25449.24
35 560 0.957 625.78 66.11 31.33 24121.65
36 540 0.958 568.18 60.75 32.28 23600.43
42 588 0.959 477.4 55.43 33.51 21133.54
46 598 0.960 364.32 48.24 35.23 18447.44
56 672 0.965 13.9 32.86 39.18 27244.26
67 737 0.965 -47.38 26.79 40.12 27348.65
68 680 0.988 -1239.44 15.42 50.22 28085.51
77 693 0.986 -930.71 9.45 48.53 24898.57
77 616 0.985 -871.73 9.23 48.01 26336.04
81 567 0.989 -804.14 -4.67 48.89 20642.72
82 492 0.987 -749.78 -5.58 48.16 27414.36
90 450 0.990 107.53 91.9 35.36 18794.66
91 364 0.985 -17.44 24.75 46.41 13399.28
96 288 0.983 32.28 21.87 47.01 7075.48
98 196 0.893 1992.91 -308.17 50.08 30839.27

117 117 0.267 -667.08 -24.08 32.24 56036.34

Mean 12.39 17.57 40.2 25066.35
Variance 765.83 85.06 7.59 9476.44
T-value 0.016 0.207 5.297 2.645

P-value (18 d.f.) 0.987 0.838 0.000 0.017

4 Evolutionary Models

The previous Section 3 showed that a single multi-variate correlation, comprising the
characteristics of source folders, files and functions, can not represent, on its own, the
modularization patterns of the considered FLOSS projects.

One solution to address this issue would be to refine the model to make it inclu-
sive of all the variations of the ob- served behaviors. Another solution is instead to
investigate each project in order to detect the presence of one or more modularization
models. This second option is more reasonable, also from previous empirical evidence
on FLOSS projects [2, 10, 24], which already shows diverse patterns of evolution.

In the next subsection, the problem of multi-collinearity [11, 24] is investigated in
order to detect (if any) the principal modular characteristics of each project’s evolution,
and to discard the non-relevant ones.

8 Andrea Capiluppi

4.1 Addressing Multi-collinearity

In its definition, multi-collinearity is the presence of a significant linear relationship
(reflected, for instance, by a large value of R2) between two or more independent
(or explanatory) variables. The presence of multi-collinearity poses serious problems
when defining the relevance of a variable into the regressed model: for instance, one
could overestimate the weight of a variable even if it was perfectly correlated (i.e.
superfluous) to another one [24].

In order to refine the single model as expressed above, each system was therefore
studied on its own, and the characteristics of source folders, files and functions were
taken as independent variables and the size in LOCs as dependent variable. This was
repeated in all the releases: finally, the correlation among the independent variables
was studied. An acceptable multi-variate regression must have low correlations among
the independent variables, and should have high correlation between each independent
variable (folder, file, function) and the dependent one (size).

Generating Models from Evolutionary Data For only 4 projects (ganymede, gimp-
print, gist, lcrzo) the three modular characteristics are relevant in the evolutionary
behavior (i.e., the R2 between each pair of attributes are all < 0.9), thus generating
a size = f (f olders, f iles, f unctions) pattern. In all the remaining projects, one (or
more) multi-collinearity problems were detected, since at least two of the attributes
were found to be highly correlated. Therefore, in these systems other patterns were
sought: whenever a high correlation was found between two variables, their relevance
was questioned compared to the other variables. In cases of evident multicollinearity,
one of these variables was dropped.

As an example, the system abiword (Id 1) shows a high correlation between num-
ber of folders and number of functions; and between number of functions and number
of files: therefore, the variable number of functions was excluded from the model. The
model explaining the modularization of the abiword system was chosen to be:

size = a∗ (f olders)+b∗ (f iles)+d [m1]

and coded as the size = f (f olders, f iles) pattern in the 5th column of Table 7 (with
key m1).

