
Ginga-J - An Open Java-based Application
Environment for Interactive Digital

Television Services

Raoni Kulesza1,2, Jefferson F. A. Lima, Álan L. Guedes, Lucenildo L. A.
Junior1, Silvio R. L. Meira2, Guido L. S. Filho1

1Laboratory of Digital Video Application (LAVID)
Federal University of Paraiba (UFPB)

Cidade Universitaria - 58059-900,
João Pessoa/PB, Brazil

{raoni, jefferson, alan, lucenildo, guido}@lavid.ufpb.br

2Informatic Center (CIn)
Federal University of Pernambuco (UFPB)

Cidade Universitaria - 50740-560,
Recife/PE, Brazil

srlm@cin.ufpe.br

Abstract. This paper aims to present a Ginga-J’s reference implementation.
Although based on a particular platform, the implementation not only works as
a proof of concept, but also raised several issues and difficulties on the software
architecture project that should be taken into account to ease extensibility and
porting to other platforms. Ginga is the standard middleware for the Brazilian
DTV System. Its imperative environment (Ginga-J) is based on new JavaDTV
specification and mandatory for fixed terrestrial receptors

1. Introduction

With arise of the Digital TV a new set of functionalities were incorporated to the
shows offered by stations as well as to the DTV’s receptors. Therefore, the TV
environment has become more interactive, as TV systems (or middleware) now offer
an environment for the execution of interactive applications. These applications can
be transmitted and executed along with multimedia content such as audio, video,
image, text, etc, thus enabling the increase of interactivity between viewers and the
television through applications such as games, polls, etc. [1]. All those services or
applications could not be possible without the support of an intermediary software
layer, called middleware, installed on each access terminal.
The execution of a same application in different devices with distinct processing
capacities and hardware architectures is achieved through the specification of well-
defined software architecture. The main role of a Digital TV middleware is to act as
an intermediary software layer between the operating system and the interactive
applications, abstracting specific characteristics of the platform and providing a series
of specific services to the above layers. Thus, it is possible the developing of portable

2 Raoni Kulesza et al.

applications to many distinct receptors.
The main DTV middleware open specifications offer support to the execution of
interactive applications in two environments: a declarative and an imperative [2]. On
the Brazilian Digital TV System, the declarative environment is represented by the
Ginga-NCL [3][4], which supports applications based on NCL language (Nested
Context Language) and the imperative environment is represented by Ginga-J [5],
which provides support to the execution of applications written in Java language.
This paper main goal is to present the first implementation of Ginga-J, highlighting its
singularities when compared to other middleware’s implementations. On [5] is
described all the information about the Ginga-J’s functionalities specification. This
article describes the reference implementation on the GingaCDN’s1 project context in
order to serve as basis to future Ginga-J’s implementations from different
manufacturers and its platforms. Another point discussed in this article is the
evolution and validation of Ginga-J architecture's reference implementation, since it is
based on preceding work on middleware developing, realized by the same research
group from LAVID at UFPB [6] . The main results from the work shown here were:
(i) definition of a flexible architecture that allows reuse and software extensibility
and; (ii) developing of a reference implementation in conformity with the new
JavaDTV API recently adopted by the Ginga middleware.
This article is organized as follows: section 2 describes the Ginga middleware. The
section 3 presents Ginga-J’s specification history. The section 4 talks about the
implementation architecture proposed for the Ginga-J. The Section 5 details the
developed implementation. The section 6 discusses the main existing DTV’s
middleware projects for fixed terminals, performing a brief comparison between these
middlewares and the Ginga-J. And, lastly, section 7 presents the final considerations,
future and current works.

