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Abstract. In this paper, we present a new approach to localize
a bug in the software source file hierarchy. The proposed ap-
proach uses log files of the revision control system and bug
reports information in open bug repository of open source
projects to train a Support Vector Machine (SVM) classifier.
Our approach employs textual information in summary and
description of bugs reported to the bug repository, in order to
form machine learning features. The class labels are revision
paths of fixed issues, as recorded in the log file of the revi-
sion control system. Given an unseen bug instance, the trained
classifier can predict which part of the software source file hi-
erarchy (revision path) is more likely to be related to this is-
sue. Experimental results on more than 2000 bug reports of
‘UI’component of the Eclipse JDT project from the initiation
date of the project until November 24, 2009 (about 8 years) us-
ing this approach, show weighted precision and recall values of
about 98% on average.

1 INTRODUCTION

Both the total number of open source software projects and the total amount
of open source code in the world, are growing at an exponential rate[1]. In addi-
tion, the number of developers interested in working in this field, are increasing
tremendously fast. For example, the number of developers involved in the Linux
kernel development project has doubled over the past three years[2]. Hence, one
should expect a very high rate of bug reporting to the issue tracking system of
large open source projects. As an example, consider the case of the Eclipse open
bug repository, with an average bug reporting rate of above 50 issues per day
from January 1 until November 24, 2009[3]. Suppose that each issue takes an
average of ten minutes from a developer in order to be localized in the software
source file hierarchy. This simply means, at least 8 professional person-hours per
day is required merely for searching where the buggy piece of the code is located,
which is indeed an invaluable and rare resource for most open source projects.



In this paper, we present a new approach for automating bug localization, i.e.
finding the most relevant part of the software source file hierarchy to a bug
reported to an open bug repository. Firstly, we analyze the history of source
revisions, available in the log file of the version control system, in order to find
the bug IDs and their corresponding revision path (path of the revised file during
a successful bug fix). Secondly, we send a query to the open bug repository of the
project in order to obtain summary and description of the extracted bug IDs.
Then, we prepare our dataset in the proper and acceptable format for training
the classifier. Afterward, we perform the classification via training a Support
Vector Machine (SVM) classifier. Finally, given a new bug, we can localize the
bug in the software source file hierarchy using the trained classifier.

Our approach is novel in that we use the large amount of valuable infor-
mation in the open bug repositories of open source projects rather than per-
forming analysis on the software source repositories to find latent software de-
fects[14][15][16][17][18][19][20][21]. Moreover, rather than looking for an exact
bug-related source file and its line number, we localize the bug in one higher
level of the software source file hierarchy (file path). One of the possibly useful
applications of this approach could be in bug triage, i.e. deciding each reported
issue should be assigned to which developer in order to be fixed[4] in a time
and cost effective manner. In that problem, the triager could assign bugs with
respect to the field of expertise[5] and level of interest[6] of developers in that
particular part of the software source file hierarchy.

The paper is organized as follows. Section 2 provides some background about
revision control systems, open bug repositories and machine learning. In section
3, we present the proposed approach for bug localization. Section 4 provides
validation and experimental results, and Section 5 reviews related work. Finally,
we draw conclusion and suggest future work in section 6.

2 BACKGROUND

To understand the proposed approach one should be familiar with various areas
including version control systems, open bug repositories and machine learning.
We review the related concepts of these topics by giving examples from Eclipse
projects.

2.1 Version Control Systems

A Version Control System (or more accurately, revision control system) is a
combination of technologies and practices for tracking and controlling changes
to a project’s files, in particular to source code, documentation, and web pages.
The main role of such a system is change management via identifying each
change to the project, annotating it with relevant metadata such as the date,
author, and possibly the reason of that change, and finally replaying these facts



to whoever asks, in the desired format. In other words, it is an inter-developer
communication mechanism where a change is the basic unit of information. The
most widely used revision control system in the Free1/Open Source Software
(FOSS) world is Concurrent Versions System (CVS). Although it has become
the default choice along the time and most experienced developers are already
familiar with CVS, it has few disadvantages which consequently has led to the
emergence of a number of alternatives such as Subversion (SVN), Git, Bazaar,
and Mecurial[7].

Fortunately, the log files of the version control system for different components
of a software project could be queried and saved in separate files. Figure 1 shows
a very small part of the CVS log file for ‘Core’component of the Eclipse JDT
project.

Fig. 1. A small part of a sample CVS log, the Eclipse JDT Project. (’...’ represents
the omitted lines.)