For other projects (gaim, Id 3), no correlation was found to be significant. It was
chosen to have a richer set of models in this case: the underlying pattern comprises
three models (represented as m3, m4 and m5 in Table 7) which jointly represent the
pattern:

size = a∗ (nr f olders)+d [m3]
size = b∗ (nr f iles)+d [m4]

size = c∗ (nr f unctions)+d [m5]

This complex behavior was coded instead as the

size = f ({ f olders, f iles, f unctions})

pattern in Table 7, meaning that the “size”variable can be explained by any of the
“number of files”, “number of folders”or “number of functions” alone. We claim that

Domain Drivers in the Modularization of FLOSS Systems 9

this pattern achieves the best modularization for FLOSS system: all the dependent
variables have the same evolutionary trend, and each can explain alone the growth of
size. This behavior is visually depicted (when normalized) in Figure 1 for the Gaim
system.

Fig. 1. Evolution trends in the pattern size = { f olders, f iles, f unctions} (Gaim system)

Considering the variations of the 26 patterns, a maximum of 45 different models
were found, whose attributes (a, b, c and d) have been evaluated and fully expanded
in Table 7. Each of these models was interpolated with evolutionary data in terms of
goodness-of-fit. In 6 cases it was found that the corresponding model had a significance
lower than 0.9 in terms of R2: this reduced the overall number of models to 39.

Table 5. Summary – Evolutionary patterns
Pattern Type of pattern R2 ≥ 0.9

p1 size = f ({ f older, f ile, f unct}) 17
p2 size = f (f older, f ile) 12
p3 size = f (f older, f unct) 7
p4 size = f (f ile, f unct) 2
p5 size = f (f older, f ile, f unct) 2

In terms of affected patterns, the summary in Table 5 shows the relevance of each
pattern as observed in the whole pool, and considering only those cases where the
regression fit was larger than 0.9 and 0.7. As observed above, the proposed pattern
containing the three explaining variables (p5, in the form of

10 Andrea Capiluppi

size = f (f olders, f iles, f unctions)

), was empirically observed only in 2 out of 40 statistically relevant patterns (i.e., with
R2 ≤ 0.9). Most of the other patterns represent an interaction of at most two variables
(21 out of 39) or a single variable (17 cases out of 39). Also, the union of the patterns
p1 and p2 alone is responsible for some 3/4 of the extracted models.

5 Testing the Models

The relations obtained in the previous Section 4 formed a pool of models, each charac-
terizing the evolution of the size (in LOCs) as a function of the modular characteristics
(source folders, files and functions) of a specific project. The goodness of fit of most
of these models was demonstrated to be statistically significant via the indicator R2.

5.1 Design of the Experiment

In this subsection, the models defined above (from m0 to m40) are used to test whether
a generic FLOSS project shows a modularization which can be interpolated by any of
the models above.

In order to do so, a random sample of 50 FLOSS projects was extracted from both
the Debian and the SourceForge repositories, resulting in 100 projects. Debian con-
tains a popular FLOSS forge which is the basis of the successful Debian distribution;
SourceForge hosts more than 200,000 FLOSS projects and is recognized as the most
common FLOSS portal. The two samples were extracted from similar-sized pools, i.e.
the “stable” subset of hosted projects, as per the development status that each FLOSS
project can select as its own. For each project in the samples, the number of folders,
files and functions were evaluated together with the value of size in SLOCs.

Table 8 shows the summaries of the attributes of these samples: information on
the “programming languages” and “application domains” was also collected: depend-
ing on the programming language, OO projects was selectively interpolated with OO
models, and similarly for procedural projects. For some of the projects, information
on source functions could not retrieved, since their languages (like Python, PHP or the
such) were not supported by the available tools. These projects were discarded from
the model testing.