2. Ginga Middleware

Ginga is the SBTVD’s middleware specification, it resulted from the fusion of
FlexTV [6] and MAESTRO[7] middlewares, developed through a consortium led,
respectively, by UFPB and PUC-Rio on the SBTVD [8] project.
The FlexTV, procedural middleware proposed by SBTVD’s project, included an API
set compatible with other standards along with novel functionalities such as the
possibility of communication with multiple devices, allowing different viewers to
interact with the same interactive application using remote devices. The MAESTRO
was the declarative middleware proposal of SBTVD’s project. Focusing on space-
time synchronization between multimedia objects using the NCL (Nested Context
Language) declarative language combined with the functionalities of the scripting
language Lua.
Ginga combined these two solutions, now called Ginga-J and Ginga-NCL,
considering the ITU’s international recommendations [11]. Thus the Ginga
middleware is divided in two main interconnected subsystems (Figure 1), also known

1 GingaCDN Project. available on http://www.openginga.net

Ginga-J - An Open Java-based Application Environment 3

as Execution Machine (Ginga-J) and Presentation Machine (Ginga-NCL). The
imperative content execution is possible through the Java Virtual Machine (JVM).
Depending on the application requirements, one programming paradigm can be more
appropriate than other.

Figure 1 - Overview of Ginga middleware

Another important aspect is that the two environments, for the execution of interactive
applications, are not necessarily independent, since that ITU’s recommendation
includes a “bridge”, which provides mechanisms for the communication between
them. This bridge API allows imperative applications to use available services on
declarative applications, and vice versa. Therefore the execution of hybrid
applications one level above the layer of execution and presentation environments is
made possible, allowing to combine the NCL language facilities of multimedia
elements presentation and synchronization with the power of the object oriented Java
language.
Ginga Common Core is the Ginga subsystem responsible for providing specific
functionalities of Digital TV common to the imperative and declarative environments,
abstracting the specific characteristics of platform and hardware for the above layers.
Some of its main functions we can mention are: media exhibition and control, system
resources control, return channel management, storage devices, access to service
information, channel tuning, among others.

3. Ginga-J specification

The Ginga-J (Figure 2) is composed by a set of APIs, defined to provide all the
necessary functionalities for the developing of DTV applications, from the
multimedia data manipulation, to access protocols. Its specification is formed by an
adaptation of the information access API of the Japanese standard service (ISDB
ARIB B.23), the Java DTV [12] specification (which includes the JavaTV API),
besides an additional set of extensions or innovation APIs.

4 Raoni Kulesza et al.

Figure 2 - Ginga-J overview

The additional APIs include a set of available classes for the bridge between
applications written in NCL and Java language, additional functionalities for tuning
channels, sending asynchronous messages through the interactivity channel and
integration of external devices, enabling the support to multimedia resources and
simultaneous interaction of multiple users on DTV [13] applications.
The Java DTV [12] specification is an open and interoperable platform that allows the
implementation of interactive services in Java language, which has been recently
adopted to the Ginga-J’s APIs set. Functionally, the JavaDTV replaces the APIs
collection that was previously used and defined by the GEM standard (Globally
Executable MHP), such as DAVIC (Digital Audio Video Council) and HAVi (Home
Audio Video Interoperability). The goal was to provide royalties free solution for
device manufacturers and application developers, allowing the production of TV sets
and/or set-top-boxes at an affordable cost.

Figure 3 - Ginga-J’s APIs set

The current specification is composed by the Java DTV and JavaTV APIs, added to
the Java execution environment (Java Runtime) for embedded systems (JavaMe),

Ginga-J - An Open Java-based Application Environment 5

including the CDC platform (Connected Device Configuration), and the profile APIs:
FP (Foundation Profile) e PBP (Personal Basis Profile) (Figure 3). Among the main
differences of Java DTV related to the application development, we can quote the
LWUIT API (LightWeight User Interface Toolkit), responsible for defining graphic
elements, graphic extensions for DTV, layout managers and user events.