2.2 Open Bug Repositories

Providing a bug tracking system (or more accurately, issue tracking system) is
one of the necessary tools of open source software development[7]. A bug tracking
system usually consists of a database known as bug repository which contains
information about the bug reports. Almost any open source project is supported
by an open bug repository in which anyone could have a username and password
and either report an issue or put a comment on an existing report.

There are various bug tracking software such as Bugzilla and JIRA. Further-
more, some projects like Debian GNU/Linux have their own bug tracking sys-
tem[8].

1Here, Free is a matter of liberty, not a matter of price. For more information please
visit http://www.gnu.org/philosophy/free-sw.html



Structure of Bug Reports

One of the better known bug tracking systems is Bugzilla. A typical bug report
in Bugzilla consists of various parts including the predefined fields, free-form
text, attachments and dependencies[4].

Figure 2 depicts the predefined fields in a sample bug report of the Eclipse
bug repository. This bug report corresponds to the CVS log shown in figure 1.
Some predefined fields such as the bug ID or reporter are specified when the
report is created and fixed over the life cycle of the bug report (this life-cycle
is covered in the next subsection). Other fields, either change successively while
the bug report is tossed among the developers, i.e. forwarded from the developer
to whom it is initially assigned to another one[9], like the Assigned To field, or
change occasionally such as the Importance or the CC list2[10].

Fig. 2. Predefined fields in a sample Bugzilla bug report

The free-form text includes a one line summary of the issue, also known as its
title, a detailed description of the report which should help a developer reproduce
the bug and finally a number of comments on this issue which might refer to
other similar bugs[4].

Other parts of bug reports include attachments and dependencies. Attachments
are usually non-textual information such as screen-shots. Moreover, the bug
tracking system tracks bugs which their resolution depend on fixing a specific
bug report[10].

2The CC list is the list of the email addresses of people who are interested to be
kept up-to-date about the status of the issue.



Life-cycle of Bug Reports

Initially, when a new issue comes to the open bug repository of the Eclipse
projects, its status field is set to NEW. Then either it is assigned to a developer
by the triager or a volunteer developer accepts its responsibility. Consequently, it
is tagged with ASSIGNED.3 At the end, when there is no remaining task due to
the resolution of the bug report, it is marked as RESOLVED. If the triager finds
that this issue is already reported, it is marked as RESOLVED DUPLICATE. If
the report is not indeed a bug report, for example it states a natural feature of
the software which is mistakenly thought to be a bug, the report is tagged with
RESOLVED INVALID. When the erroneous behavior is not repeatable, perhaps
because of poor description of the problem, the developer sets the status to
RESOLVED WORKSFORME. Otherwise, the resolution might need applying
changes in the source code which causes the issue to be marked as RESOLVED
FIXED. If a bug is believed to be unsolvable for any reason, it will be tagged
with RESOLVED WONTFIX[11].

The resolution status of the RESOLVED reports may later change to VERI-
FIED and then CLOSED. One is allowed to reopen a previously RESOLVED,
VERIFIED or even CLOSED issue at any time. Figure 3 shows the typical
life-cycle of the Eclipse bug reports[11].

Fig. 3. Life-cycle of bug reports in Eclipse projects

3There exist few cases in which bug reports are not assigned to developers and
resolved immediately by the triager.



In this paper, we only care about the bug reports which are either RESOLVED
FIXED, VERIFIED FIXED or CLOSED FIXED.

2.3 Machine Learning

Machine learning is a discipline concerned with design and development of al-
gorithms in order to allow computers to learn how to recognize complex patterns
in data, to be able to make smart decisions. In the context of machine learning,
the training data consist of a number of examples which are called instances.
Each instance bears a number of input objects known as attributes or features
which are usually encapsulated in a vector. In supervised machine learning an
output value is assigned to each instance of the training data in advance and
the problem is to deduce a function in order to predict the output value of any
similar valid input vector. If the output value is a continuous value, the prob-
lem is called regression; otherwise, the output value is called the class label,
the function is named as classifier and the problem is called classification. One
of the many applications of this kind of classification is in text categorization,
where the classifier is expected to assign a relevant category to an arbitrary text
document based on a number of previously seen examples[12][13].

3 THE PROPOSED APPROACH

Given a new bug report from the open bug repository of an open source software
project, our approach uses a Support Vector Machine (SVM) classifier to suggest
the part of the source file hierarchy which is more likely to be related to this
issue. The suggestion is made based on a number of previously seen examples,
i.e. fixed bug reports in the past. Various components engaged in the proposed
approach are presented in figure 4.



