Warehousing and Studying Open Source
Versioning Metadata

Matthew Van Antwerp' and Greg Madey?

! University of Notre Dame mvanantw@cse.nd.edu
2 University of Notre Dame gmadey@cse.nd.edu

Abstract. In this paper, we describe the downloading and warehousing
of Open Source Software (OSS) versioning metadata from SourceForge,
BerliOS Developer, and GNU Savannah. This data enables and supports
research in areas such as software engineering, open source phenomena,
social network analysis, data mining, and project management. This
newly-formed database containing Concurrent Versions System (CVS)
and Subversion (SVN) metadata offers new research opportunities for
large-scale OSS development analysis. The CVS and SVN data is juxta-
posed with the SourceForge.net Research Data Archive [5] for the pur-
pose of performing more powerful and interesting queries. We also present
an initial statistical analysis of some of the most active projects.

1 Introduction

Versioning programs have been in use by open source software projects for many
decades. Publicly available logs offer a development trail ripe for individual and
comparative studies. In this paper, we describe the downloading and warehousing
of such data. We also present some preliminary data analysis. The process is
similar to that done in [2] which described an approach to populating a database
with version control and bug tracking system data for individual project study.
At Notre Dame, Jin Xu also took an individual project approach to retrieving
and studying projects on SourceForge [6]. Xu built a similar retrieval framework
however for web pages to gather project statistics.

2 SourceForge.net Data

Most of SourceForge’s data is stored in a back-end database. The actual source
code is stored in a Concurrent Versions System (CVS) or Subversion (SVN)
repository. The data stored there includes who is making a change to the code,
how the new version of the code differs from the most recent version, the number
of removed and new lines of code, a revision number, a comment, and a times-
tamp. The entire history of a project can be reviewed by walking chronologically
through one or more CVS or SVN logs. The logs tell us what changes a project
has undergone, when those changes took place, and by whom. We have recently
obtained CVS and SVN metadata (everything except the actual code) and built
another database that is juxtaposed with the back-end database. This data is
available for scholarly research at http://srda.cse.nd.edu .



3 Concurrent Versions System

Concurrent Versions System (CVS) is software developed for software version
control allowing simultaneous use by multiple users. It is built upon the Revision
Control System (RCS) software, which takes care of individual file versioning [4].
CVS provides a layer of abstraction allowing for concurrent access to a particular
RCS file with intelligent conflict mediation. CVS also groups files together into
a logical entity (a project) and allows tagging of particular file revisions as a
logical snapshot (a project release, for example) [1].

We downloaded log data from all projects on SourceForge.net that use CVS
for version management and also allow anonymous CVS access. To do so, the
following CVS command was used:
cvs -d:pserver:anonymousQPROJECT.cvs.sourceforge.net:/cvsroot/PROJECT rlog .

Using rlog instead of log allows the process to run without having to run a
time and space-consuming checkout command. The dot (.) at the end is used
in place of a module name to indicate that log data is being requested for all
modules.

Similarly, we downloaded CVS metadata for the projects on the open source
hosting platform BerliOS Developer and GNU Savannah.
cvs -d:pserver:anonymous@cvs.savannah.gnu.org:/sources/PROJECT rlog .
cvs -d:pserver:anonymous@cvs.berlios.de:/cvsroot/PROJECT rlog .

For obtaining SVN data, the following commands were used:
svn log --verbose http://PROJECT.svn.sourceforge.net/svnroot/PROJECT
svn log --verbose svn://svn.berlios.de/PROJECT

svn log --verbose svn://svn.savannah.gnu.org/PROJECT

4 Download Process

The method employed was to make one serial line of requests on multiple ma-
chines. Due to the lack of physical machines at our immediate disposal, and the
ease with which they can be set up, virtual machines were employed. In addi-
tion, if a machine were about to make a request to the same CVS server it just
contacted, a stall time was employed. When this occurs, the virtual machine
(VM) would sleep for 5 seconds before making the next request.