4. Reference Implementation Architecture

The specification of Ginga-J’s reference implementation architecture was based on
the FlexTV [6] architecture, which considered the J.200 ITU [11] architecture.
However, besides following a different set of APIs definitions (based on JavaDTV, not
GEM), other features were added to provide better reuse and software quality. The
Figure 4 illustrates the modularized conceptual architecture: (i) operating system, (ii)
common core layer and; (iii) Ginga-J’s execution machine. Following are described
the three stages which were adopted to define the architecture solution.
The first step for the architecture’s definition was to choose a suitable execution
platform for the characteristics and differential limitations of a Digital TV fixed
terminal. With that in mind, we chose the Linux operating system for personal
computers (x86) and the PhoneMe Java [15] virtual machine, which is an official
implementation of JavaME/CDC’s environment. The main reason of this choice was
the Linux and PhoneME availability as open platforms, and also the offer of many
development tools without additional cost. Besides, Linux supports heterogeneous
systems [16]. The aim was to allow the implementation’s development on an
environment closer to an access terminal, but that could also be available to as many
developers as possible. In this case, a personal computer, without the need to buy any
specific hardware.

Figure 4 - Conceptual Architecture

The second stage was to develop and refine FlexTV’s common core architecture.
Nearly no change was performed in the conceptual definition of these subsystem’s
modules, there was merely a refactoring in order to attain better functionalities

6 Raoni Kulesza et al.

cohesion. The main change was to specify the common core using a component-based
approach, adopting a component model and an execution environment: FlexCM[17].
The goal was to emphasize the software modeling by decomposing the system in
functional components with well-defined interaction interfaces. In this context, a
component model defines the instantiation scheme, composition, life cycle of the
system components and an environment of software execution responsible for
managing the components ensuring the specifications defined by the respective
components’ model.
The FlexCM model follows a declarative approach, in which the components define
its dependencies explicitly (required interfaces) and the execution environment loads
and provides the dependencies through a dependencies’ injection standard. The
FlexCM model allows its components to know only the interfaces; the
implementations are treated through the execution environment. Besides the required
interfaces, the components can also declare configuration parameters which values are
also injected through the execution environment allowing the developer to easily
configure the component in the final product where it will be installed. The FlexCM’s
execution environment is capable of loading the entire system from an architectural
description file in which the connections and configurations are specified.
The adoption of the FlexCM’s components model offered a series of specific
advantages for Ginga-J’s implementation besides the commonly known advantages
for a component based development, like modularity, maintainability and reuse we
can quote: (1) knowing the architecture in model level; (2) facilities on the
configuration of individual components and; (3) on the system configuration as a
whole. Lastly, these characteristics bring the possibility of managing different
architectures also easing the execution of unit tests and integration of different
portions of the architecture. A test process proposal for the Ginga-J based on FlexCM
can be found at [18].

Figure 5 - Ginga-J Execution Layer and Common Core integration

The third and last stage was to define an integration model of the Common Core layer
with the Ginga Execution Machine. As mentioned, the Common Core is responsible
for offering services for the Ginga-J execution machine. Consequently, it contains

Ginga-J - An Open Java-based Application Environment 7

native code (in C or C++ languages) and it depends on the platform’s execution
libraries. It was then important to define a communication model in order to reduce
the coupling and the dependency between these two subsystems. The adopted solution
was based on the Proxy, Facade and Adapter [19] design patterns. The idea here was
to centralize all Java execution machine use on a Controller module, which exposes
the services for the applications (Application Services). Figure 5 illustrates the
module Controller with two AS interfaces: ITunerAS and IDemuxAS. These services
are offered for the Ginga-J’s applications through JNI (Java Native Interface) callings
implemented internally through Java’s packages. The Controller calls by delegation
the component that implements the required functionality. For example, ITuner and
IDemux calls (shown on Figure 5). If a Common Core component needs another
Common Core component functionality, it can call it directly. The main advantage of
this approach is to isolate the layer(s) above the Common Core, in such way to
prevent platform dependencies, as well to decrease the coupling between Java API’s
specifications and the implementation in C/C++ code. For example, the port of a
Ginga-NCL’s presentation machine or a Java’s execution machine from another
Digital TV (GEM) system to the Common Core used in this work would be
facilitated.