Fig. 4. Various components of the proposed approach

Our approach has three steps:

1. Analyzing the Revision Logs

When a bug is fixed by a developer, the revision path, i.e. the path of the
file which is revised due to this bug resolution, is not mentioned anywhere in
the open bug repository. Consequently, one should analyze the entire change
history of a specific software component in the log file of the version control
system for that component, in order to find patterns such as ‘fix for bug
no ...’or similar among the comments of developers. The extracted bug IDs
are used in step two, and the revision paths are used as class labels of the
classifier in step three.

2. Querying the Bug Repository

For each extracted bug ID in the previous step, we send a query to the bug
tracking system and ask for the summary and description of that bug ID.

3. Training the Classifier

After conducting previous steps, we have the revision path in software file
hierarchy as well as the summary and description for each resolved bug ID.
We use this information to train a Support Vector Machine (SVM) classifier.



4 VALIDATION & EXPERIMENTAL RESULTS

We have trained and tested our classifier with fixed4 bug reports in the open
bug repository of the Eclipse JDT Project (‘UI’component), reported from the
initiation date of the project until November 24, 2009. Thus, we have worked
with more than 2000 bug reports.

We analyze the revision logs through the aid of a couple of useful GNU/Linux
(and UNIX) commands, grep and awk. The result of this step is expected to be a
number of textual files, each named with an existing path (directory level rather
than file level) in the source file hierarchy and filled with all bug IDs related to
that specific path.

After analyzing the CVS log file of the software component, 23 revision paths
were found. A few number of these paths as well as the number of bug reports
related to each, are shown in table 1.

Table 1. Several revision paths of ‘UI’component of the Eclipse JDT project

Revision paths No. of bugs

ui/org/eclipse/jdt/internal/ui/ 1392
core extension/ 133
core refactoring/ 137
ui/org/eclipse/jdt/ui/ 203

We have developed a Java application in order to connect to the Bugzilla open
bug repository of the Eclipse JDT project using XML Remote Procedure Call
(XML-RPC), a well known protocol for performing remote procedure calls over
HTTP. For each of the bug IDs gathered in the previous step, we send a query
to the bug tracking system and ask for the summary and description of that
bug report. Eventually, we save the collected information about each bug in a
separate textual file, named the same as the bug ID. One should keep every file
related to a specific revision path in a distinct directory which is named after
the revision path, in order to create a dataset to be used in the following steps.

In order to implement our approach, we use the Free/Open Source Software
(FOSS) suite for machine learning written in Java, called WEKA. WEKA re-
quires both the training and testing datasets to be in a standard format called
ARFF. Fortunately, there is a converter, named TextDirectoryLoader in WEKA.
This converter, receives a number of directories which contain a set of text files,
and then treats the directory names as class labels, the text files as instances of
each class and the information within each text file as features of that instance.
The output of this converter is an ARFF file as desired.

4Trivially, the revision path for unfixed bugs is meaningless.



Since the classifier which we use in the next step cannot handle String at-
tributes, we must apply an appropriate filter to the dataset, i.e. the ARFF file,
in order to perform TF-IDF (Term Frequency-Inverse Document Frequency)
transformation. This transformation is often used in information retrieval and
text mining problems in order to give a weight to each term, based on the num-
ber of occurrence of the term. The basic assumption is that the more times a
specific term appears in a text document, the more important it is to that doc-
ument[25]. There is a filter in WEKA, called StringToWordVector which does
the needed transformation easily. The output is still an ARFF file.

The classifier also cannot handle numeric attributes. However, our ARFF file
contains a number of such attributes. The solution is applying another filter
available in WEKA, named NumericToNominal. Now, the resulted ARFF file is
ready to be used for training the SVM classifier.

After gathering and preparation of the dataset, the next step is to train the
classifier and validate the learned model.

We use an improved Support Vector Machines (SVMs) algorithm, called Se-
quential Minimal Optimization (SMO) with linear kernel. SMO is much faster
and more memory-efficient than the initial SVM algorithm[26][27]. We use bi-
nary SMO implementation with linear kernel which is available in WEKA as
BinarySMO. This implementation replaces all missing values and transforms
nominal attributes into binary ones. It also normalizes all attributes by default.
The multi-class problem is solved by using pairwise classification[28]. Table 2
shows several normalized attribute weights of our dataset.

Table 2. Several normalized attribute weights

Attribute(term) Weight

JavaCore 0.0847
Synchronizer -0.0328
WM CHAR 0.0173
container 0

As in any other machine learning problem, we should somehow evaluate the
performance of our approach. We use ten fold cross validation for training and
validation of the linear SVM classifier. The detailed evaluation results are pro-
vided in table 3.