4.1 Job Distribution

We wrote a central server process to handle distributing jobs to each VM. This
process spawned a process for each VM which would submit a project name
that the VM would download and then return a signal for one of the following:
1) success, 2) initiation failure, or 3) progress failure. Upon return, the handler
process would then submit a new project name to the VM it handles and the
cycle continues. The information was tracked in a database on the central server.
The database contained the name of the project, the name of the server (VM)
the job was deployed to, the timestamp of the submission, the returned signal,



the timestamp of the returned signal, and if applicable, the number of lines in the
downloaded CVS log. In order to monitor the download progress and be aware
of potential problems, a web frontend using AJAX was deployed to monitor the
database. A schematic of this process is shown in figure 1.

Central Server g
@ SOAP Request

CWS/SWN Download
- Monitoring
- Database

E| Monitoring . )
Website Virtual Machines
—

E Berlios
SourceForge

Savannah

Fig. 1. Diagram of the job distribution and download process. This can be easily
modified to retrieve other publicly available data or rsync the code instead of just
retrieving the metadata.

SourceForge.net CVS data was obtained over the span of about 7 days.
SourceForge SVN data took about 2 days to download. Obtaining CVS and
SVN data for BerliOS and Savannah took about 48 hours total. The number of
projects successfully downloaded from each site is shown in table 1.

Any changes made to projects since the log files were downloaded are ob-
viously not present in our database. Therefore, continuous updates to the data
are necessary, a data warehousing issue brought up in [3]. Two aspects of the
database and the log files make this relatively simple to do. CVS contains a filter
option to only return log information after a specified time. For each project, we
can search in our database to find the most recent timestamp, and then use that
as the range specifier and only new updates will be returned. SVN allows a user
to specify a range of revisions when running the log command. In this case, we
can simply retrieve the number of the latest revision and download all revisions
since that one.

5 The Database

Due to space constraints, details on the log parsing and database design are
omitted. ER diagrams for the CVS and SVN database are provided in figure 2.



Table 1. Number of logs downloaded from each hosting site, classified by versioning
software

Hosting Site CVS SVN
SourceForge 103869 24416
BerliOS 1252 1718
Savannah 1775 8
cvs_revisions .
n cvs_symbolic_names
CVS main file_name: text PK FK -

- revision: text PK file_name: text PK FK
f}:x_grou;.:_name: text PK FK time: integer synl_)o'@ic_narne: text PK
hl ZTn:rneé text ¢ user_name: text FK revision: text
ead: tex state: text

total_revisions: integer
branch: text
description: text

lines_plus: integer
lines_minus: integer
branches: text

ﬂ log_message: text

Ccvs_user_grou
CVs_groups = -9 p CVS _users

) unix_group_name: text FK
unix_group_name: text PK 1| user name: text FK —r—> user_name: text PK
developers: integer =

first_commit_time: integer commits: integer
last_commit_time: integer

svn_revisions

unix_group_name: text
revision: text PK
user_name: text FK Bl
time: integer
lines: integer
log message: text

svn_files

revision: integer PK FK
type: character

file: text PK
original_file: text
original_rev: integer

svn_user_group svn_users
sSvn _groups unix_group_name: text FK > user_name: text PK
. lel | user_name: text FK commits: integer
unix_group_name: text PK N : N :
first_commit_time: integer

developers: integer

last_commit_time: integer

Fig. 2. Entity Relation (ER) diagrams for the new CVS and SVN database.

6 Data Analysis

In this section, we present some quantitative data on gcc and emacs, two ex-
tremely mature and long-lived open source projects from GNU Savannah.

The GNU Savannah hosted project gce is the GNU C compiler. The CVS log
begins in 1988 and had 345,723 file commits up until November 2005 when the
project was transferred elsewhere. Certain months had nearly 10,000 commits.
Nearly 300 people have contributed to the project in its 20 year history. The
CVS log file for gcc was the largest of all projects that were downloaded, with a
size of about 1.5 GB. The graph is found in figure 3.