5. Implementation

In this section the Ginga-J’s implementation is described focusing on its Common
Core components. Figure 6 displays this subsystem overview, which contains the
following components:

Figure 6 - GingaJ’s Common Core implementation (in this case, Controller is not a

component, just a facade)

8 Raoni Kulesza et al.

(1) Tuner - tunes and controls the access to the multiple network transport streams;
(2) SI – obtains service information from the transport stream, in other words, which
elementary streams (semantics) of audio, video and data has been transmitted, besides
information as parental rating, synopses and time scheduling; (3) Demux – provides
specific filters to select streams; (4) Media - Provide access to media decoders
(hardware and software) to manage and display the presentation of video and audio
elementary streams; (5) Data Processor – processes and separates transmitted
data (e.g. applications) in multiplexed MPEG-2 transport streams; (6) Graphics –
provides graphical user interface handling; (7) Input Manager – handles user key
events through the remote control, STB’s panel keys, keyboard, or another input
device; (8) Return Channel – provides interfaces for the return channel’s usage,
for example, through dial-up, ADSL, Ethernet, WiMax or 3G; (9) Application
Manager: loads, instantiates, configures and runs applications; (10) Persistence –
manages non-volatile storage resources; (11) Security – verifies an interactive
application’s authenticity and permission; (12) Middleware Manager – responsible
for the middleware’s functional management.
As previously mentioned, for Ginga-J’s execution machine reference implementation
the RC2 version of Linux’s PhoneMe Advanced was used [15]. A native port of the
Java AWT graphic API for the DirectFB2 was performed in the virtual machine. The
generated code was based on the PhoneME built-in native implementation in Qt.
Then, it was possible to implement the JavaDTV APIs, using the Java’s base classes,
which are present in PhoneME, for example, the graphical interface API and user
events handling API. These functionalities were encapsulated in Graphics and Input
components, respectively. For functionalities not present on the Java environment it
was necessary integration with the Common Core. To allow Java applications
management, it was also necessary to integrate the JVM with the Common Core
through the Controller and ApplicationManager components. The
Controller component implemented a new proxy element, which enabled the
execution of Xlets through the ansiJavaMain() fuction (available on JVM’s
code). This function starts the JVM and runs a Java class that initiates all graphical
layers available (as specified on SBTVD’s standard), and also loads the interactive
applications’ data (Xlets) which are started as separated Threads, since Ginga allows
the execution of more than one application at the receptor.
The Tuner implements required services of the com.sun.dtv.tuner package,
using a scanning process for identifying non-blocking channels based on events and
on the Observer pattern[19].
The Demux component contains functionalities from the com.sun.dtv.filtering
package, allowing the selection of different types of elementary streams. Internally it
uses a “circular queue buffer” with different start pointers, one to feed each user,
trying to avoid that users lose their contents consumed by others.

2 DirectFB is an open source project which provides graphic acceleration, input events
treatment, graphic layers management and reproduction of several medias through multimedia providers:
Available on: http:// www.directfb.org

Ginga-J - An Open Java-based Application Environment 9

The SI component obeys the APIs’ requirements which deals with service
information (ARIB, JavaTV and JavaDTV, besides allowing the component user to
obtain final information about the stream, without the need of another processing,
since it implements a cache mechanism. All the abstractions for Service Information
provided by SBTVD’s standards [20] (Table, Descriptors and Events) can be
generated from an object factory, which uses the Factory Method pattern [19]. This
component also warns the DataProcessing to perform the signalization, execution
of applications and data carousel.
The Media component is responsible for the middleware’s processing of continuous
media (audio and video) received from Demux using the vlc infrastructure to
present the media over a DirectFB surface. Acquiring validation of the
implementation with a performance analysis [27]. This component was designed
considering the requirements of the JMF API, since it provides basic reproduction
functionalities for the Java API through the JNI calls.
The ApplicationManager offer interface abstraction for applications in your
database, this abstraction is called ApplicationProxy, witch offer the control of
the applications lifecycle (start, stop, pause, resume and destroy). A example,
JavaProxy is a child class of ApplicationProxy, that has the capabilities
to call the ansiJavaMain() function to start the a xlet. As the same, also exist the
NCLProxy that has de capabilities to start a NCL Presentation Engine [10] to start a
NCL document.
Considering the execution of the applications in deferents process, the
ApplicationProxy must use IPC(Inter Process Communications) strategy to
send commands to your engine execution, example send events received through the
InputManager or a control command.
Beside the lifecycle of the applications, the each Proxy`s interface contains
functionalities to offer communication inter applications. In Java Engine, this happens
through javax.microedition.xlet.ixc for interaction with another xlet, and
br.org.sbtvd.bridge for control NCL documents.