The True Positive (TP) rate is equivalent to Recall. It measures how much part
of the class is captured. In other words, the TP rate (Recall) is the proportion



Table 3. Detailed evaluation results of the binary SMO classifier

TP Rate / FP Rate / Precision / Recall / F-Measure / Class

0.992 0.062 0.99 0.992 0.991 0
0.938 0.008 0.951 0.938 0.944 1
0.985 0.055 0.985 0.985 0.965 Weighted Avg.

of the instances which are classified as class A, among all instances which indeed
have class A.

The False Positive (FP) rate is the proportion of the instances which are
classified as class A, but belong to a different class, among all instances which
are not of class A.

The Precision is the proportion of the instances which indeed have class A,
among all those instances which are classified as class A.

Since, often there is a trade-off between precision and recall, it is com-
mon to measure the classification performance via a mixture of both, called
F-Measure[29].

F − Measure = 2∗Precision∗Recall

Precision+Recall

Finally, Accuracy is the proportion of the total number of correctly classified
instances among all instances. Our accuracy through the classification has been
98.5137%.

5 RELATED WORK

We are aware of a number of valuable efforts in the field of bug localization
automation. One possible approach is trying to find bugs through checking ei-
ther a well-specified program model[14] or real code directly[15][16] within the
software source code. This approach is called static analysis[17].

Gyimothy et al.[18] use two groups of machine learning algorithms, decision
trees and neural networks to predict buggy classes with a static code analysis
approach.

The second approach is called dynamic analysis which is concerned with the
comparison of the run-time behavior of correct and incorrect executions in order
to localize suspicious segments of the source code[19][20]. This approach only
labels program executions as correct or incorrect and needs no prior knowledge
of the semantics of the software project[17].

Brun and Ernst[21] use Ernst’s Daikon dynamic invariant extractor[22] to cap-
ture invariant features from the software source code with known errors and
with errors removed. Then two groups of machine learning algorithms, Support
Vector Machines (SVMs) and decision trees are employed to classify invariants
as either fault-invariant or non-fault-invariant.



Most recently, Kim et al.[23][24] has proposed a new technique for predicting
latent software bugs, called change classification. They use Support Vector Ma-
chines (SVMs) to predict whether a specific change to the software source is
more likely to be buggy or clean, based on the previous change history.

Kim et al.’s approach is similar to ours in a couple of aspects. Firstly, they
analyze log files of the version control system of software projects to find related
bug fixes in order to label that change in the source code as buggy. Similarly, we
analyze those files in order to find bug-fixing revisions. However, we have nothing
to do with the source code. Instead, we use the bug ID which is mentioned in the
revision log to query the corresponding bug report from the open bug repository
of the software project. Secondly, both works use machine learning algorithms
for classification, in particular Support Vector Machines (SVMs), While the fea-
tures (in the machine learning sense), class labels and also the aim of the two
approaches are completely different. Our goal is to predict the most related part
of the software source file hierarchy to a newly reported bug. In contrast, they
try to predict whether a particular change made by a developer to the source
code is more likely to be buggy or clean. Further, we use textual information
of bug reports in open bug repositories to form our features. However, they use
properties of the change made to the software. An example of such property has
been mentioned as the frequency of words that are present in the source code,
before and after performing the change. Finally, our class labels are various revi-
sion paths in the software source file hierarchy, while their class labels are clean
and buggy.

6 CONCLUSION & FUTURE WORK

In this paper, we have presented a new approach to localize bugs in the source
file hierarchy of open source software projects. We have used Support Vector
Machines (SVMs) for predicting the file path which is more likely to be related
to a given software bug report, using its summary and description. The classifier
has been trained using the information of fixed bugs in the past.

We have evaluated our approach on ‘UI’component of the Eclipse Java De-
velopment Tool (JDT) project. Both precision and recall values are about 98%.
Applying this approach on other FOSS projects remains as future work.

Removing stop-words and performing stemming are two common data prepa-
ration tasks in text categorization problems. Here, since the experimental results
are satisfying even without such preparations, we decided not to get involved
with them through this work. However, it is a worthy effort to examine the
effects of those techniques on other FOSS projects in future work.

One part of our future work involves applying other machine learning algo-
rithms to the same dataset and comparing the results. We are also interested in
using our approach, in the field of automated bug triage, as discussed in Section
1.

Finally, one could extend the proposed approach in order to localize the
bug, either in file level or on its exact line of code, instead of our hierarchical



directory level bug localization effort. Moreover, using our approach one could
find the more buggy parts of the code in order to prioritize development tasks.
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