The modular characteristics of each project were used within a model obtaining an
estimated size as the dependent variable: this value was later compared with the real
value of size (in SLOCs). The error made by the estimation was evaluated as follows

error = abs
[

Sizere−Sizeest

Sizere

]
where Sizere represents the real size value, and Sizeest the estimate given by the

model. The p25 (the probability that the estimate diverges for less than 25% from the
real value) is recorded in Table 6. The summary differentiates among the application
domains of Table 1 and the patterns (p1 to p5) of Table 5: within the projects with
application domain “A” (Communication), the first row summarizes that:

Domain Drivers in the Modularization of FLOSS Systems 11

• 4 models from Table 7 and pattern p1, i.e. f(folder, file, function), estimate the
achieved size of a subset of projects (sharing the same programming paradigm of
these models – OO vs P) with an error < 25% ;
• only one model with the pattern p2 (f(folder, file)) can properly estimate the size in

SLOCs of one project with a similar error;
• 2 models with pattern p3 estimate the SLOCs of the two random samples with a

comparable error.

Table 6. Predictability of patters at p < 0.25
Pattern p1 p2 p3 p4 p5

A 4 1 2
B 2 1
C 5 1 1
D
E 1
F 4 3 2 1 1
G 11 3 2 1 2
H 10 5 3 1 1
I 9 5 2 1 1
J 2
K 14 4 2 1 2
L 16 2 2 1
M 2
N 1 1 1
O 3 1 1 1

Totals 77 30 20 7 9
% 53.85 20.98 13.99 4.90 6.29

5.2 Results of the Experiment

The following insights can be drawn from this summary table:

1. As visible in the last two rows, two patterns perform better than others in terms
of error made in the estimation of size (in SLOCs). Alone, the patterns p1 and
p2 cover 34 of the successful estimates: this means that the models based on one
attribute alone (i.e., number of folders, or files, or functions) explain the modular-
ization patterns of the majority of the projects in these samples. The size in SLOCs
is therefore predictable using just one attribute, and the ratio SLOCs/attribute rep-
resents a constant.

2. A subset of application domains (B, D, E, J, M, N) is more difficult to estimate
than others. This has two explanations: first, apart from the domain “M”, the evo-
lutionary sample of Table 2 does not contain projects belonging to this subset.

12 Andrea Capiluppi

Hence, specific models for these domains were not produced. Second, the two
random samples of FLOSS projects also contain few projects (6 overall) belong-
ing to these domains, hence making it difficult to draw conclusions on them.

3. A subset of application domains (F, G, H, I, J, L) is instead attracting several es-
timates from diverse patterns (although the patterns p1 and p2 still prevail). Apart
from the “G” (Internet) domain, they all represent front-end user applications (as
opposed to back-end system administrators): this result is therefore stating that the
projects in these domains have diverse modularization types, ranging from highly
modular (as mirrored by the p1 pattern) to the least modular, when the three mod-
ular characteristics (folder, file and function) are needed to estimate the size in
SLOCs (as mirrored by the pattern p5).

6 Conclusions

This paper used publicly available FLOSS data and shared metrics in order to pro-
vide a mechanism to classify the evolution of software systems. In past literature, the
shapes of evolutionary curves have been qualitatively observed, or univariate models
(size-time) have been used to draw similarities among systems. In this study, the re-
lationship between size (as dependent variable) and the modularization characteristics
of systems (number of source folders, files and functions – as independent variables)
was used to first extract models of evolution, select patterns out of these and then fit
these modularization models on a random sample of FLOSS projects.

The study was preceded by a research hypothesis: a unique modularization model
can not capture the variety of observed behaviors in FLOSS systems, but a set of mod-
ularization models is needed. The model (m0) used as a benchmark was a multi-variate
linear correlation, in the form size = a∗ f olders+b∗ f iles+c∗ f unction+d. This hy-
pothesis was tested through a cross-sectional analysis, using the whole set of gathered
FLOSS data (summing up to more than 1,300 data points). It was found that the single
model could not be considered statistically accurate for each and all the considered
systems.