The Persistence and Security components work together to strictly follows the
JavaDTV[12] model to pack, authenticate and authorize the applications and file
storage. That consist in persist the jar file of the application and study the application
access permissions in platform.
The Persistence component has important interaction with the
ApplicationManger component, given that the last send destroy events when a
execution of a application is finished, this provides the trigger to Persistence
deallocate the finished application resources.
The Return Channel component implements the TCP/IP communication for
different network technologies, offering abstraction about the orientation to
connection in two types ConnectionReturnChannel(dial-up, ADSL, 3G) and
ReturnChannel(Ethernet, WiMax). The Return Channel and the Persistence
component acquired validation of your implementation by used in LARISSA
project[26]. The Figure 7 below illustrates 4 (four) use scenarios of Ginga-J’s

10 Raoni Kulesza et al.

implementation.
The Figure 7(a) displays an Java (Xlet) application using the access APIs for Service
Information (JavaTV SI and ARIB SI) and Ginga-J’s graphic elements (LWUIT)
APIs. The Figure 7(b) shows an application displaying 3 video streams (2 locals and 1
live) as a validation scenario for the implementation of the media’s execution API
(JMF). Now the Figure 7(c) and the Figure 7(d) illustrate the possibility to execute a
Java application from a local file (for example, USB device) or from a transport
stream, respectively. So, as on a TV set, many middleware configurations can be
modified through an OSD resident application (On Screen Device). The two last
examples supported the APIs’ validation for the lifecycle control of the application
(JavaTV), data carousel, persistence and security (JavaDTV). The tests were
conducted using a personal computer with the following specifications: Core 2 Duo
2.16GHz processor; 1GB RAM; operating system Ubuntu 9.10 Kernel 2.6.31-14, and;
a 100 GB hard drive.

Figure 7 - Ginga-J’s use Scenarios

6. Related Works

The main existing middleware’s implementations on the Digital TV context might be
divided in two categories: (1) declarative environments (2) imperative environment.
The first group is represented by: (i) LASeR(Lightweight Application Scene
Representation) [21]; (ii) BML (Broadcast Markup Language)[22]; (iii) GingaNCL for
portable devices[23] and; (iv) Ginga-NCL for fixed devices[24]. However, for the
second, we can quote: i) FlexTV[6] and (ii) OCAP-RI (OpenCable Application
Platform – Reference Implementation)[25].
On [23] it was presented a comparative analysis between the solutions LASeR, BML
and Ginga-NCL for portable devices. The main difference of these solutions regarding
the implementation proposed here (Ginga-J) is at the architecture project. None of
these solutions uses a component-oriented approach, not defining a model and
execution environment for the system modules. Besides, we can observe that these
environments seek to implement the following functionalities: medias’
synchronization, adaptability, support of multiple devices, supports on air edition, and

A B

C D

Ginga-J - An Open Java-based Application Environment 11

also supports reuse. The Ginga-NCL for portable devices is the only solution that
supports multiple devices and meets reuse support standards. The solution proposed
here also attends all the requirements presented by the declarative environments, but
uses an imperative approach, through the object-oriented language Java. The use of
this kind of language is much harder and susceptible to errors and also requires a
bigger footprint from the application. Nonetheless, it carries a power of expression
larger than that offered by declarative languages. The goal is to offer more advanced
applications that need to use, for example, access and security mechanisms, finer
control to information and audio-visual content.