Another mature project hosted on Savannah is emacs, the popular editor.
200 users have contributed since its initial CVS checkin in 1985. The most active



CVS Line Changes - Savannah Project gcc File Changes Per Month - Savannah Project gcc

4e+07 12000

3 3.5e+07
>
S 3es07 g 10000
S S
g 2.5e+07 E 8000
% 2e+07 8
2 1.5e+07 % 6000
2 tes07 e
g o S 4000
3 5e+06 °

0 = 2000

o o @ © © [} (o2 (o2

o o o o o o o o

+ + + + + + + + 0

8 8 & 8 & 2 2 &

= = 0 50 100 150 200 250
unix time months since project inception

Fig. 3. Savannah project gcc

months had over 2500 file commits, with a total of 122,254 commits over all time.
The information is graphed in figure 4.

CVS Line Changes - Savannah Project emacs File Changes Per Month - Savannah Project emacs
5e+06 3000
2 4.5e+06
=4 4e+06 s 2500
£ 3.5e+06 ]
G
® 3e+06 £ 2000
£ 25406 g
o
2 26+06 @ 1500
S 1.5e+06 2
€ 1e+06 _g 1000
3 500000 o
0 = 500
o @ © © © © [} (=23 (o2 (o2
o o o o o o (=3 (=] (=3 (=3
+ + + + + + + + + + 0
(3 @ ol @ o) Jo) L D L) L]
¥ O © N ©®© ® = = oA o

0 50 100 150 200 250 300

unix time months since project inception

Fig. 4. Savannah project emacs

While these are relatively simple quantitative statistics, right away there
are interesting portions that warrant further investigation. Both gcc and emacs
have a slight, but noticeable lull in activity before a sustained increase in activity.
Comparing the cumulative line changes graphs for the projects, the lull occurs
for both approximately mid-2001, roughly coinciding the dot-com bubble burst.
Another trend noticed in some of the younger and less mature projects was
a distinct pattern in the cumulative line changes graphs. These graphs often
showed a period of positive acceleration, then an inflection point, then negative
acceleration. This would seem to indicate an increasing number of additions
to the software, a peak activity period, followed by a level of code maturity
where most of the fixes are minor (patches and bug fixes). The patterns in
development activity, and comparison of these patterns across different projects
will be examined more thoroughly in a future publication.



7 Conclusions

This large data set offers a multitude of open source software and social net-
working research opportunities. We can learn about project development trends
and group similar projects together by development similarity. We can examine
contribution trends by individual coders. We can see how they migrate from
project to project and how the amount and types of contributions differ over
time. This site has the potential to become a very important and valuable re-
search hub for researchers of various fields. It is likely that many of the users
of our SourceForge Research Data Archive will benefit from the CVS and SVN
database and site features.

8 Acknowledgments

Research reported in the paper was supported in part by the National Science
Foundation’s CISE IIS-Digital Society & Technology program under Grant ISS-
0222829 and by the National Science Foundation’s CISE Computing Research
Infrastructure program under Grant CNS-0751120

References

1. Per Cederqvist. Version management with cvs, 2002.

2. Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In In Proceedings of the
International Conference on Software Maintenance, pages 23-32. IEEE Computer
Society Press, 2003.

3. Elke A. Rundensteiner, Andreas Koeller, and Xin Zhang. Maintaining data ware-
houses over changing information sources. Commun. ACM, 43(6):57-62, 2000.

4. Walter F. Tichy. Rcs—a system for version control. Softw. Pract. Exper., 15(7):637—
654, 1985.

5. Matthew Van Antwerp and Greg Madey. Advances in the sourceforge research data
archive. In Workshop on Public Data about Software Development (WoPDaSD) at
The 4th International Conference on Open Source Systems, Milan, Italy, 2008.

6. Jin Xu, Yingping Huang, and Greg Madey. A research support system framework for
web datamining research: Workshop on applications, products and services of web-
based support systems. In The Joint International Conference on Web Intelligence
(2003 IEEE/WIC) and Intelligent Agent Technology, pages 37—41, Halifax, Canada,
October 2003.