As a result of the hypothesis testing, the presence of a whole set of modulariza-
tion models was investigated. For every FLOSS project in the pool, the benchmark
model m0 was analyzed, and the multi-collinearity issue was discussed: for some of
the projects, in fact, the multivariate model revealed the presence of collinearity among
some of the independent variables. In those cases, a simpler pattern was tested, either
with only two independent variables, or just with one. In some of the projects, the
multi-collinearity of the variables pointed to a complex pattern, where more than one
patterns were used to describe the evolution of modularization. As a result of this step,
it was observed a dominance of univariate and bi-variate patterns over the benchmark
model, which could be observed as statistically relevant (in terms of R2) only in 2 out
of 39 models.

In order to test these models, and their accuracy in predicting the modularization of
FLOSS systems, a random sample of FLOSS projects was extracted from the Debian
distribution and the SourceForge portal, and their modular characteristics recorded.

Domain Drivers in the Modularization of FLOSS Systems 13

The models were used to interpolate the variables, and to predict the size, of the FLOSS
projects: models with a specific programming paradigm (OO or procedural) were used
to interpolate the FLOSS projects using the same paradigm. This prediction was then
compared to the actual size in SLOCs of the project, with an error of 25%.

The first finding of this analysis showed that two patterns stand out in terms of pre-
diction power: p1 and p2 could cover up to 3/4 of the successful predictions. The sec-
ond finding pointed at the uneven distribution of domains in a random sample, showing
that specialized topics (Databases, Education) are also more difficult to model. The
third finding showed that high-end applications suffer from a high variety of modu-
larization patterns, ranging from very modular models (where each attribute can be
considered as constantly growing with the size) to uneven growth of each attribute,
resulting in a model where each attribute is needed to interpolate the achieved size.

References

1. Barry, E.J., Kemerer, C.F., Slaughter, S.A.: On the uniformity of software evolution patterns.
In: ICSE ’03: Proceedings of the 25th International Conference on Software Engineering,
pp. 106–113. IEEE Computer Society, Washington, DC, USA (2003)

2. Capiluppi, A.: Models for the evolution of os projects. In: ICSM ’03: Proceedings of the
International Conference on Software Maintenance, p. 65. IEEE Computer Society, Wash-
ington, DC, USA (2003)

3. Capiluppi, A., Boldyreff, C.: Identifying and improving reusability based on coupling
patterns. In: ICSR ’08: Proceedings of the 10th international conference on Soft-
ware Reuse, pp. 282–293. Springer-Verlag, Berlin, Heidelberg (2008). DOI 10.1007/
978-3-540-68073-4_31

4. Capiluppi, A., Morisio, M., Ramil, J.F.: The evolution of source folder structure in actively
evolved open source systems. In: METRICS ’04: Proceedings of the Software Metrics,
10th International Symposium, pp. 2–13. IEEE Computer Society, Washington, DC, USA
(2004). DOI 10.1109/METRICS.2004.40

5. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems: founda-
tions of the spe classification scheme: Research articles. J. Softw. Maint. Evol. 18(1), 1–35
(2006). DOI 10.1002/smr.v18:1

6. Ferrett, L.K., Offutt, J.: An empirical comparison of modularity of procedural and object-
oriented software. In: ICECCS ’02: Proceedings of the Eighth International Conference on
Engineering of Complex Computer Systems, p. 173. IEEE Computer Society, Washington,
DC, USA (2002)

7. Fitzgerald, B.: A critical look at open source. Computer 37(7), 92–94 (2004). DOI 10.1109/
MC.2004.38

8. Frakes, W.B., Pole, T.P.: An empirical study of representation methods for reusable software
components. IEEE Trans. Softw. Eng. 20(8), 617–630 (1994). DOI 10.1109/32.310671

9. German, D.M.: Using software trails to reconstruct the evolution of software: Research
articles. J. Softw. Maint. Evol. 16(6), 367–384 (2004). DOI 10.1002/smr.v16:6

10. Herraiz, I., Gonzalez-Barahona, J.M., Robles, G.: Towards a theoretical model for soft-
ware growth. In: MSR ’07: Proceedings of the Fourth International Workshop on Mining
Software Repositories, p. 21. IEEE Computer Society, Washington, DC, USA (2007). DOI
10.1109/MSR.2007.31