Figure 8 - Overview of Ginga-NCL’s fixed devices

Figure 8 displays an overview of the implementation for Ginga-NCL’s fixed devices
[24]. Ginga-NCL’s Presentation Machine is also a logic subsystem capable of starting
and controlling NCL applications. Ginga-NCL’s Common Core is responsible for
offering the previously mentioned services for Ginga-NCL’s Presentation Machine.
This solution, although attending a different set of applications, displays further
similarity on the definition of Ginga-J’s Common Core functionalities. One of the
differences is on the absence of security functionalities and a lower set of
informations about the offered service. The Tuner, DataProcessing,
ContextManager, InputOutput (IO) e InteractiveChannel (IC)
components of Ginga-NCL, are equivalent, respectively, to Tuner,
DataProcessing, ApplicationManager, Input and ReturnChannel of Ginga-J.
Media and Player of Ginga-J represent functionalities of Ginga-NCL’s Player module.
Demux and SI Ginga-J modules represent the Ginga-NCL’s TSParser. The module
System of Ginga-NCL is implemented internally on GingaJ. The main reason for
representing Ginga-J’s functionalities with more modules is to allow better cohesion
and, consequently, larger extension flexibility and code maintenance. Another
important difference concerns the implementation on the modules’ management
mechanism. On Ginga-NCL this is implemented by ContextManager and
UpdateManager (UM) and on Ginga-J a model and execution environment of
software components (FlexCM) are defined.

Table 1 - Comparison between Ginga-J and Ginga-NCL for fixed devices

12 Raoni Kulesza et al.

Table 1 displays a comparison of the solutions. On the criteria for evaluation, we
observed that the Ginga-NCL model uses an approach of object factory, imposing that
the architecture knowledge is spread through the system’s source code. This
characteristic limits the flexibility in which the architecture may be instantiated.
Besides, the lack of standardization in order to configure the components prevents an
effective management of the system modules. So it is believed that the model used on
Ginga-J’s implementation best meets the requirements for modularity, maintainability
and reuse of the project and implementation of the Common Core’s code.
The FlexTV implementation was realized by Ginga-J’s same group and the current
proposal is an evolution of the same in two points: (1) functionalities (new set of APIs
Java based on JavaDTV) and (2) architecture (adoption of a model and environment
of components execution).

OCAP-RI Moreno, F. M. A Declarative Middleware for Digital TV Systems. (Master Thesis);
PUC-Rio, DI, 2006

[25] is a proposal of imperative middleware implementation based on the American
standard of Digital Cable TV. One of the differences is on the set of offered
functionalities, fewer than Ginga-J, since OCAP’s Java APIs do not support multiple
devices nor users, management of the multimedia streams and asynchronous
messages. Another important point is related to the architecture project (Figure 9)
which is divided into: (I) OCAP Java – set of Java APIs available for applications and
defined by the TVD American standard; (ii) JVM and OCAP Native – Java’s virtual
machine and set of specific native code to implement OCAP Java’s functionalities;
(iii) MPE (Multimedia Platform Extensions) – layer that abstracts the execution
platform for the JVM and the OCAP Native code; (iv) MPEOS (Multimedia Platform
Extensions Operating System) -implements platform dependent code offering
services for the MPE, which means, MPEOS is the code that needs to be ported for
each platform and; (v) RI Platform – represents the operating system and the
hardware that runs the middleware. The MPE and MPEOS layers from OCAP-RI are
equivalent to the set of components of the Ginga-J’s Common Core, where MPE is
represented by the interfaces of Controller and MPEOS by internal implementations
of each component. As already quoted, such characteristic facilitates the port of the
Java execution machine for different platforms. However, MPE and MPEOS are
implemented using C language and do not use any model and components execution
environment. Therefore the OCAP-RI architecture does not offer any modulate
division of functionalities, making reuse and code flexibility more difficult.

Ginga-J - An Open Java-based Application Environment 13

Figure 9 - OCAP-RI’s Architecture

Based on the points discussed in this section the main differences between Ginga-J’s
implementation and other proposals can be understood. The first is related to the
programming model and the set of different functionalities offered by an imperative
environment in relation to declarative environments or imperative environment based
on GEM. The second refers to the architecture project, which tried to attend reuse,
maintenance and code flexibility the best way possible. Such aspects are important for
the implementation of reference, since itself offers a starting point and can be adapted
to many platforms by manufacturers and other developers.

7. Development Process

The GingaCDN (Ginga Code Development Network) was idealized as a group of
developers and contributors (scattered across the globe) of Brazil’s Digital TV
middleware the Ginga. Among the various projects being carried out by this network
is Ginga-J reference implementation. Nowadays, the number of registered developers
reached 570 from 15 different countries on GingaCDN community site.
In order to become a distributed software development team and gain from its benefits
like reducing costs and time spent, while improving the software’s quality, it was
necessary to thwart it’s known drawbacks such as inefficient communication, loss in
coordination and providing a full vision of the project. The solution came through a
well-defined development process with roles and a proper tool (based on Redmine3
tool) to support it all.
The collaborative development process was designed to standardize agile and
objective practices as to attend the deployment of distributed component for digital
TV’s middleware. Thus, we defined roles for the collaborative team members in order
for users to know their responsibilities and have the freedom to attend their assigned
tasks independent and simultaneously. Such roles are distributed in the five phases
defined in the collaborative development process. Each phase of the process is mainly
conducted by a specific role (except for the Review phase), they are: 1) Conception,
where the Manager creates a new subproject; 2) Elaboration, when the Leader
specifies tasks to accomplish the subproject; 3) Construction, is carried out by the
Developers undertaking the tasks; 4) Review, the Reviewers review the component
and Integrators check if they integrate with the whole project; 5) Transition, the
Manager once again comes along to check if the component is in accordance to what
was out lined initially.

3 Redmine Project: Available at: http://www.redmine.org

14 Raoni Kulesza et al.

8. Final Remarks

This work describes the Ginga-J’s reference implementation, SBTVD’s imperative
middleware. The development was based on JavaDTV’s specification, an architecture
based on software components. As a form of proposal validation, the architecture was
instantiated for the Linux environment on a personal computer. The main Java
packages of Ginga-J’s standard were implemented through the integration of basic
Java’s environment (PhoneME) functionalities as well as implementations of specific
functionalities for Digital TV (Ginga-J Common Core).
The project and implementation of a development based architecture using
components brought a series of benefits, such as: (i) knowing the architecture at the
model level; (ii) ease when configuring individual components; (iii) configuration of
the system as a whole and (iv) the possibility of managing different architectures
making the execution of unity tests and integration of different architecture portions
easier. Such aspects are very important for the implementation of reference.
As a result of this experience, many works are already being accomplished, such as (i)
port of PUC-Rio’s Ginga-NCL’s presentation machine to the Common Core; (ii) the
development of management tools for the architecture and conception of different
middleware’s versions; (iii) proposal of a conformance validation model for Digital
TV’s middleware.

9. Acknowledges

We thank the support of our institutions, the Laboratory of Digital Video Application
of the Federal University of Paraiba and of the Federal University of Pernambuco, as
well as the funding provided by Brazilian research agencies: National Education and
Research Network (RNP) and Science and Technology Ministry (MCT) under the
CTIC program4.

10. References

[1] Peng, C. “Digital Television Applications” (PhD Thesis) – Helsinki University of
Technology, Espoo, 2002.

[2] Morris, S. Smith-Chaigneau, A. Interactive TV Standards: A Guide to MHP, OCAP, and
JavaTV. Focal Press, 2005.

[3] ABNT NBR 15606-2 Digital terrestrial television – Data coding and transmission
specification for digital broadcasting – Part 2: Ginga-NCL for fixed and mobile receivers –
XML application language for application coding, 2007.

[4] ABNT NBR 15606-5 Digital terrestrial television – Data coding and transmission
specification for digital broadcasting Part 5: Ginga-NCL for portable receivers – XML
application language for application coding, 2008.

[5] ABNT NBR 15606-4 Digital terrestrial television — Data coding and transmission
specification for digital broadcasting Part 4: Ginga-J — The environment for the execution of

4 CTIC Program: Available at: http://www.ctic.rnp.br/

Ginga-J - An Open Java-based Application Environment 15
procedural applications, 2010.

[6] Leite, L. E. C., et al. 2005. FlexTV – Towards a Middleware Architecture to Brazilian
Digital TV System. Journal of Computer Engineering and Digital Systems. Vol. 2, pp. 29-50.
2005.