14 Andrea Capiluppi

11. Lauridsen, J., Mur, J.: Multicollinearity in cross-sectional regressions. Journal of Geo-
graphical Systems 8(4), 317–333 (2006). URL http://ideas.repec.org/a/kap/
jgeosy/v8y2006i4p317-333.html

12. Lehman, M.M.: Uncertainty in computer application and its control through the engineer-
ing of software. Journal of Software Maintenance 1(1), 3–27 (1989). DOI 10.1002/smr.
4360010103

13. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software change. Aca-
demic Press Professional, Inc., San Diego, CA, USA (1985)

14. Lerner, J., Tirole, J.: Some simple economics of open source. The Journal of Industrial Eco-
nomics L(2), 197–232 (2002). URL http://www3.interscience.wiley.com/
cgi-bin/fulltext/118942767/PDFSTART

15. McClure, C.: Software reuse techniques: adding reuse to the system development process.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1997)

16. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse. IEEE Trans.
Softw. Eng. 28(4), 340–357 (2002). DOI 10.1109/TSE.2002.995420

17. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns of open-
source software systems and communities. In: IWPSE ’02: Proceedings of the International
Workshop on Principles of Software Evolution, pp. 76–85. ACM, New York, NY, USA
(2002). DOI http://doi.acm.org/10.1145/512035.512055

18. Narduzzo, A., Rossi, A.: The role of modularity in free/open source software development.
In: S. Koch (ed.) Free/Open Source Software Development, pp. 84–102. Idea Group Pub-
lishing, Hershey, PA (2004)

19. Parnas, D.L.: On the criteria to be used in decomposing systems into modules pp. 139–150
(1979)

20. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher
Education (2001)

21. Prieto-Díaz, R.: Implementing faceted classification for software reuse. Commun. ACM
34(5), 88–97 (1991). DOI http://doi.acm.org/10.1145/103167.103176

22. Robles, G., Amor, J.J., Gonzalez-Barahona, J.M., Herraiz, I.: Evolution and growth in large
libre software projects. In: IWPSE ’05: Proceedings of the Eighth International Workshop
on Principles of Software Evolution, pp. 165–174. IEEE Computer Society, Washington,
DC, USA (2005). DOI 10.1109/IWPSE.2005.17

23. Smith, N., Capiluppi, A., Ramil, J.F.: A study of open source software evolution data using
qualitative simulation. Software Process: Improvement and Practice 10(3), 287–300 (2005).
DOI 10.1002/spip.230

24. Trochim, W.: The Research Methods Knowledge Base, Second Edition, 2nd edn. Atomic
Dog Publishing, Cincinnati, OH. URL http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20\&path=ASIN/1931442487

25. Yu, L., Chen, K.: Categorization of common coupling and its application to the main-
tainability of the linux kernel. IEEE Trans. Softw. Eng. 30(10), 694–706 (2004). DOI
10.1109/TSE.2004.58. Member-Schach„ Stephen R. and Member-Offutt„ Jeff

Domain Drivers in the Modularization of FLOSS Systems 15

Appendix

Table 7. Summary – Evolutionary Models
Id Project R2 Model
m1 abiword 0.97 y = 1009.771*folder + 325.588*file - 210142.563
m2 arla 0.99 y = 538.466*folder + 216.124*file - 15779.445
m3 gaim 0.97 y = 6401.148*folder + 8056.888
m4 gaim 0.99 y = 423.250*file + 664.207
m5 gaim 1 y = 38.941*funct + 6219.853
m6 ganymede 0.99 y = 6013.705*folder - 16.579*file + 18.290*funct - 18579.671
m7 gdylan 0.99 y = 262.675*file + 12.387*funct + 26653.283
m8 ghemical 0.99 y = -6665.506*folder + 595.308*file + 2807.564
m9 gimp_stable 0.99 y = -2249.964*folder + 156.274*file + 534680.665
m10 gimp_stable 1 y = -380.309*folder + 48.323*funct + 66610.831
m11 gimp_unstable 1 y = 59.860*folder + 53.262*funct - 28040.954
m12 grace 0.97 y = -5093.335*folder + 622.458*file + 40515.292
m13 htdig 0.99 y = 136.588*folder + 54.784*funct + -14221.918
m14 ksi 0.93 y = 346.067*file - 980.292*folder + 36294.173
m15 htdig 0.99 y = 50.658*file + 48.669*funct - 14224.314
m16 lcrzo 0.97 y = 5173.712*folder + 161.054*file + 19.255*funct - 12490.114
m17 motion 0.95 y = 0.000*folder + 77.202*funct -1174.557
m18 mplayer 0.99 y = -5057.409*folder + 678.961*file - 3626.076
m19 mrtg 1 y = 81.736*folder + 25.549*funct + 2218.992
m20 mutt 0.91 y = -1478.851*folder + 488.015*file + 6342.068
m21 mutt 0.97 y = 559.707*folder + 71.766*funct + -602.318
m22 netwib 0.95 y = 3426.807*folder + 76321.231
m23 netwib 0.99 y = 199.451*file + 71239.165
m24 netwib 1 y = 61.597*funct + 16614.239
m25 rrdtool 0.95 y = 8463.757*folder + 3154.039
m26 rrdtool 1 y = 1173.715*file + -39939.284
m27 rrdtool 0.99 y = 230.029*funct - 47495.961
m28 siagoffice 0.99 y = 1241.303*folder + 311.820*file - 15036.930
m29 vovida 0.98 y = -1244.999*folder + 344.516*file - 13420.463
m30 wine_stable 0.95 y = 4470.605*folder + 384237.197
m31 wine_stable 0.99 y = 777.483*file - 254581.635
m32 wine_stable 0.99 y = 36.475*funct + 189872.728
m33 wine_unstable 0.99 y = 5262.688*folder + 22096.140
m34 wine_unstable 0.99 y = 721.482*file - 157662.177
m35 wine_unstable 1 y = 44.415*funct - 39778.746
m36 xfce 0.98 y = 4667.436*folder + 8039.892
m37 xfce 0.95 y = 131.795*funct - 73091.477
m38 xmms 0.94 y = -1525.592*folder + 665.040*file - 39494.842
m39 xmms 0.97 y = -560.728*folder + 83.277*funct - 27330.425

16 Andrea Capiluppi

Table 8. SourceForge sample – modular characteristics (part 1)
SLOCs Fold File Funct Domain Lang

perpojo 1,677 10 31 117 A OO
moses 105,955 0 1,042 4,053 A OO
fn-javabot 10,142 35 211 279 A OO
ozone 63,790 141 1,018 3,920 B OO
xqilla 107,320 58 824 2,534 B OO
fsdb 241,218 362 1,715 8,506 B OO
galeon 93,374 11 412 3,525 C P
whiteboard 4,910 2 13 202 D php
fourever 15,163 28 207 593 E OO
hge 45,654 19 110 800 F P
zmpp 15,502 24 184 1,063 F OO
sudapix 234 8 111 15,747 F P
symbolica 2,623 5 32 67 F OO
icsDrone 1,411 1 14 33 F P
kpictorial 21 3 27 18,214 F sh
critical_care 38,994 18 185 1,051 F OO
ogce 350,490 1,385 3,222 13,960 G OO
cpia 22,954 6 25 109 G P
mod_aspdotnet 2,445 4 13 45 G OO
xmlnuke 57,944 33 395 1,623 G php
wxactivex 3,264 1 11 37 G OO
tab-2 19,067 63 334 597 G php
source 8,786 128 109 162 G OO
oliver 1,429 2 21 9 G php
formproc 3,514 11 70 134 G OO
freemind 28,519 30 241 1,579 H OO
cdlite 1,116 1 6 29 H OO
audiobookcutter 4,229 8 37 34 H OO
edict 2,556 1 2 0 J perl
qlc 26,452 10 203 890 J OO
swtjasperviewer 3,214 4 43 129 K OO
QPolymer 86,971 7 199 652 L OO
expreval 3,588 2 18 66 L OO
eas3pkg 43,724 5 101 69 L f90
neocrypt 2,135 3 27 21 M OO