[7] Soares, L. F. G. 2006. MAESTRO: The Declarative Middleware Proposal for the SBTVD.
Proceedings of the 4th European Interactive TV Conference (EUROITV 2006). Athens, 2006

[8] SBTVD. Brazilian Digital TV System Project. Available on:
http://sbtvd.cpqd.com.br

[9] Souza Filho, G. L. de, Leite, L. E. C. e Batista, C. E. C. F. Ginga-J: The Procedural
Middleware for the Brazilian Digital TV System. Journal of the Brazilian Computer Society.
2007, Vol. v12, pp. 47-56, 2007.

[10] Soares, L. F. G., Rodrigues, R. F. e Moreno, M. F.Ginga-NCL: the Declarative
Environment of the Brazilian Digital TV System. Journal of the Brazilian Computer Society,
Vol. v12, pp. 37-46, 2007.

[11] ITU J.200. ITU-T Recommendation J.200: Worldwide common core – Application
environment for digital interactive television services, 2001.

[12] JavaDTV API. Java DTV API 1.3 Specification, Sun Microsystems, 2009. Available on:
http://www.oracle.com/technetwork/java/javatv/overview/index.html

[13] Silva, L. D. N. et al. Digital TV Multiuser and Multidevices Application Development
Support with Ginga. Amazonia Magazine. N. 12, pp. 75-84, 2007.

[14] ETSI TS 102 819: Globally Executable MHP (GEM). ETSI Standard May, 2004.

[15] Projeto PhoneME. Available on: http://phoneme.dev.java.net/

[16] Yaghmour , Karim . Building Embedded Linux Systems. O'Reilly Media, Inc, 2003.

[17] Miranda Filho, S. et al. Flexcm - A Component Model for Adaptive Embedded Systems.
In: COMPSAC IEEE International Computer Software and Applications Conference, Beijing.
p. 119-126, 2007.

[18] Caroca, C.; Tavares, T. A. Test Process Model to Ginga Common Core Components. In:
Proceedings of the 15th Brazilian Symposium on Multimedia and the Web (WebMedia '09),
Fortaleza, 2009.

[19] Gamma, E., Helm, R., Johnson, R. e Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[20] ABNT NBR 15603-2 (2008) - Digital terrestrial television — Multiplexing and service
information (SI) Part 2: Data structure and definitions of basic information of SI. August, 2008.

[21] ISO 14496-20. Lightweight Application Scene Representation (LASeR) and Simple
Aggregation Format (SAF), 2006.

[22] B24 Appendix 5 – Operational Guidelines for Implementing Extended Services for Mobile
Receiving System, 2004.

[23] Cruz, V. M., Moreno, M. F., and Soares, L. F. Ginga- NCL: Reference implementation for
portable devices. In Proceedings of the 14th Brazilian Symposium on Multimedia and the Web
(WebMedia '08). ACM, New York, NY, 67-74, 2008.

[24] Moreno, F. M. A Declarative Middleware for Digital TV Systems. (Master Thesis); PUC-
Rio, DI, 2006

16 Raoni Kulesza et al.

[25] OCAP – Reference Implementation. Available on:
http://ocap-ri.dev.java.net.

[26] Oliveira, M.; Cunha, P.R.F.; da Silva Santos, M.E.; Bezerra, J.C.C. Implementing home
care application in Brazilian Digital TV. Global Information Infrastructure Symposium (GIIS
'09), Hammamet, 2009.
[27] Trojahn, T.H.; Gonçalves, J.L.; Mattos, J.C.B.; Da Rosa, L.S.; Agostini, L.V. "A Media
Processing Implementation Using Libvlc for the Ginga Middleware," Future Information
Technology (FutureTech), In: In Proceedings of the 5th International Conference on Future
Information Technology. 2010.
[28] Cabral, P. A et al. GingaCDN A Code Development Network to DTV Brazilian
Middleware. In Proceedings of the 16th Brazilian Symposium on Multimedia and the Web
(WebMedia '10). 1st Workshop of Interactive Digital TV. v2, Belo Horizonte, 2010.