Domain Drivers in the Modularization of FLOSS Systems 17

Table 9. SourceForge sample – modular characteristics (part 2)
SLOCs Fold File Funct Domain Lang

juel 7,284 15 110 404 N OO
csUnit 16,241 41 234 96 N cs
j_trac 519 34 157 12,771 N OO
fitnesse 39,503 37 631 2,321 N OO
ustl 11,416 2 94 684 N OO
txt2xml 1,345 9 25 61 N OO
gvision 101,123 9 236 0 N pascal
seagull 54,155 102 362 878 N OO
clinkc 25,846 140 432 919 N P
simplexml 1,691 3 4 65 N P
pf 213 33 166 84,489 O perl
Beobachter 2,715 14 49 94 O OO
blob 22,056 15 276 496 O P
intermezzo 34,792 15 167 522 O P
cotvnc 37,455 2 225 789 O P

Table 10. Debian sample – modular characteristics (part 1)
SLOCs Fold File Funct Domain Lang

kphoneSI 41,829 10 263 735 A OO
sylpheed 106,087 6 249 2,859 A P
enigmail 10,790 13 53 86 A OO
synce-kde 21,684 6 95 141 C sh:
txt2html 3,623 2 3 0 E perl:
scid 89,402 6 151 1,179 F tcl:
netpanzer 74,368 42 598 2,935 F OO/P
boson 224,567 78 1,272 9,246 F OO
gosa 107,798 101 466 2,404 G php:
lirc 44,753 26 148 785 G P
openh323 234,285 30 451 6,392 G OO
openafs 618,553 195 2,452 10,807 G P
peercast 22,543 8 95 818 G OO
slrn 42,993 5 91 1,189 G P
cherokee 54,229 17 432 1,221 G P
vlc 401,256 129 1,378 6,250 H P
cdparanoia 9,182 3 37 211 H P/P
kmouth 5,240 3 41 99 H OO
rlplot 69,493 1 27 1,449 H OO
flac 56,293 42 206 1,380 H P

18 Andrea Capiluppi

Table 11. Debian sample – modular characteristics (part 2)
SLOCs Fold File Funct Domain Lang

gwenview 4,580 4 62 128 H OO
prcs1 37,360 8 130 663 H OO/P
yaml4r 10,728 8 31 0 I ruby:
xmakemol 18,724 1 39 315 I P
octave_forge 78,150 129 409 0 I OO/P
myphpmoney 19,434 11 64 153 I php:
dia 146,550 43 561 4,151 I P
grass6 107,648 115 558 1,650 I P
geomview 101,844 86 771 2,748 I P
ProofGeneral 48,692 22 134 0 I lisp:
fte 51,498 2 186 1,182 K OO
ruby 419,942 260 2,076 5,086 K ruby:
EtoileWildMenus 1,711 1 21 2 K OO
tcl 165,306 23 378 2,205 K P
wxWidgets 2,142,713 372 4,325 0 K OO
libax25 11,721 1 30 80 K sh:
liboil 52,996 39 304 730 K P
libsoup 15,012 3 86 494 K P
Pike 173,196 62 408 2,302 K P
shorewall 25,159 6 74 0 L sh:
acpidump 2,349 1 16 53 L P
tiobench 1,689 1 8 41 L P
radiusd 95,967 101 397 1,330 L P
preludemanager 10,854 15 70 304 L P
apmud 2,502 1 14 45 L P
clamav 116,731 24 339 1,056 L P
tdb 3,942 3 19 133 L P
grub 3,536 1 7 0 L sh:
noteedit 63,456 3 139 611 M OO
jToolkit 4,156 5 32 0 M python:

